
346 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 4, DECEMBER 2013

Incentive Learning in Monte Carlo Tree Search
Kuo-Yuan Kao, I-Chen Wu, Member, IEEE, Shi-Jim Yen, Member, IEEE, and Yi-Chang Shan

Abstract—Monte Carlo tree search (MCTS) is a search para-
digm that has been remarkably successful in computer games like
Go. It uses Monte Carlo simulation to evaluate the values of nodes
in a search tree. The node values are then used to select the ac-
tions during subsequent simulations. The performance of MCTS
heavily depends on the quality of its default policy, which guides
the simulations beyond the search tree. In this paper, we propose
anMCTS improvement, called incentive learning, which learns the
default policy online. This new default policy learning scheme is
based on ideas from combinatorial game theory, and hence is par-
ticularly useful when the underlying game is a sum of games. To
illustrate the efficiency of incentive learning, we describe a game
named Heap-Go and present experimental results on the game.

Index Terms—Artificial intelligence, combinatorial games, com-
putational intelligence, computer games, reinforcement learning.

I. COMBINATORIAL GAMES

S INCE the 1980s, combinatorial game theory has provided
a common mathematical model for the analysis of many

two-player, perfect information, zero-sum games. This section
reviews the fundamentals of combinatorial game theory (see [1]
and [2] for more detail). In combinatorial game theory, a game
is defined as an ordered pair of sets of games

(1)

where and are sets of games. We call the two players of
a combinatorial game left and right. Games in are the left’s
options and games in are the right’s options. The simplest
game is game 0, defined as

(2)

The negation of a game is defined as

(3)

The sum of two games is a game

(4)

Manuscript received July 06, 2012; revised October 27, 2012 and January 17,
2013; accepted February 07, 2013. Date of publication February 21, 2013; date
of current version December 11, 2013. This work was supported in part by the
National Science Foundation of Taiwan under Grant 100-2221-E-346-007.
K.-Y. Kao is with the Department of Information Management, National

Penghu University, Magong City 880, Taiwan (e-mail: stone@npu.edu.tw).
I-C. Wu and Y.-C. Shan are with the Department of Computer Science, Na-

tional Chiao Tung University, Hsinchu 30050, Taiwan (e-mail: icwu@aigames.
nctu.edu.tw; ycshan@aigames.nctu.edu.tw).
S.-J. Yen is with the Department of Computer Science and Information

Engineering, National Dong Hwa University, Hualien 974, Taiwan (e-mail:
sjyen@mail.ndhu.edu.tw).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2013.2248086

There is a partial order relation defined on the classes of games

(5)

where

no in (6)

The partial order relation introduces an equivalence relation

and (7)

Equations (1)–(7) define a commutative group of games.
We also use the notation when is neither greater

than nor equal to .
One notable result of combinatorial game theory is as fol-

lows: all numbers are games, and they can be added in the usual
way. We skip the formal definition of numbers here and just re-
mind the reader that a game can be viewed as a tree where the
branches are classified into left and right branches and the ter-
minal nodes are numbers. A sum of games is a collection of trees
where each player can choose one in which to move at a turn.
For each combinatorial game, there exist two impor-

tant values, named the mean and the temperature. Roughly
speaking, the mean is a measure of the average outcome, while
the temperature is a rough measure of the move size of a game.
The existence of mean values of games was first raised and
proved in [3] and [4]. A constructive algorithm, thermograph,
for the mean and the temperature was due to [1] and [2].
Another approach for calculating the mean and the temperature
with partial information of a single option game was proposed
in [5]. In this paper, we use the notation and to
denote the mean and the temperature of a game .
Conway [1] first introduced the concept of a game’s incentive.

