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AbstractmIn this paper, a flow evolution model is developed by using the dynamical system 
approach for a vehicular network equipped with predicted travel information. The concerned sys- 
tem variables, path flow, and predicted minimal travel t ime of an origin-destination (OD) pair, are 
measured on the peak-hour-average base for each day. The time change rates of these two variables 
are formulated as a system of ordinary differential equations under the assumption of daily learning 
and adaptive processes for commuters. By incorporating the total perceived travel time loss (or 
saving) into the proposed models, t ime change rates of path flows are generated with a flow-related 
manner to prevent path flow dynamics from being insensible to traffic congestion which had been 
formulated in the existing studies. Heterogeneous models with various user adjusting sensitivities 
and predicted travel information are also presented. Equilibrium solutions of the proposed network 
dynamics satisfy the Wardrop user equilibria and are proved to be asymptotically stable by using the 
stability theorem of Lyapunov. The issue of existence and uniqueness of solutions is proved both on 
the lemma of Lipschitz condition and the fundamental theorem of ordinary differential equations. In 
addition, some simple examples are demonstrated to show the asymptotic behaviors of the proposed 
models numerically. (~) 2005 Elsevier Ltd. All rights reserved. 

Keywords--Day-to-day network dynamics, Nonlinear dynamical system, Lyapunov function, Dy- 
namic traffic assignment. 

N O M E N C L A T U R E  
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P~ 

time index; unit: day 

the full set of OD pairs with 17d 
OD pairs 

the full set of paths wi th /5  paths 

the full set of links with .4 links 

the set of paths connecting OD 
pair w with P~ paths 

the nonnegative peak-flow of path p 
at day t; unit: vehicle/hour 

ht~ the sum of h~, Vp E Pw; unit: 
vehicle/hour 

h t the full vector of path flows at 
day t 

f t the nonnegative peak volume of 
link a at day t, i t  = ~-~p ~aph~, 
where gay = 1 if link a belongs to 
path p, otherwise Sap = 0; unit: 
vehicle/hour 
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c~(/~) 

¢ 

e t 

the capacity of link a; unit: 
vehicle/hour 

the unit average travel time on 
link a at day t, a smooth and strict 
monotone function of f~; unit: 
hour 

the unit average travel time 
on path p at day t, without 
considering node travel time, 
C t -~- ~-~(~apCa(f~a); unit: hour 

a 

the  unit  average travel t ime on 
OD pair w at day t predicted and 
provided by ATIS; unit: hour 

the full vector of c~w at day t 

D~ 

~ p  

X t 

the travel demand of OD pair w 
over whole t ime period of interest; 
unit: vehicle/hour 

the positive and path:specific 
parameter to denote the propensity 
of path flow dynamics; unit: 
vehicle/hour 2 

the positive and OD-specific 
parameter  to denote the sensitivity 
of predicted travel t ime dynamics; 
unit: hour2/vehicle 

the ordinary derivative of x with 
respect to t 

the transpose of vector (or ma- 
trix) x 

1. I N T R O D U C T I O N  

The ability to predict how the information prepared by advanced traveler information sys- 
tems (ATIS) influences the time trajectory of network flows is essential in the era of intelligent 
transportation systems (ITS). By providing road users with travel information and so allowing 
them to make better travel decisions, ATIS promises to enhance the utilization of existing trans- 
portation infrastructure and, consequently, to mitigate traffic congestion. The focus of this paper 
is to develop an analytical approach capturing the effects of travel information on network flow 
evolutions, especially the day-to-day interactions among system variables, network performances, 
and travel information. Network flow dynamics had been studied analytically [1-6] or simulation- 
oriented [7-15]. Some other researchers were concerned about formulations and solution methods 
of dynamic traffic assignment problem to compute the flow pattern under the conditions of sys- 
tem optimum [16-17], dynamic user equilibrium [18], or dynamic user optimum [19-21]. These 
studies did not simulate the evolutions of network flows but only a unique flow solution following 
some optimal criteria. 

Conversely, the flow evolution model is able to capture the transition states of the system 
and finally approaches to steady state [22] if the system is well-behaved with a long enough 
evolution time. They are classified into two broad categories according to the time scales of system 
adjustment, the fluctuations of the system variables within each single day (intraday dynamics) 
and between subsequent "days" or more generally observation periods of similar characteristics 
(interday dynamics). Chang and Mahmassani's serial experiments [7-10] on route choice behavior 
of commuters had indicated that the learning and adaptive process of route choice may take 
weeks, partly because of the dynamic feedbacks from the traffic system, and, indeed, it can be 
lengthened by complex switching that resulted from the provision of better information. Friesz et 
al. [4] addressed Mahmassani's design theoretically by introducing a tatonnement process to 
model the transition of disequilibria from one state to another. Day-to-day dynamic models are 
particularly useful in capturing traffic patterns when perturbations of the traffic system create 
disequilibria that might adjust forward equilibria. If the duration of disruption or the time it takes 
for the system to reach equilibrium are such that the system stays longer in a nonequilibrium 
state rather than in an equilibrium one, it is important to catch the interday transition process 
of traffic diversion. Issues about interday transformation of peak-period commuter trips are 
examined in this research. A formulation of path flow alteration is presented though it is partly 
similar to Friesz et al. [4] but with new conceptual and mathematical refinements to offer a 
congestion-sensitive evolution behavior of network flows. 

To sum up, the purpose of this paper is to develop an analytical approach capable of both 
modeling the interacted relationships between the aggregate user behaviors and ATIS informa- 
tion provision and characterizing the theoretical issues of the existence, uniqueness, and stability 
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for the proposed model with a thoroughly mathematical foundation. The achievements in the 
paper have never been reached before especially in a multiclass users scenario. As pointed out 
by Friesz et al. [23,24], the application of the proposed model mainly concentrates on the dy- 
namic network design problem. The dynamic network design problem is to determine a tempo- 
ral management (or control) plan which recognizes that perturbations generated from the new 
management (or control) treatments bring about disequilibria which adjust toward equilibrium. 
Therefore, a model of this type describes the time evolution of system states in a disequilib- 
rium adjustment framework and forms the basic feasible solutions of the dynamic network design 
problem. 

