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Abstract—In this paper, a flow evolution model is developed by using the dynamical system
approach for a vehicular network equipped with predicted travel information. The concerned sys-
tem variables, path flow, and predicted minimal travel time of an origin-destination (OD) pair, are
measured on the peak-hour-average base for each day. The time change rates of these two variables
are formulated as a system of ordinary differential equations under the assumption of daily learning
and adaptive processes for commuters. By incorporating the total perceived travel time loss (or
saving) into the proposed models, time change rates of path flows are generated with a flow-related
manner to prevent path flow dynamics from being insensible to traffic congestion which had been
formulated in the existing studies. Heterogeneous models with various user adjusting sensitivities
and predicted travel information are also presented. Equilibrium solutions of the proposed network
dynamics satisfy the Wardrop user equilibria and are proved to be asymptotically stable by using the
stability theorem of Lyapunov. The issue of existence and uniqueness of solutions is proved both on
the lemma of Lipschitz condition and the fundamental theorem of ordinary differential equations. In
addition, some simple examples are demonstrated to show the asymptotic behaviors of the proposed
models numerically. © 2005 Elsevier Ltd. All rights reserved.

Keywords—Day-to-day network dynamics, Nonlinear dynamical system, Lyapunov function, Dy-
namic traffic assignment.

NOMENCLATURE

t time index; unit: day h?, the sum of h;, Vp € Py; unit:
W the full set of OD pairs with W vehicle/hour

OD pairs h? the full vector of path flows at
P the full set of paths with P paths day ¢
A the full set of links with A links fa  the nonnegative peak volume of

link a at day t, f; = X, daphs,

P, the set of paths connecting OD

by

pair w with B, paths

the nonnegative peak-flow of path p
at day ¢; unit: vehicle/hour

where dqp = 1 if link a belongs to
path p, otherwise d,p = 0; unit:
vehicle/hour
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ko the capacity of link a; unit: D, the travel demand of OD pair w
vehicle/hour over whole time period of interest;

ca{ff)  the unit average travel time on unit: vehicle/hour
link a at day t, a smooth and strict ap the positive and path-specific
monotone function of fI; unit: parameter to denote the propensity
hour of path flow dynamics; unit:

, the unit average travel time vehicle/hour?
on path p at day ¢, without Bw the positive and OD-specific
considering node travel time, parameter to denote the sensitivity
¢b =3 dapca(fi); unit: hour of predicted travel time dynamics;

a

unit: hour?/vehicle

ct, the unit average travel time on L .
OD pair w at day ¢ predicted and T the ordinary derivative of  with
provided by ATIS; unit: hour respect to ¢

ct the full vector of cf, at day t x/ the transpose of vector (or ma-

trix) x

1. INTRODUCTION

The ability to predict how the information prepared by advanced traveler information sys-
tems (ATIS) influences the time trajectory of network flows is essential in the era of intelligent
transportation systems (ITS). By providing road users with travel information and so allowing
them to make better travel decisions, ATIS promises to enhance the utilization of existing trans-
portation infrastructure and, consequently, to mitigate traffic congestion. The focus of this paper
is to develop an analytical approach capturing the effects of travel information on network flow
evolutions, especially the day-to-day interactions among system variables, network performances,
and travel information. Network flow dynamics had been studied analytically [1-6] or simulation-
oriented [7-15]. Some other researchers were concerned about formulations and solution methods
of dynamic traffic assignment problem to compute the flow pattern under the conditions of sys-
tem optimum [16-17], dynamic user equilibrium [18], or dynamic user optimum [19-21]. These
studies did not simulate the evolutions of network flows but only a unique flow solution following
some optimal criteria.

Conversely, the flow evolution model is able to capture the transition states of the system
and finally approaches to steady state [22] if the system is well-behaved with a long enough
evolution time. They are classified into two broad categories according to the time scales of system
adjustment, the fluctuations of the system variables within each single day (intraday dynamics)
and between subsequent “days” or more generally observation periods of similar characteristics
(interday dynamics). Chang and Mahmassani’s serial experiments [7-10] on route choice behavior
of commuters had indicated that the learning and adaptive process of route choice may take
weeks, partly because of the dynamic feedbacks from the traffic system, and, indeed, it can be
lengthened by complex switching that resulted from the provision of better information. Friesz et
al. [4] addressed Mahmassani’s design theoretically by introducing a tatonnement process to
model the transition of disequilibria from one state to another. Day-to-day dynamic models are
particularly useful in capturing traffic patterns when perturbations of the traffic system create
disequilibria that might adjust forward equilibria. If the duration of disruption or the time it takes
for the system to reach equilibrium are such that the system stays longer in a nonequilibrium
state rather than in an equilibrium one, it is important to catch the interday transition process
of traffic diversion. Issues about interday transformation of peak-period commuter trips are
examined in this research. A formulation of path flow alteration is presented though it is partly
similar to Friesz et al. [4] but with new conceptual and mathematical refinements to offer a
congestion-sensitive evolution behavior of network flows.