In [1], given a game and are called the left
and right incentives of , which measure the precisemove size
of a game, as defined as follows:

(8)

(9)

The incentive measures the precise difference in game value
before and after a move. Since the sum or the difference of two
games is also a game, the incentive is game valued. Note that
the left and right incentives of a game may not be of the same
value. One drawback of incentives is that they are not totally
ordered, since games are not totally ordered. On the other hand,
the temperature of a game measures the difference between

and . There is only one unique game temperature, and it
is simplified as a numerical value. Because a single numerical
value cannot capture all the detailed information of a move, the
temperature is only a rough measure of a game’s move size.

1943-068X © 2013 IEEE



KAO et al.: INCENTIVE LEARNING IN MONTE CARLO TREE SEARCH 347

When playing a sum of games, players are always concerned
about which move has the biggest move size. Although both the
temperature and the incentive are measures of the move size, the
calculation of these values in a given game is not a simple task.
The goal of this study is to design an automated learning al-

gorithm that can learn incentive values in a relative manner.
By relative manner, we mean that, instead of learning the exact
value of a move size, we learn which move has a relatively
greater move size than the rest. This paper first discusses how
incentive learning works for combinatorial games. Then, a com-
plete framework of incentive learning for state spaces of general
groups is presented.
This paper is organized as follows. Section II introduces

Monte Carlo tree search (MCTS) research. Section III presents
the incentive learning algorithm. Section IV introduces the
combinatorial game Heap-Go. Section V describes the experi-
ments. Section VI provides concluding remarks.

II. MONTE CARLO TREE SEARCH

MCTS [6] is a search paradigm for two-player, perfect-in-
formation, and zero-sum games. It has been applied to various
computer games [7]–[14], and [19]. This section reviews the
basic ideas of MCTS and its related policy improvements, fol-
lowing the definitions of [16].
Let denote the state space of a game, and be the state

of a game at time . Let denote the space of actions and let
denote the set of legal actions from state . The two players

alternate turns, at each turn selecting an action in .
The game finishes upon reaching a terminal state with outcome
. One player’s goal is to maximize ; the other player’s goal
is to minimize . A policy is defined as a stochastic action
selection strategy that determines the probability of selecting
actions in any given state. is defined as the expected
outcome after playing action in state , and then following
policy for both players until termination

(10)

The basic idea of MCTS is to evaluate online the expected
outcome from simulated games. Each simulated game starts
from a root state , and sequentially samples actions until the
game terminates. At each step of the simulation, a simula-
tion policy is used to select an action . The outcome of
each simulated game is used to update the -values encoun-
tered during that simulation. This update can be implemented
incrementally by incrementing the state-action simulation count

and updating the -value toward the outcome

(11)

(12)

There are two policy stages in the simulations. A tree policy
is used to select actions in the state represented in the search
tree, while a default policy is used in those states that are not in
the tree, mainly for the playout simulations.
The second idea of MCTS is policy improvement. The

values in the search tree are used as references to select actions

during subsequent simulations. As the number of simulations
increases, the policy continues to improve. Eventually, with
sufficient simulations, the policy will reach the optimal strategy.
The upper confidence bounds applied to trees (UCT) [15] is

an example of a policy improvement scheme. It selects actions
by using the upper confidence bounds (UCB) algorithm which
maximizes an upper confidence bound on the value of actions.
Specifically, the -value is augmented by an exploration bonus
that is high for rarely visited actions, and the policy selects the
action maximizing the augmented value

(13)

(14)

where is a scalar exploration constant, is the number of
visits to state , and is the natural logarithm. The underlying
idea of UCT is to provide a balance between exploitation of
the current best action and exploration of other potential better
actions.
The rapid action value estimation (RAVE) [16] uses the all-

moves-as-first (AMAF) heuristic to estimate the value of each
action. The AMAF heuristic assumes there is one general out-
come value for eachmove, regardless of when it is played. The
RAVE value function is the expected outcome
from state , given that a move is taken at some subsequent
turn

(15)