The remainder of the paper is organized as follows. In the next section, we briefly mention the 
assumptions common throughout the paper. The major developments for network dynamics are 
described in Section 3. The proof of existence, uniqueness, and stability of proposed models is 
provided in Section 4. Numerical examples are demonstrated in Section 5, and the conclusions 
of this research are outlined in Section 6. 

2. A S S U M P T I O N S  

The basic assumption in the paper is the dally learning and adaptive processes of how system 
behaviors interact with the travel information predicted and provided by ATIS. Travel infor- 
mation about the upcoming day's travel time from origin to destination is provided with users 
and compared with the actual travel time experienced by all path users. Then, travelers who 
experienced travel time less than predicted travel time should have encountered a (pseudo) travel 
time saving. On the other hand, users who experienced travel time that is more than the pre- 
dicted travel time encounter a (pseudo) travel time loss. These deviations result in the path 
flows adjustments of the next day. Each link cost function is assumed to be a smooth and strict 
monotone function of link flow and is used to estimate the actual travel time for all paths. In 
addition, travel demand is presumably fixed in this study, without the loss of generality, under 
the assumption of no structural changes from competing transportation facilities over the whole 
period of interest. The authors are concerned that the variations of path flow and path travel 
time are much more sensitive than that of the OD demand if the travel information provided by 
ATIS is the only perturbation of transportation system. Therefore, by recording actual traffic 
volumes, ATIS evaluates the difference between the fixed travel demand and the sum of the path 
flows for each OD pair. In order to reflect the relative scarcity (or surplus) of transportation 
facilities, it is assumed that the predicted travel time of an OD pair adjusts accordingly as the 
difference between the fixed travel demand and the sum of the corresponding path flows is de- 
tected. Moreover, it is assumed also that travel demands of all OD pairs do not jointly violate 
any capacity constraints of all the links. 

Some notation (see Nomenclature) based on the typical equilibrium models of commuter route 
choice are employed and augmented to meet our concerns. In particular, we take all vectors to 
be column vectors. Vectors and matrices are expressed in boldface. 

3. M O D E L I N G  N E T W O R K  D Y N A M I C S  

The contents of this section are distributed into two parts. The first is path flow dynamics that 
interact with ATIS, which are formulated in Section 3.1. The second is travel time evolutions 
of OD pairs that are predicted by ATIS, which are analyzed in Section 3.2. The whole network 
dynamics is a combination of these two components. 

3.1. Path  F low Dynamics  with  ATIS Information 

The basic behavioral assumption of least travel time seeking has been mentioned in Section 2. 
Before giving a mathematical relationship between path flow dynamics and this supposition, we 
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define the value of total perceived travel time loss (or saving) for path p E Pw at day t as 

t PTTLp,~ - hp (c[ - c~).  O) 

The perceived travel time loss (or saving) is measured by multiplying path flow with the difference 
between users' average experienced travel time for a path estimated by link cost functions and 
the predicted travel time provided by ATIS for the corresponding OD pair. This quantity can be 
viewed as an estimation of the total travel time loss (or saving) perceived by travelers driving path 
p at day t. The meaning of positive (negative) PTTL~,~ is that the average path travel time the 
users actually underwent is greater (less) than the travel time predicted by ATIS. Travelers might 
be motivated to change their route due to this difference. Alternatively, PTTL~,~ can be denoted 
as a measurement of path performance for the previous time point that results in the consequent 
shift of path flow at next time point. In addition, the congestion effect is embedded in PTTLp, wt  
implicitly by including the current state of path flow. It means that the values of PTTL~, w will 
be different at various congestion levels even under the condition that the difference between the 
average path travel time experienced by the users and the travel time predicted by ATIS is equal. 
The predicted travel time of OD pair w at day t, c~, is updated by another dynamic process 
that will be presented in Section 3.2. To continue our development, it is useful to postulate that 
future path flow is established through the tuning of the present state at a rate proportional to 
the value of PTTL~,~. That is, 

where 

and 

h t+At_  t (PTTL~,~) At, p hp - ap (2) 

O < a p <  inf ( 1 ) 
, _ ,  c~ c~ (3a) cp cw~>O 

E (- op pPTTLL ) < ko- E  oph;, (ab) 
wE W V pEP~,, "¢ pEP 

for all OD pair w E W, p e Pw, a e A, at day t. Inequalities (3a) and (3b) ensure to avoid non- 
feasibilities of nonnegative flow and link capacity constraints. It is obvious that inequalities (3a) 
and (3b) are naturally satisfied if ap is carefully calibrated from the empirical data. By taking 
the limit of (2) as At approaches to zero and substituting (1) into (2), our path flow dynamics 
follow immediately as 

= % ( 4 - 4 ) ,  (4) 

for all OD pair w E W, p E P~, at day t. The physical meaning of (4) is that the time change 
rate of the flow for path p at day t is equal to the negative product of the propensity of path flow 
shift and the value of PTTL~,~. 

3.2. Travel Time Dynamics Predicted by ATIS 

To forward the network traffic to a steady status is the major intent of ATIS. This goal is 
realized by successfully capturing travel time dynamics and delivering information to users. In 
this section, we will focus on the formulation of predicted travel time dynamics. To start the 
task, we first define the excess travel demand of an OD pair w at day t as 

ETD~ - D~ - h~, (5) 

where D~ denotes the time-invariant travel demand of an OD pair w over whole time period of 
interest. ETD~ is considered to be the difference between the travel demand and the sum of the 
corresponding path flows for an OD pair as denoted in [4] and [23]. Positive (negative) excess 
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travel demand means that  the rate at which users desire to depart from an origin to a destination 
is greater than (less than or equal to) that  where such movements are actually occurring. Then, 

predicted travel time is adjusted due to this deviation. Consequently, the predicted travel time 
dynamics for all OD pairs w C W at day t can be written as 

c t + A t  t (D~ t - c~ + fl~ - h~) At, (6) 

where 

0 < fl~ < min inf c ~ - c~ inf - c~ , (7) 
[V(D~-h~<O) -- h~ V(D~-h~>O) h~ ' 

if we further suppose that  the travel time prediction of the next time point for an OD pair is 
transformed from the current status at a rate scaled to ETDt~. Inequality (7) guarantees that  

all predicted travel times stay in the feasible region without greater than ~ ,  the travel time at 

maximal flow, or less than Z~, the travel time at free flow, for OD pair w. Then, we define 