To sum up, the purpose of this paper is to develop an analytical approach capable of both
modeling the interacted relationships between the aggregate user behaviors and ATIS informa-
tion provision and characterizing the theoretical issues of the existence, uniqueness, and stability
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for the proposed model with a thoroughly mathematical foundation. The achievements in the
paper have never been reached before especially in a multiclass users scenario. As pointed out
by Friesz et al. [23,24], the application of the proposed model mainly concentrates on the dy-
namic network design problem. The dynamic network design problem is to determine a tempo-
ral management (or control) plan which recognizes that perturbations generated from the new
management (or control) treatments bring about disequilibria which adjust toward equilibrium.
Therefore, a model of this type describes the time evolution of system states in a disequilib-
rium adjustment framework and forms the basic feasible solutions of the dynamic network design
problem.

The remainder of the paper is organized as follows. In the next section, we briefly mention the
assumptions common throughout the paper. The major developments for network dynamics are
described in Section 3. The proof of existence, uniqueness, and stability of proposed models is
provided in Section 4. Numerical examples are demonstrated in Section 5, and the conclusions
of this research are outlined in Section 6.

2. ASSUMPTIONS

The basic assumption in the paper is the daily learning and adaptive processes of how system
behaviors interact with the travel information predicted and provided by ATIS. Travel infor-
mation about the upcoming day’s travel time from origin to destination is provided with users
and compared with the actual travel time experienced by all path users. Then, travelers who
experienced travel time less than predicted travel time should have encountered a (pseudo) travel
time saving. On the other hand, users who experienced travel time that is more than the pre-
dicted travel time encounter a (pseudo) travel time loss. These deviations result in the path
flows adjustments of the next day. Each link cost function is assumed to be a smooth and strict
monotone function of link flow and is used to estimate the actual travel time for all paths. In
addition, travel demand is presumably fixed in this study, without the loss of generality, under
the assumption of no structural changes from competing transportation facilities over the whole
period of interest. The authors are concerned that the variations of path flow and path travel
time are much more sensitive than that of the OD demand if the travel information provided by
ATIS is the only perturbation of transportation system. Therefore, by recording actual traffic
volumes, ATIS evaluates the difference between the fixed travel demand and the sum of the path
flows for each OD pair. In order to reflect the relative scarcity (or surplus) of transportation
facilities, it is assumed that the predicted travel time of an OD pair adjusts accordingly as the
difference between the fixed travel demand and the sum of the corresponding path flows is de-
tected. Moreover, it is assumed also that travel demands of all OD pairs do not jointly violate
any capacity constraints of all the links,

Some notation (see Nomenclature) based on the typical equilibrium models of commuter route
choice are employed and augmented to meet our concerns. In particular, we take all vectors to
be column vectors. Vectors and matrices are expressed in boldface.

3. MODELING NETWORK DYNAMICS

The contents of this section are distributed into two parts. The first is path flow dynamics that
interact with ATIS, which are formulated in Section 3.1. The second is travel time evolutions
of OD pairs that are predicted by ATIS, which are analyzed in Section 3.2. The whole network
dynamics is a combination of these two components.

3.1. Path Flow Dynamics with ATIS Information

The basic behavioral assumption of least travel time seeking has been mentioned in Section 2.
Before giving a mathematical relationship between path flow dynamics and this supposition, we
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define the value of total perceived travel time loss (or saving) for path p € P, at day t as
PTTL; , = hy (¢, ~ c5,) - (1)