RAVE provides a simple way to share knowledge between
similar actions in the search tree, resulting in a rapid estimate
of the action values.
Compared to MCTS, RAVE learns very quickly, but its accu-

racy and convergence is not as good as the accuracy and conver-
gence of MCTS, when a sufficiently large number of games are
simulated. The MCTS–RAVE algorithm [16] overcomes this
issue by combining the rapid learning of RAVE with the accu-
racy and convergence guarantees of MCTS

(16)

where has an initial value of 1 and gradually de-
creases as the number of simulations increases.
We end this section with some remarks on the previous re-

sults. The underlying idea of RAVE is to have one general out-
come value for each move, regardless of when it is played. Be-
cause of the property of “regardless of when it is played,” RAVE
learns the outcome value by sharing knowledge between similar
nodes in the search tree. On the other hand, for combinatorial
games, we also know there is an incentive value for each action,
regardless of when it is played. Section III studies how to learn
these action values of by sharing knowledge between nodes in
the search tree.

III. INCENTIVE LEARNING FOR COMBINATORIAL GAMES

In this section, we focus on combinatorial games. From com-
binatorial game theory, we know that each action has an incen-



348 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 4, DECEMBER 2013

Fig. 1. Monte Caro Tree Search.

tive, as defined in (8) and (9). Note that although the left’s goal is
to maximize the outcome, and the right’s goal is to minimize the
outcome, both players try to maximize their own move incen-
tives. In the following discussion, without the loss of generality,
we assume that it is the left’s turn to move and use the notation

to denote the incentive of action for the left. Each game
is a state. Note that an action in a state will result in a state

.
Given two actions and , we have

(with probability 1)

(17)

So, learning the partial order relation between incentives can
help the decision of choosing an action from a state. The rest
of this section discusses how to learn the partial order relation
between incentives. We define the incentive difference between
two actions and as

(18)

where RIDE is the rapid incentive difference evaluation.
Note that the value of (18) can also be learned from MCTS

simulations. The idea is that we first learn the incentive differ-
ence of all pairs of incentives from the MCTS simulation and
then utilize the information to guess the partial order relation
between the incentives.
Fig. 1 shows an example of a Monte Carlo tree with six sim-

ulations. Each node represents a state and each link corresponds
to an action. Each terminal node has a value indicating the re-
ward of the simulation from the root to itself. We focus on in-
ference about which action, or , is a better action.
Both actions and happen twice in the simulation from state
. The RAVE values are

So RAVE thinks action is better than action .
Although actions and happen twice in the simulation from

state , it happens only once that the two actions start from the
same state . The RIDE value between actions and is

So the RIDE thinks action is better than action .
Although both RAVE and RIDE try to estimate the difference

between the action values of and by sampling from the sim-
ulations, their sampling methods are different. RAVE applies an
independent sampling method, and any simulation that contains
action or action is collected into the samples. RIDE applies
the pairwise sampling method, and only states that contain both
actions and as the next actions are collected into the samples.
From (17) and (18), we have

(19)

and

(20)

Let be a sequence of actions

(21)

Ideally, we would like to order the actions in such that

(22)

In reality, a sequence of actions in (21) may not be well or-
dered. So the goal is to find a sequence as close to (22) as pos-
sible. To define the term “close” more precisely, let be
the incentive difference function defined in (18), and let be a
sequence of actions as in (21). We define the ordering cost of
the sequence under as

(23)

where

if
otherwise

(24)

The essential meaning of (23) is that mea-
sures the ordering cost in by summing up the incentive differ-
ence value of all misordered incentive pairs. A sequence with
smaller cost is said to be closer to (22). The agent can utilize
the information of to learn a sequence with the min-
imum ordering cost

(25)

can be updated incrementally at each time step when the
value of an action pair has been changed.Without the loss of

generality, we assume that the value of is increased
and (if , then there is no need to update ). One
only needs to consider three possible updates to :
• move and insert right after ;
• move and insert right before ;
• keep unchanged.
The update with the minimum cost will be chosen.
Once is learned, the agent can then utilize this information

in the playout simulations. The rule of action selection is simple:
select the action with the maximum incentive (ordered by the
relation ).