"cw= min (~a  6ajCa(fa=O) ) j E P ~  (Ta) 

and 

"c~=_max(~6~dca(fa=ka)).j~p.~ (7b) 

After taking the limit of (6), the predicted travel time dynamics can be written in differential 
form as 

• t dc~ 
c~ = dt =/%, (D~ - ht~) , (8) 

for all OD pairs w E W, at day t. Equation (8) reveals that  the time change rate of the predicted 
travel time for OD pair w at day t is equal to the product of the sensitivity of predicted travel 
time dynamics and ETD t .  The whole version of network dynamics under operations of ATIS is 
accomplished as 

hl = hl (4  - 4 ) ,  
Cw'~ = flw (Dw - h~) 

o,-o,i'f E E (9) 0 < a p <  
P w>O w E W  p E P w  p E P  

c¢~ t p--cw<O 

O<flw <min~  inf w lV(D~'-h~ <0) _~-~ , inf , V(D~-hi>0) \Dw - h~ 

for all OD pairs w E W, p E P~, a E A, at day t. 

3.3.  M u l t i c l a s s  U s e r s  M o d e l  

In this section, road users are classified into n subgroups to consider the effects of heterogeneous 
adjustments due to the various sensitivities of multiclass users on path flow dynamics. That  is to 
say, the parameter ap in (4) is not only path-specific but also user-specific. Consequently, there 
are n path flow dynamics for path p E Pw, at day t and (4) is augmented as 

h~p dh~p t 
= = ( 4 - 4 ) ,  ( lo)  

for all OD pair w E W, p E Pw , i = 1 , 2 , . . . , n ,  at day t. The physical meaning of (10) is 
that  the time change rate of the flow for user class i using path p, at day t is equal to the 
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negative product  of the propensity of path flow shift for user class i and the value of perceived 
travel time loss (saving) for user class i, PTTL~p,~. If we further suppose that  there are two 
options for ATIS to provide predicted OD travel time, i.e., a homogeneous forecast for all users 

or individual predictions according to multiclass users, the predicted OD travel time dynamics 

should be reformulated as 
.~ dc~ 
c~ = d--t- = fl~ (D~ - ht~) (11) 

or 

= - hL)  (12) ciw = dt 

for all OD pairs w C W, i = 1 ,2 , . . .  ,n,  at day t, respectively. In (11), the definition of ht~ is the 

same as mentioned before but  calculated in a different way and expressed as 

pePs, i 

All components in (12) are reindexed from (8) by adding a subscript i for the corresponding 
user class in particular with 

pE P~ 

Equation (12) tells us tha t  the time change rate of the predicted travel time for user class i 

traveling on OD pair w, at day t is equal to the product of the sensitivity of predicted travel time 

dynamics of user class i and the value of excess travel demand of user class i, E T D ~ .  Now, the 
multiclass users dynamical systems for all OD pairs w E W, p E P~, i = 1, 2 . . . .  , n, at day t are 
proposed as 

~f,-~>o 

.t 

and E E E 5 t _ t (- ~PTTL~,~) < ko ~ ~h~, 
w E W  iEN PEPw pEP 

t t iEN ap~c~<O 

0<f lw<min~  inf ( c~  -ct~) (c~----~----ct~} 
[V(D,.-h~<O) ~ 'v inf (D~--h~>0) -- h~ ] 

(15) 

for the case of providing a uniform prediction of OD travel time by ATIS and as 

0 ~ sap < 

t t h~p - a i p  hip (cp t 

• t fliw ( D i ~  t --  _ hiw ) ciw 

inf < 1 ) ,  ( _ S a p ~ i p P T T L i v , w )  <__ ka __ E Saphip ( 1 6 )  E E  E 
cp cw> p -- iw w 6 W  iEN PEPw p6P  

t t i 6 N  Cp--C w ~0 

0 < ~iw < min inf c ~ t t - -  ~ , inf - clw 
[ v ( D , ~ - h : ~ < 0 )  -- ~ v ( o , . ~ - h ~ , . > 0 )  - - F L  ' 

for the case of individually supplying user-definite OD travel time, respectively. 

Empirically, it is easy to be accomplished for such a hybrid system by providing a multiaccess 
information inquiry system. However, we are concerned about the asymptotic behavior of the 
steady state and whether it is in complete accord with the well-known Wardrop's user equilibrium. 
These topics are the major components in Section 4. 
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4. E X I S T E N C E ,  U N I Q U E N E S S ,  A N D  S T A B I L I T Y  

A dynamical system is able to demonstrate the future states unambiguously when the evolution 
rules and initial situations are specified. The analysis of stability guides us to find out the network 
dynamics of where to go and when to be tranquil after perturbations are stirred up. In this section, 
we briefly illustrate the issue of existence and uniqueness of the proposed uniform-user model, 
i.e., (9), by the fundamental theorem of ordinary differential equations in Section 4.1. The steady 
state of (9) is analyzed to be in agreement with Wardrop's user equilibrium in Section 4.2, followed 
by the proof of the associated stability theorems using Lyapunov's direct method in Section 4.3. 
For the paxt of a multiclass model, brief statements based on the results of uniform-user model 
are provided in the latter part of these three sections. Time indices, day t, and inequalities (3) 
and (7) are omitted for conciseness in the subsequent sections, then, (9) is rewritten as 

hp = -aphp  (cp - c~),  

d~ = 3~ (D~ - hw). 
(17) 

4.1. Existence and Uniqueness 

A dynamical system is a way of describing the time passage of all the points for a given space E. 
Mathematically, the space E might be a Euclidean space, R, or a subset of R. For the network 
dynamics mentioned in Section 3, the set of possible nonnegative path flows and predicted travel 
time is clearly a convex subset of RP+ +W, denoted as S even the constraints of path capacity are 
added. We have the following theorem in [26]. 