The perceived travel time loss (or saving) is measured by multiplying path flow with the difference
between users’ average experienced travel time for a path estimated by link cost functions and
the predicted travel time provided by ATIS for the corresponding OD pair. This quantity can be
viewed as an estimation of the total travel time loss (or saving) perceived by travelers driving path
p at day t. The meaning of positive (negative) PTTL:,,w is that the average path travel time the
users actually underwent is greater (less) than the travel time predicted by ATIS. Travelers might
be motivated to change their route due to this difference. Alternatively, PTTL;,W can be denoted
as a measurement of path performance for the previous time point that results in the consequent
shift of path flow at next time point. In addition, the congestion effect is embedded in PTTL;,’,D
implicitly by including the current state of path flow. It means that the values of PTTL;W will
be different at various congestion levels even under the condition that the difference between the
average path travel time experienced by the users and the travel time predicted by ATIS is equal.
The predicted travel time of OD pair w at day ¢, ¢!, is updated by another dynamic process
that will be presented in Section 3.2. To continue our development, it is useful to postulate that
future path flow is established through the tuning of the present state at a rate proportional to
the value of PTTL; ,,. That is,

S = 1 a, (PTTLE,) A, @
where 1

O<ap< inf (z;a;) )
and

> > (~0ap@PTTLL,) <ka— Y Supht, (3b)

weW VpeP, Y peP

for all OD pair w € W, p € P, a € A, at day t. Inequalities (3a) and (3b) ensure to avoid non-
feasibilities of nonnegative flow and link capacity constraints. It is obvious that inequalities (3a)
and (3b) are naturally satisfied if o, is carefully calibrated from the empirical data. By taking
the limit of (2) as At approaches to zero and substituting (1) into (2), our path flow dynamics
follow immediately as

It dh; t (.t t

h, = - = o R, (e —c,) (4)
for all OD pair w € W, p € P, at day t. The physical meaning of (4) is that the time change
rate of the flow for path p at day ¢ is equal to the negative product of the propensity of path flow
shift and the value of PTTL:,YW.

3.2. Travel Time Dynamics Predicted by ATIS

To forward the network traffic to a steady status is the major intent of ATIS. This goal is
realized by successfully capturing travel time dynamics and delivering information to users. In
this section, we will focus on the formulation of predicted travel time dynamics. To start the
task, we first define the excess travel demand of an OD pair w at day t as

ETD:, = D,, — ht,, (5)

where D,, denotes the time-invariant travel demand of an OD pair w over whole time period of
interest. ETD!, is considered to be the difference between the travel demand and the sum of the
corresponding path flows for an OD pair as denoted in [4] and [23]. Positive (negative) excess
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travel demand means that the rate at which users desire to depart from an origin to a destination
is greater than (less than or equal to) that where such movements are actually occurring. Then,
predicted travel time is adjusted due to this deviation. Consequently, the predicted travel time
dynamics for all OD pairs w € W at day ¢ can be written as

ctF8t = et 4+ B, (D, ~ hi) At (6)
where
\C/'w - ct ’C\ — Ct
0 < B, < mi inf oo DR D7, ) [
< By < min {V(leilh5”<0) (Dw — hﬁ,) V(lefifu>o) (Dw - hi,) } (7)

if we further suppose that the travel time prediction of the next time point for an OD pair is
transformed from the current status at a rate scaled to ETDY. Inequality (7) guarantees that
all predicted travel times stay in the feasible region without greater than ¢,,, the travel time at

maximal flow, or less than ¢.,, the travel time at free flow, for OD pair w. Then, we define

\C,w = 912}32, (; bajCa (fa = O)) (7a)
and
Cw= max (Z b0jCa(fa = ka)> . (7b)

After taking the limit of (6), the predicted travel time dynamics can be written in differential

form as

. _ del, t

Cw:_ﬁzﬂw (Dw—hw), (8)
for all OD pairs w € W, at day t. Equation (8) reveals that the time change rate of the predicted
travel time for OD pair w at day ¢ is equal to the product of the sensitivity of predicted travel
time dynamics and ETDY,. The whole version of network dynamics under operations of ATIS is
accomplished as

iz:, =—ap h:, (c;’, - cfv) ,
éfu = Puw (Dw - hfu) ’
. 1
0<ap< | _Tifa o (cz - c&) , and S Y (~8upapPTTLL ) Ska— 3 Saphl, (9)

cp weW  pEPy pEP
c;—cfu <0

~
Cw—ch

—~ .
Cw —¢C

0< < min inf s inf _— ],

Pu {V(Dw—h;‘-u<0) (Dw —hi,> ¥ (D —ht, >0) (Dw—hﬁ,)}

for all OD pairsw e W, pe P,,a € A, at day t.