KAO et al.: INCENTIVE LEARNING IN MONTE CARLO TREE SEARCH 349

Fig. 2. Setup of Heap-Go.

We summarize the incentive learning process as follows.
1) Use the UCB algorithm to select the in-tree path of a new
simulation (tree policy).

2) Use to select the off-tree (playout) path of the new sim-
ulation (default policy).

3) Start a new simulation and learn the outcome
from the simulation.

4) For each action on the path of the simulation, ranges
from down to 0:
a) update based on the outcome ;
b) compare with any other and use the
information to update ; update using the
information of .

5) Go to step 1).
Themajor cost of incentive learning is memory. Let be the

size of the action space , then the incentive learning algorithm
needs memory of size order to store the -values.

IV. THE GAME OF HEAP-GO

This section describes a combinatorial game named
Heap-Go, which was first introduced in [18]. In Section V, we
will use Heap-Go as the test bed for experiments on the in-
centive learning algorithm introduced in Section III. Heap-Go
is played on a number of heaps of counters. Each counter has
a weight and is colored either blue or red. Fig. 2 shows an
example of the initial setup.
Two players, the left and the right, move alternatively and

their legal moves are different.
• When it is the left’s turn to move, the left can choose any
one of the heaps and repeatedly removes the top counter
until either he has removed a red counter or the heap has
become empty.

• When it is the right’s turn tomove, the right can choose any
one of the heaps and repeatedly removes the top counter
until either he has removed a blue counter or the heap has
become empty.

The game is finished once all the counters in all the heaps
have been removed. In the end, the player who removed more
total weights is the winner.
Fig. 3 shows the game tree of heap in Fig. 2. The num-

bers at the terminal nodes are the net scores of the paths from
the root to these nodes. The left’s score is counted positive and
the right’s score is counted negative. For example, consider the
path LR. The left gets eight points for the first move (removed
two counters); the right gets five points for the second move (re-
moved one counter); the net score is 3.
Note that in Heap-Go, each heap is a game with states,

where is the number of counters in the heap and each state
corresponds to a subheap of the heap. The global state is the

Fig. 3. Game tree of heap .

sum of all the heaps. In Fig. 2, the global state space has a size
of . Each action can only change the state
of one heap. Although it seems there are many possible actions,
the size of the space of actions is limited. In Fig. 2, there are only

distinct actions, each action corresponding
to a move at a state of a heap. In general, a sum of heaps with
counters in total will have distinct actions in the game tree of
the sum. So, the memory requirement for incentive learning for
Heap-Go is not a problem. One of the major reasons we choose
Heap-Go as the test bed is because the complexity of the game
can be adjusted by simply changing the number of heaps and
the number of counters in each heap.
Our goal is to learn the partial order relations between the in-

centives in the Heap-Go game. We need a mechanism to eval-
uate the learning result. From combinatorial game theory, we
know that each heap has a temperature. Both the incentive and
the temperature can measure the size of a move. For hot games,
a move with a higher temperature usually implies a greater in-
centive, and vice versa. So we can measure the performance of
incentive learning by comparing the order of the temperatures
with the learned incentive orders .
The temperatures of the heaps are calculated outside the in-

centive learning process. Kao [18] has developed a polynomial
time algorithm to calculate the mean and the temperature of a
heap. The complexity of the algorithm is where is the
number of counters in a heap. Hence, we can measure the per-
formance of incentive learning by comparing the output action
sequence of incentive learning with the derived temperatures
of the heaps, viewed as the correct results.

V. EXPERIMENTAL RESULT

We performed an experiment of the new temperature learning
algorithm for the Heap-Go game. The setup of the experiment
is as follows.
1) The experiment consists of several conditions with varied
game sizes, varied numbers of simulations for training,
and varied default policies. Each session runs 100 random
games.