THEOREM 1. Suppose that G E CI(E) and that G(x) satisfies the global Lipschitz condition, 

l a (x )  - a ( y ) l  < L l x - y l ,  (18) 

for aIl x, y E E. Then, for x0 E R ~  the initial value problem, 

± = G ( x ) ,  with x(0) = x0, (19) 

has a unique solution x(t) defined, for all t C R. The existence and uniqueness of (17) can be 
claimed if the G(x) in (17) C C 1 (RP+ +w) and satisfies the global Lipschitz condition. 

The assumptions of the smooth and strict monotone function of link travel time ensure that 
the G(x) in (17) is CI(RP++W). Then, the proof of the global Lipsehitz of G(x) is given by the 
following lemma. 

For convenience, G : S -* RP+ +W in (17) is reindexed as 

f g~ (W,c') = - ~ j h j  (cj - c~),  W e W, 
G (h' ,c ')  l gj (h', c') = #~ [D~ - h~], V~ e W, 

j e { 1 , 2 , . . . , P }  if path j E P~, 

j E {I+P,2+P,...,w+P}, 
(20) 

and the norm 
P+W 

lyl = ~ Jy~l 
/----1 

is used Vy E R~ +W. Now, we give the lemma of the Lipschitz condition for (20) and prove it. 

LEMMA. 
stant, 

C(h', c') defined in (20) satisfies the global Lipschitz condition with a Lipschitz con- 

L = max {max { ~ }  'Lv}  
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where 
: =  ( ( (  0+ 

Lp I<j<P t /eP: Oh/ h+:Xj] (21) 

sup a j h j  ~ , sup ~ jh3  . 
j,t#j j 

PROOF. From the assumptions and definitions of the link cost function mentioned in previous 
sections, the G(h! ,c  ') in (20) is obviously continuously differentiable on S. Let u = x - y  

' ( z, c~). Since convexity of S, and y, x are two given points in S, i.e., y '  = (hy,c~) and x ! = h ! 

the points v = y + bu are also in S, for all 0 < b < 1. Defining the function H : [0, 1] -o R p+W 
by 

H (b) = G (v) ,  (22) 

and by the chain rule, we have 

P+W P+w P+w P+w dH (b) _ Y"2. ~ Ogi (v) dvt = ~ .  ~ Og i (v) (x, _ y~), 
db Or, db . - - -  . - - .  0~, 

j = l  I=1 j = l  I=1 

and hence, 

dH(b) P+wP+W 0gj(v)  dvt I P+WP+w Ogj (v) 

- - x - - < Z E  or, d b : E E  o~, I~-~,l. j= l  t=l j= l  t=l 
(23) 

There are three conditions in (23) that  keep ~ from vanishing for the path flow dynamics, Ovt 
I ! i.e., Ygj, 1 <_j <_/5. If we let v '  = (h~,%),  they are 

ogj(v) I ( °~J\l  0vl = "j (cj - c=) + h j G )  , if l = y and 1 < l < P, 

I Ogj (v) 0cj 
Ovt = ajhjff-~l , if l 7~ j, path l overlaps partly with path j and 1 < l < /5 ,  

Ogj(v) =[ajhjl, V I + / 5 < I < P + W ,  l----P+w, j c P = .  
Ovt 

(24) 

The upper bound of I O-~tg in condition (24) can be decided by Ovt 

sup ~ + h , _ ~ - - ~ ,  s u p ( ~ j h j )  . (27) 
l_<j<P I, de P~, 

We know that  hp and c= are bounded globally by constraints (3a), (3b), (7), (7a) and (7b). 
Hence, (25) is also bounded as the boundary conditions of (3a), (3b), (7), (Ta) and (7b) take 
place. That  is to say, the upper bound of ~ in condition (24) is shown as Ovt 

Lp = max o9~ = max sup + 7= - 7 = )  + h, ohj h . - z , ]  ] 
I< j<P  OVt I<_j<P [ j6 .P~ 

o+ ( )} sup (+X, oh~ h,=x,]' sup +Xj , j,lCj j 

(26) 

where 

X,-- mi~{ko}. (27) 
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By similar treatments, there is only one condition that °gA~)l, Vgj and /5  + 1 < j < /5 + W Ov~ --  --  
in (23) is not equal to zero. It can be expressed as 

% (v) I Ov~ = fl~' V 1 < l </5,  if path l E P~. (28) 

The results of (27) and (28) lead us to set 

L = max ~max {fl~ } ,L,; (29) (Vw ) 
and hence, 

" - - ' ~  <- E P+WP+W ~ ]  

j = l  /=1 

= }-] }-~P+~P+~ 0gj(v) 
Ovl 

j = l  l= l  

Now, from the relation G(x) - G(y) = H(1) 

f~ IH'(z)l dz < nix - Yl. Thus, G(h', c') in (20) satisfies the global Lipschitz condition and the 
corresponding Lipschitz constant L can be determined by (29). After proving the above lemma, 
the global existence and uniqueness of (17) is standard and we refer readers to [26] for a proof of 
the fundamental global theorem. 

For the cases of multiclass users, (20) is amplified as 

G(h , , c , )_  f gj(h' ,ct)=-oiphip(Cp-Cw),  Vw ,pePw,  j=P(i-1)+p, (30) 
gj (h', c') = /3,o [D~o - h~,] , V w E W, j = nP + w, 

and 

{ g j  (h', c') = -aivhip (Cp - ci,o) , 
G(h', c') = 

I dvl 

p+w 
[ x l - y d _ < L  E I x l - Y l l = L I x - Y l  

l=l  

- H(O) = f~o H'(z) dz, we find that  IG(x) - G(y)] < 

where i = 1, 2 , . . . ,  n to fit (15) and (16), respectively• The dimension of G(h', c') and (h', c') 
in (30) are the same and denoted as nP+IZV and in (31) as n ( P +  Pit). By the similar treatments, 
condition (24) for path flow dynamics with 1 < j _< n P  is modified as 

ogj (v), 

Ogj (v) 
Ovl 

ogj (v) 
Ovl  

and 
I Ogj (v) 