3.3. Multiclass Users Model

In this section, road users are classified into n subgroups to consider the effects of heterogeneous
adjustments due to the various sensitivities of multiclass users on path flow dynamics. That is to
say, the parameter a, in (4) is not only path-specific but also user-specific. Consequently, there
are n path flow dynamics for path p € P, at day t and (4) is augmented as

dnt,

L, dhl
Mip = g

= —apht, (d, ~ ), (10)
for all OD pair w € W, pe P, , i = 1,2,...,n, at day t. The physical meaning of (10) is

that the time change rate of the flow for user class i using path p, at day t is equal to the
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negative product of the propensity of path flow shift for user class i and the value of perceived
travel time loss (saving) for user class ¢, PTTLﬁp’w. If we further suppose that there are two
options for ATIS to provide predicted OD travel time, i.e., a homogeneous forecast for all users
or individual predictions according to multiclass users, the predicted OD travel time dynamics
should be reformulated as

t
st dcw

_ Oy _ ot
&, =22 =, (Du - ) (11)
or
L dd,
Cﬁw - dt = /Biw (Diw - hfu)) ) (12)

for all OD pairs w € W, i =1,2,...,n, at day ¢, respectively. In (11), the definition of k!, is the
same as mentioned before but calculated in a different way and expressed as

L= > S"hE. (13)

pEP, ¢

All components in (12) are reindexed from (8) by adding a subscript ¢ for the corresponding
user class in particular with

how =D by (14)

PEPy,

Equation (12) tells us that the time change rate of the predicted travel time for user class i
traveling on OD pair w, at day t is equal to the product of the sensitivity of predicted travel time
dynamics of user class ¢ and the value of excess travel demand of user class i, ETDf,_. Now, the
multiclass users dynamical systems for all OD pairsw e W,pe P,,i=1,2,...,n, at day t are
proposed as

i‘gp = —Q4p h::p (c; - Cfu) )
&, = P (Dw — h)

) vand > N N (“8apaipPTTLE, ) S ka — D Saphly, (15)

wEW iEN peEPy, pEP
c:,-—cfv<0 EN

< . Cw—ct
0 < Bw < min inf £ ) inf v tw ,
- {V(Dw—hfu<°) (Dw - hfu> ¥ (Duw—ht,>0) (Dw - hfu)}

for the case of providing a uniform prediction of OD travel time by ATIS and as

it . t t t
hY, = —auphip (cf — chy)

égw = Biw (Dl‘w - h:w) )

1
— ) and 3 3" Y (<8apaipPTTLE, ) <ka— Y Saphly, (16)

‘%~ Cw wEW i€EN pePy, PEP
c:,—cfu<0 iEN

0 < i < min inf Cuw—cly inf Cw =y
w ¥ (Diw—ht,, <0) \ Diw — ht,, | ¥ (Diu—ht,>0) \ Diw — b, ) [

for the case of individually supplying user-definite OD travel time, respectively.

0< aip < inf (

t_
c}, ct, >0

Empirically, it is easy to be accomplished for such a hybrid system by providing a multiaccess
information inquiry system. However, we are concerned about the asymptotic behavior of the
steady state and whether it is in complete accord with the well-known Wardrop’s user equilibrium.
These topics are the major components in Section 4.
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4. EXISTENCE, UNIQUENESS, AND STABILITY

A dynamical system is able to demonstrate the future states unambiguously when the evolution
rules and initial situations are specified. The analysis of stability guides us to find out the network
dynamics of where to go and when to be tranquil after perturbations are stirred up. In this section,
we briefly illustrate the issue of existence and uniqueness of the proposed uniform-user model,
i.e., (9), by the fundamental theorem of ordinary differential equations in Section 4.1. The steady
state of (9) is analyzed to be in agreement with Wardrop’s user equilibrium in Section 4.2, followed
by the proof of the associated stability theorems using Lyapunov’s direct method in Section 4.3.
For the part of a multiclass model, brief statements based on the results of uniform-user model
are provided in the latter part of these three sections. Time indices, day ¢, and inequalities (3)
and (7) are omitted for conciseness in the subsequent sections, then, (9) is rewritten as

hp = —aphp (¢p — cu),

Cuw ::/Bw (Dw _hw) (17)

4.1. Existence and Uniqueness

A dynamical system is a way of describing the time passage of all the points for a given space E.
Mathematically, the space E might be a Euclidean space, R, or a subset of R. For the network

dynamics mentioned in Section 3, the set of possible nonnegative path flows and predicted travel
time is clearly a convex subset of R_I:"‘W, denoted as S even the constraints of path capacity are

added. We have the following theorem in [26].