2) At the beginning of each run, the experiment randomly
selects heaps, each with counters, and the weights and
colors of the counters are randomly generated where the
weights range between 1 and 10 and the colors are either
blue or red.

3) The temperature of each heap state is calculated before
the learning process starts. These temperatures are used



350 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 4, DECEMBER 2013

TABLE I
MATCH RATE (PERCENT) (DEFAULT POLICY: MAXI)

to setup the priority relation between any two ac-
tions, where actions with higher temperatures have higher
priorities.

4) The learning process outputs an incentive list , which
is used to set up the priority relation between any two
incentives.

5) The relations and are compared to each other,
and the percentage of agreed match, called match rate be-
tween and , is recorded. Actions belonging to the
same heap are excluded from comparison, since the rule
of Heap-Go implies that these actions will never happen at
the same time.

6) Within each run, the values of all the actions are
also recorded. These values are used to set up the
priority relation between any two actions. The rela-
tions and are compared to each other, and the
match rate between and is recorded.

In the experiment, UCT is used as the tree policy, and there
are two versions of the default policy. The first version, called
random default or RAND default, selects the action randomly;
the second version, called maximum incentive default or MAXI
default, selects the move according to . The experimental re-
sults are shown in the following.
The data in Table I are summarized as follows.
• Even with a very small number of simulations,
the average match rate (between versus ) quickly
runs above 60%. The average match rate increases as the
number of simulations increases and almost reaches 90%
within simulations. This implies that incentive
learning converges fast and the agent’s default policy is
getting closer to the thermostrategy, which selects the ac-
tion with the maximum temperature.

• The averagematch rate never reaches 100%, even if a game
tree is completely explored (in the case of game size 3 3).
However, the high match rate, above 89%, implies that
an action sequence ordered by action temperatures is very
close to the action sequence with the minimum ordering
cost.
The average match rate decreases as the action space size
increases, under a fixed number of simulations. A low
match rate implies that the agent’s action policy is still far
from the thermostrategy. The match rate can also be used
as an indicator of the performance of MCTS.

Fig. 4 shows the comparison of the match rate between two
different default policies at games with size 5 5. It shows that

Fig. 4. Incentive learning with different default policy.

Fig. 5. RAVE and incentive learning.

theMAXI default policy has a higher match rate than the RAND
default policy. Note that to achieve the same match rate as the
MAXI default policy, the RAND default policy needs almost
ten times as many simulations. This indicates that in incen-
tive learning the MAXI default policy does improve the per-
formance of MCTS significantly.
Fig. 5 shows the comparison of the match rate between RAVE

and incentive learning. Both RAVE and incentive learning use
the same UCT tree policy and the random default policy at
games with size 5 5. Fig. 5 shows that the match rate of in-
centive learning is far above the one of RAVE. Overall, the in-
centive learning result is very positive, either compared to no
learning (match rate 50%) or compared to RAVE.
Each 5 5 Heap-Go game has 25 distinct actions (each ac-

tion acts on the th counter of the th heap), and
action pairs (actions on the same heap are not compared

to each other). Because 100 games are played in each con-
dition in the experiments of Figs. 4 and 5, there are in total

action pairs. The match rate is measured on
the space of action pairs. The statistical outcome of 25 000 sam-
ples should be significant enough (with a standard error much
less than 1%).
Fig. 6 shows the comparison between the winning rates of

two different default (playout) policies: the RAND default and
the MAXI default; the latter applies the outcome of RIDE to
guide the playouts. Both default policies are equipped with the
UCT tree policy. The experiment takes 1000 sample games and
has a range of numbers of simulations from 100 to 100 000 for
eachmove. For each random game, the two default policies have
two matches; one of them plays first at each match. The sum of
the scores in the two matches is added together to determine the
winner of the game. The outcome clearly shows that the MAXI
default has a higher winning rate than the RAND default when
the number of simulations is more than 100. It is also interesting
to see that the percentage of ties also increases as the number of



KAO et al.: INCENTIVE LEARNING IN MONTE CARLO TREE SEARCH 351

Fig. 6. Winning rates of different default policies.

simulations increases. Indeed, if two players are both optimal,
then the tie rate should be 100%. The increase of the tie rate
implies that both players are playing better as the number of
simulations increases.