I % (v) 

I Ogj (v) 
Ovl 

h "  Ocp~ 

cOe p 
= OLiphip-o-'~e z , 

= [aiph~p[, 

• Ocp "~ 

COCp 
~- o Q p h i p - ~ e z  , 

= la~p%l, 

V l e  [1,n/5], i f l = P ( i - 1 ) + p ,  

v l [1, up] ,  

i f l #  P ( i - 1 ) + p a n d l = P ( e - 1 ) + z ,  

V l e  [ I+nP,  n P + W ] ,  p e P s ,  

if I = n/5 + w, 

YlE [1 ,nP] ,  i f l = t h ( i - 1 ) + p ,  

vz 

i f / #  P ( i -  1) + p  and l ----/5(e- 1) + z, 

Vle[l+nP, nP+nW], pePs, 
i f / =  r i P +  I ~ ( i -  1) + w ,  

(32) 

(33) 

Vw,p~P~,  j = P ( i - 1 ) + p ,  
(31) 

V w E W ,  j = n P + ¢ V ( i - 1 ) + w ,  
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for the two cases of multiclass users model, respectively. The corresponding nonzero parts of 
partial derivative of predicted travel time dynamics can be similarly derived as 

agj(v) =~3~, V l < l < n / 5 ,  i f l = P ( i - 1 ) + p a n d p E P ~  (34) 
Ov~ 

Vgj, j c [1 + n P ,  n P +  17d] in (31), and 

Ogj (v) =/&~,  V 1 < 1 < nP, if I = t5 (i - 1) + p and p E P~. (35) 
Ovz 

Vgj, j E [1 + riP, nP + n~V] in (31). Eventually, the Lipschitz constant can be expressed as 
L = m a x { m a x v ~ { ~ } ,  Lxv}, where 

Lip  .~- max sup a~p ~w - ~ + h~p 

l (p , z<P 

sup 
i,p,e~z 

l#p(i-1)+p 
l=P(e-1)+z 

, s u p  O~iphip , aiph~v Ohez h~z=~oz] ~,p 

(36) 

for (30) and as L = max{maxvi,~{/~i~}, Lzp}, where 

L,p = '<-',o<-"_max ,,p  osup + Oh,,, ,,,,=%'-,,/ ' 

l<p,z<P 

MP(~-I)+p 
l=P(e-1)+z 

(37) 

for (31). The same definitions of (7a), (7b), and (27) are employed here for ~uo, ~i~,  and hip. 

4.2. Analysis of  Steady State 

It is useful to recall the definition of Wardrop's static user equilibrium in our terms before 
elaborating on the steady state of the proposed network dynamics. If the symbol, "--", is used 
to denote steady-state or equilibrium point, the Wardrop's user equilibrium can be described as 

% > g~ --* hp = 0, 

h~ = D~, 

Vw C W and p C Pw. (38) 

Condition (38) states a condition that  is stable only when no traveler can improve his travel 
time by unilaterally changing paths. All path travel times of the same OD pair are equal and 
minimal at this status. 
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The steady state of (17) implies ]~p = 0 and dw = 0, for all OD pair w E W, p c Pro. After 
some algebraic reasoning, we get the conditions below jointly equivalent to the steady state of 
path flow dynamics 

h v > 0 ~ cp = cm, or hp < 0 ~ c v = cm, 

cp :> cw ~ hp --- 0, or Cp < cw ~ h v = 0, 

cw > 0 ~ D~, = h,~, 

(39) 

for all OD pair w E W, p E P~. The second subcase of the first part in condition (39) never 
happens because of the violating nonnegative flow constraint. The second subcase of the second 
relationship in condition (39) will never happen if initial conditions with positive path flows are 
provided. For the positive nature of the predicted travel time even at zero path flow level, the 
last equilibrium state in condition (39) is held on evidently. Finally, we abstract the critical 
components in condition (39) as 

hp > O ---* cv = cm, 

cp > cw --* hp = 0, (40) 

D~ = hm, 

for all OD pair w E W, p E Pw. It is easy to infer that  the actual average travel time is equal to 
the predicted travel time by ATIS and is minimal among all paths of an OD pair simultaneously 
in condition (40). The travel demand of an OD pair is equal to the sum of corresponding path 
flows. Based on these results, we can claim that  the steady state of (17) is identical to Wardrop's 
user equilibrium. 

Similarly, the equilibrium state of multiclass-user models are derived as 

hip > 0 ~ ~ = cm, 

% > cw --+ hip = 0, (41) 

D m =  hm, 

in (15) and as 
hip > O ~ cp = ciw, 

Cp >cim --~ hip = 0, (42) 

Dim = him, 

in (16), for all OD pair w E W, p C P~, i = 1, 2 , . . . ,  n, respectively. In condition (41), h~ is 
defined in (13). Because cp is not user-specific, we have that  path travel times with positive path 
flow are equal to the predicted travel time of OD pair w simultaneously and this path travel 
time is the minimal for all paths connecting OD pair w. Travel demand of an OD pair is equal 
to the sum of flows distributed over all user classes and corresponding paths. In condition (42), 
similarly the predicted travel times of OD pair w for all user classes are the same and equal to 
the minimal path travel times simultaneously. The demand of an OD pair is divided into n parts 
for n user classes and each part is equal to the sum of corresponding path flows. 

4.3. Analysis of  Stability 

In this section, our interest is in showing that  (9) is asymptotically stable. The definitions and 
theorem of stability in the sense of Lyapunov are employed as the following statements [27]. 

DEFINITION 1. Let  9 be a s teady  state o fa  dynamicM system,  G C C I ( E ) .  A funct ion L : E --~ R 

is called a strict  L y a p u n o v  funct ion for V i f  the following condit ions are satisfied. 

(1) L(V) = O, and L(v)  > 0, Vv # 9, v E E. 
(2) L ( v ) < 0 ,  V v # V ,  v E E .  
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THEOREM 2. Let 9 be a steady state of "~ --- G(v). / f  there exists a strict Lyapunov function 
Y v ~ 9, v E E, then, f¢ is asymptotically stable. 

Accordingly, the stability theorem of proposed dynamical system is illustrated as Theorem 3. 