THEOREM 1. Suppose that G € CY(E) and that G(x) satisfies the global Lipschitz condition,
IG(x) -G <Llx-yl, (18)
for all x,y € E. Then, for xg € R", the initial value problem,
x=G(x), with x(0) = xg, (19)

has a unique solution x(t) defined, for allt € R. The existence and uniqueness of (17) can be
claimed if the G(x) in (17) € Cl(Rf:"'W) and satisfies the global Lipschitz condition.

The assumptions of the smooth and strict monotone function of link travel time ensure that
the G(x) in (17) is Cl(Rf"'W). Then, the proof of the global Lipschitz of G(x) is given by the
following lemma. o

For convenience, G : § — RETY in (17) is reindexed as

g; (W', ¢') = —a;h;(c; —cy), YweW, je{l,2,...,P}if pathj€ P,

9;(0,¢') =By [Du—ho], VYweW, je{l+P2+P,. . w+P} )

G, )= {

and the norm
P+Ww

yl=>_ Inl
=1
is used Vy € REAW, Now, we give the lemma of the Lipschitz condition for (20) and prove it.
+

LEMMA. G(h',c') defined in (20) satisfies the global Lipschitz condition with a Lipschitz con-
stant,

L = max {mV?UX {,Bw} ’ Lp} ’
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~ - Oc;
L,= j —Cw) +h; =2 ’
P asise {J'S:’Ew (aj ((cw ) 3, hj=%)) (21)

su h; —% ,sup{a;h;) y.
ﬂ;a( i Ohy h,:ﬁ,) jp( ! ])}

PROOF. From the assumptions and definitions of the link cost function mentioned in previous
sections, the G(h’,c’) in (20) is obviously continuously differentiable on S. Let u = x — y
and y, X are two given points in §, i.e., y' = (hj,c;) and x’ = (h},c}). Since convexity of S,
the points v =y + bu are also in S, for all 0 < b < 1. Defining the function H : (0,1} — Ri+W
by

where

H(b) =G (v), (22)

and by the chain rule, we have

dH (b) _ i i dg; (v) du; Piw Piw dg; (v)

P (x1 = w1,
Tdb = I Ou, db i B,
and hence,
dH (b) P+W P4+W 8g; (V) d’l)l P+W P+W dg; (V)
{ db ‘S Z 2 {;vl = —‘év— =1 — wil. (23)

There are three conditions in (23) that keep I—a—gﬁ’—l from vanishing for the path flow dynamics,
ie, Vg, 1<j< P Ifwelet v =(h) c,), they are

8g; (v) dc; . . -
e = <<
’ oo, a; | (¢j — cw) + hj== 9, fl=jand1<I< P,
9g; (v) Ic; : , : - 5
ot ajhjgi—z— , if I # j, path [ overlaps partly with path j and 1 <1< P, (24)
I 1

2,

= =|ajhij|, V1+P<I<P+W, l=P+w, j€P,.
i

The upper bound of |%f in condition (24) can be decided by

Oc; Oc;
max_<{ sup | a; | (¢; —cw +h-——i)), su (a-h-———”—),su a;h;) ¢ . 27
1Siep {jelgu( j (( 3 ) 7 B, jyj;IZl "1 5h, jp( ihs) @7

We know that h, and ¢, are bounded globally by constraints (3a), (3b), (7), (7a) and (7b).
Hence, (25) is also bounded as the boundary conditions of (3a), (3b), (7), (7a) and (7b) take
place. That is to say, the upper bound of |%| in condition (24) is shown as

99; | _ (s _% 94
e (Gl )
3 2 26

8’()1
~~ ac, —~~
sup | ajh; =2 , sup (o hs) 3,
j,l;fj( i3 B, hz=’f;z> jp( Z] J)}

hp = \51‘11161;{19 o) - (27)

where
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By similar treatments, there is only one condition that [~ Bg; (V |, Vgjand P+ 1 <j< P+ W
in (23) is not equal to zero. It can be expressed as

0g; _
—’g-g—) =Buw, V1<I<DP, ifpathlcP,. (28)
1
The results of (27) and {28) lead us to set
L = max {n\}ax {ﬂw},LP} (29)
and hence,
dHb)| _ LT 1 8g; (v) | |duy
ldb —E:E: du, || db
i=1 I=1
P+W P+W P+w
dg; (v
- 2O oyl < LY Jo il = L1,
j=1 I=1 1=1

Now, from the relation G(x) — G(y) = H(1) — H(0) = fo H'(2)dz, we find that |G(x) - G(y)| <
fol |H'(z)|dz < L|x — y|. Thus, G(h/,¢’) in (20) satisfies the global Lipschitz condition and the
corresponding Lipschitz constant L can be determined by (29). After proving the above lemma,
the global existence and uniqueness of (17) is standard and we refer readers to [26] for a proof of
the fundamental global theorem.