VI. CONCLUSION AND FURTHER CONSIDERATION

This paper introduces the following heuristic: “if an action
leads to better rewards than other actions from the same state,
then it is highly likely that this action has a greater incentive
value than other actions.” We present an online incentive
learning scheme applied to MCTS. The outcome of incentive
learning is a list of actions ordered by their incentives. This
information is then used by the default policy to select the
action with the maximum incentive.
Each simulation in MCTS carries a lot of information. The

quality of MCTS depends on how much one can learn from
each simulation. The majority of past research focuses on the
learning of action values. This paper introduces the learning of
incentive orders. Our experiment on Heap-Go has shown very
positive results with incentive learning.
We have seen in this paper how incentive learning can be

applied to the state space of combinatorial games. Indeed, the
general framework of incentive learning, as shown in (18), (23),
(24), and (25), can be applied to general state spaces.
Both RAVE (15) and RIDE (18) use the same AMAF

heuristic: there is one general action (incentive) value for each
action, regardless of when it is played. The major difference
between RAVE and RIDE is their sampling strategy. RAVE
applies an independent sampling strategy, while RIDE applies
a pairwise sampling strategy. In order to compare the action
value of two actions and , RAVE estimates the action values
of and independently and regardless of their starting states,
and then compares their values. RIDE estimates the pairwise
action-value difference directly, as long as the starting states
are the same.
Bouzy and Chaslot [20] also came up with the idea of learning

by pairwise comparison and using the result to help play out
the simulations. They used a formula with certain parameters to
learn the differences of action values between actions, and each
action finally received an absolute action value

where and are the state values of two MC evaluations,
is a constant ranging from 0.7 to 1.0, and is proportional to
the inverse of the square root of a number of visits to action .
The RIDE method introduced in this paper compares the rela-
tive orders between action pairs, and there is no absolute action
value for each action. Indeed, Bouzy and Chaslot’s formula is
similar to RAVE (15) in the sense that an action value is updated
regardless of when it is played. On the other hand, RIDE only
learns the difference between two actions when these actions
are from the same state (18).
One issue of incentive learning is required memory. Let

be the size of the action space . The incentive learning al-
gorithm needs memory of size order to store -values.
This issue may incur a limit on the applicability of incentive
learning to other games. The game ofHeap-Go has an incentive
space size equal to the total number of counters in the Heap-Go
game. Hence, the memory problem is not critical. For games
with a large or infinite action space, further research is needed
to handle the memory problem.
The state space of theHeap-Go game could be very large. An

Heap-Go game with heaps of counters has a state
space size of . The state space size of a 19 19 Go game
is around , which is about the same size as the
361 3 or 172 10 Heap-Go game. The method introduced in
this paper can be applied to any Heap-Go game as long
as memory can store action pairs.
Another thing to note about incentive learning is its divide-

and-conquer feature. The task of incentive learning can be ar-
ranged in a divide-and-conquer manner. For example, consider
aHeap-Go game with heaps. At the first run, one can first di-
vide the heaps into two groups and , where each group
has heaps, and learns the incentive orders separately within
each group. Since the incentive of an action at one heap is in-
dependent of the states of other heaps, the learning results from
the two groups and are reliable. The outputs of the first run
are two ordered lists, say and .
At a second run, one can divide the 2 heaps into another
two groups and and learn the incentive orders separately
within each group. The outputs of the second run are another
two ordered lists, say and . It
is possible that the learning result from the two runs can be
merged and produces a complete incentive order, for example,