• . ~ o ~  ~ ~o~ ( ~ ) ' =  (~ ,~ ,  , ~ ,  ~,~, ,~w)~e~ ~ o ~  ~ e  o~ ~ ~ ( ~ ) ~  
asymptotically stable. 

For the sake of conciseness, the following definitions axe introduced to rewrite (17) in vector 
and matrix form. Let (hi0 

°• • .  

= . .. .. (43) 

• ° 

0 ... 0 p 

and rearrange it into several diagonal matrices as 

o) 
f l ~ -  h_ ' 

where the components of h+ and h_ are path flows with (hp-  hp)(Cp - c ~ )  >_ 0 and (hp-fZp)(Cp - 
c~) < 0, respectively. Moreover, let 

o) 
where 6~+ and h~_ are two diagonal matrices and there exists z + E R + and ~ C R +, such that 

-* + and -* - ,  respectively with the elements of hE+ and hE- are hpzp hpep 

hp 
- -  > 1, Y hp e h+,  (46) - .  + 
hpsp 

and 
hv 

- -  < 1, V hp 6 h_ ,  (47) 
hp~p 

where hp = suPvn, eh(hp) and hp is the steady state of hp. The zero matrix with cuitable 

dimension is denoted by 0. Furthermore, ifwelet s -  ( ~ h ) , M ( s ) -  (~ '~(o~h)) ,  £~-----(r ° o r ) ,  

( o ° ),  where I, c~(Ah), ~ ,  O, and F denote identity matrix, full link-cost vector, link- and ¢ -- 
path incident matrix, full OD pair demand vector, and path-OD pair incident matrix, respectively. 
c~ and/3 are diagonal matrices with all C~p and 13~ as diagonal elements, respectively. All the 
elements of the mentioned vectors and matrices are ordered in accordance with l~r. Then, we 
rewrite (17) as follows, 

0 I )¢ (  r 'h-O )=-(h0 ~ I )  ~ ( s ) + f l  . (48) 

Now, we are ready to prove Theorem 3. 

PROOF. Let L : E --* R be a C 1 map and 

(49) 
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where (e ~) is an equilibrium point of the proposed model. It is obvious that L (e £) ---- 0 and 
~(~) ~ 0, ~ ( ~ ) ~  (~)~n~ (~)~ 

0 0)( (~)) 
h- (fie-) -1 0 M(s) + Y~ 

0 I 

Because ca(Ah)is a strict monotone function, we have ( s -S ) '  ((c~(~oh)) (c~(~£))) 
- -  - o  > O, 

Vs ~ ~---- (~e ~) ands  E E, i.e., (s-~) ' (¢~(Ah))  ( ) -o  > (s - 5)' Ca_(~fi) , and this implies 
( (ch)_  (e~))' (A'c~(Ah))> (ch)_ (oh-)' (A'c_~(Afi)). So, wehave 

((~) (~))' ~,~ ~¢~((~) (~))' 
From the analysis of the steady state, we also have 

this implies ( h ) _  ( ~ ) ' M ( ~ ) >  (e £) - ( h ) ' ,  (~) .  Hence, we have 

By adding ( (e  h) - ( f i ) ) ' ~  (h)  to both sides of inequality (50)gives 

((c~) - (~ ) ) ' (~o (~ ) )~  ((~)(~))' (°(~)-°(~))  
i.e., 

For further calculating, we have 

(~o__~),(o o r ) ( f i - h ) = (  (e-c)'r' ' (S-h) 
e- (£-h)'(-r)) ((e c)) 

= (e - c)' r '  (h - h) - (Ia - h ) ' r  (e - c) 
-~0~ 
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i.e., ( ( h ) _  (he))' (M(s)+  ~ (ch))>0 and equivalently'--(hc)--(~)' (M(s) + ~ (he)) < 0. 

Now, recall L ( ~ ) =  _ ( ( h ) _  ( ~ ) ) '  (h+(ho+)- i  h_(~0_)_l 0 ) (M(s )+  ~2 ( h ) ) ,  bythe deft- 
k 0 0 I 

nitions of h+, h_, h~+, and he-, in (44)-(47), we have 

-- 0 h _  ( h ~ _ )  - 1  

0 0 

> ((~)-(~-))' (-{~) +o (~)). 
Accordingly, we have L(h) < 0. 
Hence, (49) is affirmed as a strict Lyapunov function of dynamical system (9). Then, asymp- 

totic stability is immediate from Theorem 2. 
For the multiclass users model shown in (16), we replace (44) and (45) with 

/,~,, o ~ ) (51) 
h i - )  and ~ l N r l : O . _ l n  r 

and 

(~,~ 0 0 (~o ) h + 0 (52) bYe -~= 0 "'. 0 , where h~ _ £~_ , 

0 0 h~  

where l~r, hie+, and ~liE- denote diagonal matrices of user class i defined by the same rule as l~r, 
hE+, and h~_ in (44) and (45), respectively. Now, the whole system dynamics can be rewritten 
as 

~ o ( ~ 0  -~c~,~1 
0) ( ) 

r ' h l  - O1 

F'h~ - O~ 

0 ) q~N (MN (SN) + •NSN), 
IN 

where 

s N ~. 
h,~ 
el  

c 

M N  (SN) 

-O1 

- O r  
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~'~N -~ 

0 -- .  0 - r l  0 o '~ 

J 
• . • • 

• . 0 ". 0 

0 . . .  0 0 0 - F ~  

r l  o o o . . .  o 

0 ". 0 ". 
0 0 r "  o . . .  0 

, with F~ = r ,  

/c~l 0 . . .  0 
] 

, .  " •  • *  

' .  O~ n 0 

0 B1 " -  

• • , 

• • ' °  " .  O 

0 .- .  0 /3. j 

and a i  and/~i are diagonal matrices with their elements to be c~ip and fli~, respectively, hi, ci, 
Oi denote path flows, predicted OD travel times and OD demands, respectively of user class i. 
Then, a strict Lyapunov function of the multiclass user dynamical system described as (53) can 
be proposed as 

1 ( h  INO) -1 LN (SN) ---- (SN -- gN)' O e ON 1 (Sg -- gg) .  (54) 

It is easy to check (53) by satisfying the two conditions in Definition 1 in a similar way used 
in the proof of Theorem 3. Finally, the multi-class user dynamical system described as (15) can 
be reformulated as 

) r 0 ~ g  

S N  ---~ - -  IN 
A'c~  hi  - r c  (55) 

^ 

with the same function form of (53) to be a strict Lyapunov function but newly defined (h!) 
s u  - , M N  ( s N )  - -  

0 1) 
f i N - -  " , w i t h r i = r ,  and (PN-- 

1 " ' "  0 - -  n 

r ~  . . .  r "  i) " .  • .  