For the cases of multiclass users, (20) is amplified as

g; (0',¢') = —auphip (cp —cw), Yw,p€ Py, j=P(i—1)+p,

G(h',c)= { _ - (30)
gj(hl’c,)=,3w[Dw—hw], Yw e W, j=nP+w,
and
G(h, ,) { 9; (h, ) ~aiphip (Cp - ciw), Vw’p € Pw1 .7 = P_(IL - }) +p; (31)
gJ(h’ac)—ﬁiw[Diw"hiw]y V’LUEVV, j=nP+W(z—1)+w,

where i = 1,2,...,n to fit (15) and (16), respectively. The dimension of G(h’,c’) and (h’,c’)
in (30) are the same and denoted as nP+W and in (31) as n(P+W). By the similar treatments,
condition (24) for path flow dynamics with 1 < j < nP is modified as

Q%—)(lv—) = |agp ((c,, cw)+h,,,§hw) vie [1,nP], ifl=P(i~1)+p,
?—g(-;—v(;,—) = aiphipa—ahci , Vie [1,nP],

N ifl#£P({i—1)+pandl=Pe—1)+z, (82)
@62? = |atiphip| Vie [l+nP,nP+ W], peP,,

ifl =nP+w,
and

?%j‘z% = |ap ((cp cm)-{-thgh ) Vie [1,nP], ifl=P(i—1)+p,
?%;I(zv_) = aiphipgah&: , Vie [1,nP],

e ifl#P(@—1)+pandl=Ple—1)+z, (33)
@aj'u(_,v) — laiphipl, Vie[l+nPnP+nW], pe P,

ifl=nP+W(E—1)+w,
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for the two cases of multiclass users model, respectively. The corresponding nonzero parts of
partial derivative of predicted travel time dynamics can be similarly derived as

,?%;(v——) = Bu, Vi<i<nP, ifl=P(i—1)+pandpe P, (34)
t

Yg;,j €[l +nP, nP+ W] in (31), and

i?_g_j(_")

o =Biw, V1<I<nP, ifl=P(i~1)+pandp€P,. (35)
1

Yg;, 5 € [1+nP, nP +nW] in (31). Eventually, the Lipschitz constant can be expressed as
L = max{maxv ,{fuw}, L1p}, where
hip=’f:ip)> ’

~ = )
L= max sup (a,'p ((cw - cw> + hip ——-8;?
ip

1<i,e<n ¥ 4 peP.,

1<p,z<P
(36)
sup (aiphip —%3- - ) , sup (aiphip) ,
i'apie?z ez hcz=hcz 1,]7
I#P(i—1)+p
I=P(e—1)+z
for (30) and as L = max{maxv;w{Biw}, L1p}, where
- - Oc
Lip = max sup (aip ((ciw— ciw)-}-hip_P_ )) ,
IISS;,‘Zéy}’ hpePu Ohip hip=hip
(37)

~  Oc
sup Qiphip ——
ip.e,2 ( PP Ohes
1£P(i~1)+p
I=P(e-1)+=

- ) Sup (aip hlp) ’
hez=he,s

i’p

for (31). The same definitions of (7a), (7b), and (27) are employed here for Ciw, Ciw, and /l;ip.