. If the results of the previous runs are not
sufficient to determine a complete ordered list, one can con-
tinue additional runs. The divide-and-conquer feature of incen-
tive opens a door for further research into more efficient incen-
tive learning algorithms.
Although our incentive learning scheme can be applied to

general MCTS, further studies are needed to testify as to its per-
formance in various problems. One way of measuring the fea-
sibility of incentive learning for a problem is to check whether
the match rate between the output action sequence of incen-
tive learning and the output action sequence of MCTS increases
with increased simulations. The extension of incentive learning
to other general problems deserves further research.



352 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 4, DECEMBER 2013

REFERENCES
[1] J. H. Conway, On Numbers and Games. New York, NY, USA: Aca-

demic, 1976.
[2] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways. New

York, NY, USA: Academic, 1982.
[3] J. Milnor, “Sums of positional games,” in Contributions to the Theory

of Games, Kuhn and Tucker, Eds. Princeton, NJ, USA: Princeton
Univ. Press, 1953, pp. 291–301.

[4] O. Hanner, “Mean play for sums of positional games,” Pacific J. Math.,
vol. 9, pp. 81–99, 1959.

[5] K. Kao, “Mean and temperature search for Go endgame,” Inf. Sci., vol.
122, no. 1, pp. 77–90, Jan. 2000.

[6] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Proc. 5th Int. Conf. Comput. Games, 2006, pp. 72–83.

[7] S. Gelly and D. Silver, “Achieving master level play in 9 9 computer
Go,” in Proc. 23rd Conf. Artif. Intell., 2013, pp. 1537–1540.

[8] H. Finnsson and Y. Björnsson, “Simulation-based approach to general
game playing,” in Proc. 23rd Conf. Artif. Intell., 2013, pp. 259–264.

[9] R. Lorentz, “Amazons discover Monte-Carlo,” in Proc. 6th Int. Conf.
Comput. Games, 2013, pp. 13–24.

[10] M. Winands and Y. Björnsson, “Evaluation function based
Monte-Carlo LOA,” in Proc. 12th Adv. Comput. Games Conf.,
2009, pp. 33–44.

[11] J. Schäfer, “The UCT algorithm applied to games with imperfect in-
formation,” Diploma thesis, Institut für Simulation und Graphik, Otto-
von-Guericke-Universität Magdeburg, Magdeburg, Germany, 2008.

[12] N. Sturtevant, “An analysis of UCT in multi-player games,” in Proc.
6th Int. Conf. Comput. Games, 2013, pp. 37–49.

[13] R. Balla and A. Fern, “UCT for tactical assault planning in real-time
strategy games,” in Proc. 21st Int. Joint Conf. Artif. Intell., 2009, pp.
40–45.

[14] F. Teytaud and O. Teytaud, “Creating an upper confidence tree program
for Havannah,” in Proc. 12th Adv. Comput. Games Conf., 2009, pp.
65–74.

[15] S. Gelly, “A contribution to reinforcement learning; Application to
Computer Go,” Ph.D. dissertation, Laboratoire de recherche en infor-
matique, Univ. South Paris, Paris, France, 2007.

[16] S. Gelly and D. Silver, “Monte-Carlo tree search and rapid action
value estimation in Computer Go,” Artif. Intell., vol. 175, no. 11, pp.
1856–1875.

[17] P. Drake, “The last-good-reply policy for Monte-Carlo Go,” Int.
Comput. Games Assoc. J., vol. 32, no. 4, pp. 221–227, Dec. 2009.

[18] K. Kao, “On sums of hot and tepid combinatorial games,” Ph.D. disser-
tation, Dept. Math., Univ. North Carolina at Charlotte, Charlotte, NC,
USA, 1997.

[19] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey
of Monte Carlo tree search methods,” IEEE Trans. Comput. Intell. AI
Games, vol. 4, no. 1, pp. 1–43, Mar. 2012.