° •  " O 

5.  N U M E R I C A L  E X A M P L E S  

A simple network with four nodes and five links illustrated as Figure 1 is used to show the 
numerical results of the proposed models. There is only one OD pair w= (node 1, node 4} which 
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S 
Figure 1. Graph of numerical example. 

Table 1. Parameters  of link cost function. 

Links Aa Ba ka 

1 40 20 80 

2 60 30 80 

3 20 10 120 

4 50 25 25 

5 30 15 80 

Table 2. Results of numerical example for homogeneous user model (M1). 

Flow 

Initial State at Steady 
t = 200 State  

Pa th  1 40 51.06 56.16 

Pa th  2 50 53.13 56.95 

Pa th  3 30 15.69 6.89 

Link 1 70 66.75 63.05 

Link 2 50 53.13 56.95 

Link 3 30 15.69 6.89 

Link 4 40 51.06 56.16 

Link 5 80 68.82 63.84 

Predicted OD travel t ime by ATIS 

Travel Time 

Initial State at  Steady 
t -- 200 State 

103.29 103.84 103.79 

109.58 104.05 103.79 

116.76 107.91 103.80 

51.72 49.69 47.72 

64.58 65.84 67.70 

20.04 20.01 20.00 

51.56 55.15 56.07 

45.00 38.22 36.08 

125.00 1 0 4 . 2 5  103.79 

~.oo~° )"., 
80 

60 

50 i00 150 200 

Figure 2. Evolutions of path  1 flow dynamics and 
P ~ (M1). (Dashed line: predicted unit  TTLpath 1,,~ 

OD travel t ime by ATIS; gray line: travel t ime of 
path  1; black line: flow of path  1.) 

120 

110 

i00 

90 

80 

70 

60 

50_ 

50 100 150 200 

Figure 3. Evolutions of pa th  2 flow dynamics and 
p t (M1). (Dashed line: predicted unit  TTLp~th 2,,~ 

OD travel t ime by ATIS; gray line: travel t ime of 
path  2; black line: flow of pa th  2.) 
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Figure 4. Evolutions of path 3 flow dynamics and 
t (M1). (Dashed line: predicted unit PTTLpath 3,,, 

OD travel time by ATIS; gray line: travel time of 
path 3; black line: flow of path 3.) 

Figure 5. Evolutions of predicted OD travel time 
by ATIS and ETD~ (M1). (Dashed line: predicted 
OD travel time by ATIS; dotted line: OD demand; 
gray line: sum of path flows.) 

Table 3. Results of numerical example for M2. Two-class users model with identical 
predicted OD travel time for two user classes, i.e., (15) with n ---- 2; C1 denotes user 
class one and C2 user class two. 

Flow Travel Time 

Initial State at Steady State at Steady 
t -- 200 State Initial t ---- 200 State 

C1 20 21.95 22.23 
Path 1 103.29 1 0 3 . 7 9  103.79 

C2 20 31.84 33.94 

C1 25 25.81 26.08 
Path 2 109.58 103.80 103.79 

C2 25 29.30 30.88 

C1 15 9.55 6.62 
Path 3 116.76 105.72 103.79 

C2 15 1.57 0.25 

C1 35 31.50 28.85 
Link 1 51.72 48.67 47.71 

C2 35 33.41 34.19 

C1 25 25.81 26.08 
Link 2 64.58 66.76 67.71 

C2 25 29.30 30.88 

C1 15 9.55 6.62 
Link 3 20.04 20.00 20.00 

C2 15 1.57 0.25 

C1 20 21.95 22.23 
Link 4 51.56 55.11 56.08 

C2 20 31.84 33.94 

C1 40 35.36 32.70 
Link 5 45.00 37.05 36.08 

C2 40 30.87 31.13 

Predicted OD travel time by ATIS 125.00 1 0 3 . 8 8  103.79 
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is connected by three pa ths  denoted as pa th  1 = {link 1, link 4}, pa th  2 = {link 2, link 5}, and 
pa th  3 -- {link 1, link 3, link 5}, respectively. The  parameters  of  the  link cost  funct ions are set 

in Table 1 with the  same funct ion form as ca(f~) = Aa + B,~(fUka) 4. 
The  following three examples (M1, M2, and M3) were solved using the  high-order  R u n g e - K u t t a  

numerical  me thod  with the OD demand  fixed as 120. The  initial condit ions,  assumed identical 

parameters  of  the propens i ty  of pa th  flow dynamics,  and parameters  to  denote  the  sensitivity 

of  predicted travel t ime dynamics  for the  homogeneous  user model  (M1), i.e., (9), are given as 
(h 0, h2, h 3 , 0  0 c 0, c~,~) -- (40, 50, 30 ,125 , -0 .0006 ,  0.1). Table 2 shows the  dynamics  of  flows, t ravel  
t imes, and predicted OD travel  t imes by ATIS at  three different s ta tes  for the  first example. 
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Figure 6. Travel time evolutions of M2. (Dashed 
line: predicted OD travel time; light gray line: 
path 1; medium gray line: path 2; black line: 
path 3.) 

Figure 7. Path flow evolutions of user class one in 
M2. (Light gray line: path 1; medium gray line: 
path 2; black line: path 3,) 
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Figure 8. Path flow evolutions of user class two in 
M2. (Dashed line: predicted OD travel time; light 
gray line: path 1; medium gray line: path 2; black 
line: path 3.) 