4.2. Analysis of Steady State

It is useful to recall the definition of Wardrop’s static user equilibrium in our terms before
elaborating on the steady state of the proposed network dynamics. If the symbol, “r s used
to denote steady-state or equilibrium point, the Wardrop’s user equilibrium can be described as

I_lp>0—->cp=6w,
Cp > Cy — hp =0, Ywe W and p € Py, (38)

hw = D'un

Condition (38) states a condition that is stable only when no traveler can improve his travel
time by unilaterally changing paths. All path travel times of the same OD pair are equal and
minimal at this status.
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The steady state of (17) implies ﬁp = 0 and é, = 0, for all OD pair w € W, p € P,. After
some algebraic reasoning, we get the conditions below jointly equivalent to the steady state of
path flow dynamics

hpy >0— ¢, =cy, or  hy<0—>¢p=cy,
Cp > Cy — hyp =0, or cp < Cy — hp =0, (39)
Cw > 0— Dy = hy,

for all OD pair w € W, p € P,. The second subcase of the first part in condition (39) never
happens because of the violating nonnegative flow constraint. The second subcase of the second
relationship in condition (39) will never happen if initial conditions with positive path flows are
provided. For the positive nature of the predicted travel time even at zero path flow level, the
last equilibrium state in condition (39) is held on evidently. Finally, we abstract the critical
components in condition (39) as
hp >0 — cp = cy,
Cp > Cy — hy =0, (40)
Dy = hay,

for all OD pair w € W, p € P,. It is easy to infer that the actual average travel time is equal to
the predicted travel time by ATIS and is minimal among all paths of an OD pair simultaneously
in condition (40). The travel demand of an OD pair is equal to the sum of corresponding path
flows. Based on these results, we can claim that the steady state of (17) is identical to Wardrop’s
user equilibrium.

Similarly, the equilibrium state of multiclass-user models are derived as

hip > 0 — Cp = Cw,
Cp > Cy — hip =0, (41)
Dw = h'un

in (15) and as
hip > 0 = ¢p = Cius
Cp > Ciw — hip =0, (42)
Diw = hiwa

in (16), for all OD pair w € W, p € P,, i = 1,2,...,n, respectively. In condition (41), h,, is
defined in (13). Because ¢, is not user-specific, we have that path travel times with positive path
flow are equal to the predicted travel time of OD pair w simultaneously and this path travel
time is the minimal for all paths connecting OD pair w. Travel demand of an OD pair is equal
to the sum of flows distributed over all user classes and corresponding paths. In condition (42),
similarly the predicted travel times of OD pair w for all user classes are the same and equal to
the minimal path travel times simultaneously. The demand of an OD pair is divided into n parts
for n user classes and each part is equal to the sum of corresponding path flows.

4.3. Analysis of Stability

In this section, our interest is in showing that (9) is asymptotically stable. The definitions and
theorem of stability in the sense of Lyapunov are employed as the following statements [27].

DEFINITION 1. Let ¥ be a steady state of a dynamical system, G € C1(E). A functionL : E — R
is called a strict Lyapunov function for ¥ if the following conditions are satisfied.

(1) L(¥) =0, and L{v) >0, ¥Yv#V,ve E.

(2) L(v)<0,YVv#£¥,ve E.
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THEOREM 2. Let V be a steady state of v = G(v). If there exists a strict Lyapunov function
Vv # ¥, v € E, then, ¥ is asymptotically stable.

Accordingly, the stability theorem of proposed dynamical system is illustrated as Theorem 3.

N\ o _ _
THEOREM 3. Let (}é‘) = (h1, hgy...,hp, &,C2,...,Cp) be a steady state of (9) and (2) is
asymptotically stable.

For the sake of conciseness, the following definitions are introduced to rewrite (17) in vector
and matrix form. Let

hiy 0 .- 0
h= 0 (43)
: oo 0
0 -+ 0 hy
and rearrange it into several diagonal matrices as
-~ (hy 0
o= (), »
where the components of h and h_ are path flows with (h, —hp)(cp —cw) > 0 and (hy—hp)(cp—
¢w) < 0, respectively. Moreover, let
- (h. O
h€ = ( O HE‘-> ’ (45)

where h,, and h._ are two diagonal matrices and there exists s; € R* and ¢, € R*, such that

the elements of 1—15+ and h._ are ﬁ;‘,a;’,‘ and B;‘,e; , respectively with

h

P
= >1, Vh,€h,, 46
hz;eg— P + ( )
and
hP
= <1, Vh,eh_, 47
h;sg P ( )

where fz; = supVhpeh(ﬁp) and h, is the steady state of h,. The zero matrix with cuitable

dimension is denoted by 0. Furthermore, if we let s = ( Ach) , M(s) = (Alc_“gAh) ) , Q= (I?, —OI‘ ) ,
and ¢ = (: g) , where I, ¢,(Ah), A, O, and T denote identity matrix, full link-cost vector, link-
path incident matrix, full OD pair demand vector, and path-OD pair incident matrix, respectively.
a and B are diagonal matrices with all «, and S, as diagonal elements, respectively. All the
elements of the mentioned vectors and matrices are ordered in accordance with h,.. Then, we

rewrite (17) as follows,

(=5 o352 (5 Doluweal). o

Now, we are ready to prove Theorem 3.