[20] B. Bouzy and G. M. J.-B. Chaslot, “Monte-Carlo Go reinforcement
learning experiments,” in Proc. IEEE Symp. Comput. Intell. Games,
2006, pp. 187–194.

Kuo-Yuan Kao received the B.S. degree in informa-
tion engineering from the National Taiwan Univer-
sity, Taipei, Taiwan, in 1989 and the Ph.D. degree in
mathematics from the University of North Carolina
at Charlotte, Charlotte, NC, USA, in 1997.
He is one the early pioneers ofComputer Go. Since

1995, he has engaged in the research of combinato-
rial game theory and published several papers in this
field. He is a 6-dan amateur Go player.
Prof. Kao won the U.S. Computer Go Cham-

pionship in 1994. He is a member of the Taiwan
AI association. Since 2007, he has served as the Director of the Chinese Go
Association, Taiwan.

I-Chen Wu (M’10) received the B.S. degree in elec-
tronic engineering and the M.S. degree in computer
science from the National Taiwan University (NTU),
Taipei, Taiwan, in 1982 and 1984, respectively, and
the Ph.D. degree in computer science from Carnegie
Mellon University, Pittsburgh, PA, USA, in 1993.
He is currently a Professor of the Department of

Computer Science, and the Director of the Institute
of Multimedia Engineering at the National Chiao
Tung University, Hsinchu, Taiwan. He introduced
the new game, Connect 6, a kind of six-in-a-row

game, in 2005. Since then, Connect6 has become a tournament item at the
Computer Olympiad. He led a team developing various game-playing pro-
grams, winning over 20 gold medals in international tournaments, including
the Computer Olympiad. His research interests include artificial intelligence,
Internet gaming, volunteer computing, and cloud computing. He wrote over 80
papers.
Dr. Wu served as a chair and a committee member in over 30 academic con-

ferences and organizations, including the Games Technical Committee of the
IEEE Computational Intelligence Society.

Shi-Jim Yen (M’10) received the B.S. degree in
computer science and information engineering from
Tamkang University, New Taipei, Taiwan, in 1991,
the M.S. degree in electrical engineering from the
National Central University, Zhongli City, Taiwan,
in 1993, and the Ph.D. degree in computer science
and information engineering from the National
Taiwan University, Taipei, Taiwan, in 1999.
He is currently a Professor in the Department of

Computer Science and Information Engineering, Na-
tional Dong Hwa University, Hualien, Taiwan. He

has specialized in artificial intelligence and computer games. In these areas, he
has published over 100 papers in international journals and conference proceed-
ings. He is a 6-dan Go player.
Prof. Yen received the Excellent Junior Researcher Project Award from the

Taiwan National Science Council in 2012 and 2013. He served as a Program
Chair of the 2015 IEEE Conference on Computational Intelligence and Games,
and a Workshop Chair of 2010–2013 Conferences on Technologies and Appli-
cations of Artificial Intelligence. He served as a Workshop Cochair of the 2011
IEEE International Conference on Fuzzy Systems. He has been the Chair of the
IEEE Computational Intelligence Society (CIS) Emergent Technologies Tech-
nical Committee (ETTC) Task Force on Emerging Technologies for Computer
Go since 2009. His team develops many strong board game programs including
Go, Chinese Chess,Dark Chess, Connest6, and many puzzle games. These pro-
grams have won the gold and other medals numerous times at the Computer
Olympiad, TAAI tournaments, and TCGA tournaments since 2001.

Yi-Chang Shan received the B.S. and M.S. degrees
in computer science from the National Taiwan
Normal University, Taipei, Taiwan, in 1991 and
2002, respectively, and the Ph.D. degree in computer
science from the National Chiao Tung University,
Hsinchu, Taiwan, in 2013.
His research interests are computer game, combi-

natorial game theory, volunteer computing and cloud
computing.