Figure 9. Evolutions of predicted OD travel time 
by ATIS and ETD~ (M2). (Dashed line: predicted 
OD travel t ime by ATIS; dotted line: OD demand; 
gray line: sum of path flows.) 
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Figure 10, Evolutions of path travel times and C1 
predicted OD travel times for M3. (Dashed line: 
C1 predicted OD travel time; light gray line: path 
1; medium gray line: path 2; black line: path 3.) 

Figure 11. Evolutions of path travel times and C2 
predicted OD travel times for M3. (Dashed line: 
C2 predicted OD travel time; light gray line: path 
1; medium gray line: path 2; black line: path 3.) 
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Table 4. Results of numerical example for M3. Two-class users model with user- 
specific predicted OD travel time for two user classes, i.e., (16) with n----2; C1 denotes 
user class one and C2 user class two. 

Flow Travel Time 

Initial State at Steady Initial State at Steady 
t --- 200 State ~ = 200 State 

C1 20 22.62 24.56 -t 
Path 1 103.29 103.04 103.78 

C2 20 30.40 31.60 . . . .  -- 

C1 25 26.56 28.71 
Path 2 109.58 103.09 103.78 

C2 25 27.80 28.24 

C1 15 9.66 6.72 
Path 3 116.76 104.91 103.78 

C2 15 1.36 0.15 

C1 35 32.28 31.28 
Link 1 51.72 48.21 47.71 

C2 35 31.76 31.75 

C1 25 26.56 28.71 
Link 2 64.58 66.40 67.70 

C2 25 27.80 28.24 

C1 15 9.66 6.72 
Link 3 20.04 20.00 20.00 

C2 15 1.36 0.15 

C1 20 22.62 24.56 
Link 4 51.56 54.82 56.07 

C2 20 30.40 31.60 

C1 40 36.22 35.43 
Link 5 45.00 36.69 36.08 

C2 40 29.16 28.39 

C1 125.00 103.88 103,79 
Predicted OD travel time by ATIS 

C2 125.00 102.99 103.79 
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Figure 12. Evolutions of C1 predicted OD travel 
time by ATIS and ETD~w (M3). (Dashed line: 
C1 predicted OD travel time by ATIS; dotted line: 
OD demand; gray line: sum of path flows for C1.) 
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Figure 13. Evolutions of C2 predicted OD travel 
time by ATIS and ETD~w (M3). (Dashed line: 
C2 predicted OD travel t ime by ATIS; dotted line: 
OD demand; gray line: sum of path flows for C2.) 

It is clear that the steady state satisfies the Wardrop's user equilibrium and the predicted OD 
travel time is equal to the path travel times of which path flows are positive simultaneously. 
Numerical results by the evolutions of network dynamics illustrated from Figures 2-5 also show 
that the path flow increases (decreases) as path travel time is less (more) than the predicted OD 
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Figure 14. Path flow evolutions of C1 in M3. 
(Light gray line: path 1; medium gray line: path 2; 
black line: path 3.) 

Figure 15. Path flow evolutions of C2 in M3. 
(Light gray line: path 1; medium gray line: path 2; 
black line: path 3.) 

travel time and predicted OD travel time increases (decreases) as OD demand is more (less) than 
the sum of path flows. 

The second example is set for the multiclass user model with identical predicted OD travel time 

by ATIS (M2), i.e., (15) as n = 2. Parameters of the propensity of path flow dynamics for the 

two classes are assumed to be different but  the same within a user class. They  are -0.0006 and 
-0 .003 for class one and class two, respectively. The other inputs of the second example are the 

same as the previous case, and the outputs reveal that  the steady state is qualified as a Wardrop's 
user equilibrium. The embedded mechanisms of adjustments are also sustained by the results 
in Table 3 and Figures 6-9. However, two additional facts are found that  sensible users occupy 

bet ter  routes sooner than less sensible users in the evolution process until equilibrium is reached, 
and the ratio of first-class users to second-class users for three paths at a steady state is different 
from that  at the initial status. The latter one can be interpreted as the result of the former 
and evidently due to various parameters of the propensity of path flow dynamics. Moreover, 

we remind readers tha t  the shares of OD demand for two user classes might be changed in the 
processes. 

Finally, the third case is prepared for the two-class user model with the user-specific predicted 
OD travel t ime by ATIS (M3), i.e., (16) as n = 2. All inputs are the same as the second 

example but  each user class is provided with a dedicated OD travel time predicted by ATIS and 
an equal OD demand, i.e., Dl l  = D21 = 60. Unsurprisingly, the outcome, shown in Table 4 
and Figures 10-15, follows the asymptotic behaviors claimed in the previous section. It  is also 
observed that  the adjustment speeds in M3 are less than that  in M2 from the initial conditions 
to the 200 th t ime state. It is in that  the path flow dynamics are limited by a fixed and smaller 
OD demand for user class two in M3. However, it seems to be reasonable tha t  the OD demand 
ratio of user class one to user class two should not be overly distorted in the evolution processes 
even though the total OD demand is kept unchanged. This point should be a necessary check 
when M2 is implemented into the empirical study. 

6. C O N C L U S I O N S  

In this paper, the authors deal with further developments of vehicular network dynamics in a 
day-to-day time scale by using a nonlinear dynamical system approach. Incorporating the total 
perceived travel time loss (or saving) into the proposed models, t ime change rates of path flows 
are generated on a flow-weighted base to prevent the path flow dynamics from being insensible of 
flow level which have been formulated in previous studies [4,24]. Issues of heterogeneous users and 
corresponding means of providing travel information are also considered in multiclass users models 
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by dividing path users into several classes according to the sensitivity of path flow dynamics due 
to the total perceived travel time loss (or saving) for each user class. The equilibrium solutions 
of presented models are analyzed mathematically to be the Wardropian equilibria and proved to 
be asymptotically stable in the sense of Lyapunov. The lemma of the Lipschitz condition for the 
proposed dynamical system is a key in the proof of existence and uniqueness by the way of the 
fundamental theorem of differential equations. Based on these results, the proposed models build 
an analytical linkage between the Wardrop's user equilibrium and the empirical adaptability of 
route preference under the operations of intelligent transportation systems. 
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