PROOF. Let L: E — R be a C! map and

((D)=:(-E) G D (D-G) @
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where (2) is an equilibrium point of the proposed model. It is obvious that L( ) 0 and

L( )>01fV( );e(g)and( )eE
1) =(()-() (& ) (})

x(
(- (5 D "o (wnval?)
-0 D)
=_<(2)~(}é‘) ( 1‘16._)—1 (I) M(s)+Q
Because ca(Ahz' strict monotone function, we have s)( (A”)) ( (Ah))) >0,
Vs # 5 =(A’h) and s € E, (s_ 5)’ ( (A“>) > (s — §) ( (Ah>), and this implies
()0 (455 (2 (€ (+55) s e

(2)- () wo () ()
From the analysis of the steady state, we also have
(5 puwrsa(®) =0 wa () (Morn ()2
this implies (2) - (L:‘)’M(é) > (E) - (}C')IQ (:__:) Hence, we have
((6)-(E)) o= ((2)- (2)) m (2). &
; )'n ( ‘c‘) to both sides of inequality (50) gives

) Lrerea(2))=((5)- () (a(2) ().

.....

(65wn) (€5
€-c)I'(h-h) - (h-h)'T(E-c)
0,

rtner € Nave
h-h\'/0 -I'\/h-h
c—c ' o c—c

i i
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e, ((2) - ( )) (M) + 2 ( ))>0andequwa1ent1y, (c)—(g)'(M(s)+n(*c‘))< 0.

h h
Now, recall L( ) = (( ) (2)) ( (E)+) 1 h_(ﬁ(:_)—l g) (M(s) +Q (L‘)), by the defi-
nitions of hy, h_, hey, and h._, in (44)- (47) we have ° I

(-G (7 o 3] ma()

Accordingly, we have L( l:) <0.

Hence, (49) is affirmed as a strict Lyapunov function of dynamical system (9). Then, asymp-
totic stability is immediate from Theorem 2.

For the multiclass users model shown in (16), we replace (44) and (45) with

hiy O bir 0
hi, = < 6+ hi—) and bve=| o0 - 0 (51)
0 0 h,
and ~
h;: 0 0 £ o
hyve=| 0 . o |, where h;e = ( i5+ i ) , (52)
0 0 h, .

where ﬁ,-,, hi.;, and h;._ denote diagonal matrices of user class 7 defined by the same rule as flr,
h.:, and h._ in (44) and (45), respectively. Now, the whole system dynamics can be rewritten
as

A’Ca (E Ahz> - PCl

i=1

Sy = — (hgr 0 ) oN Alc, (Xn: Ah1> —Tc,

IN i=1
I‘/h]_ -0
T'h, - O,
hy, O
=—(N on (Mp (sn) + 2nsn),
0 Iy
where
h1 AICa (1_:21 Ahl>
h, n
sy = e | My (sn)= | Ale, (Z Ahz) )
=1
_01
Cn

-0,
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0 0o -I; o 0
: S0
10 0 0 0 -I, .
QN = P’]_ 0 0 0 0 y with Fi = F,
0 . 0 :
0 0 T 0 0
(s3] 0 0
0
o 0
N = "
0 B
. . .0
0 0 3,

and «; and (3; are diagonal matrices with their elements to be a;p, and B, respectively, h;, c;,
O, denote path flows, predicted OD travel times and OD demands, respectively of user class i.
Then, a strict Lyapunov function of the multiclass user dynamical system described as (53) can
be proposed as
1 = A/ flN 0 - -1 —
L (sw)= 5 o =5) ("7 1) R o —sw). (54
It is easy to check (53) by satisfying the two conditions in Definition 1 in a similar way used
in the proof of Theorem 3. Finally, the multi-class user dynamical system described as (15) can
be reformulated as

A'e, (i Ahi) ~Tc

i=1

. ler 0 n :

SN = ( 0 IN>¢N Alc, (2 Ahi> —Tc
i=1

=— (hgr I?v) on (My (sn) + Qnsw),

(55)

with the same function form of (53) to be a strict Lyapunov function but newly defined

1 L X
h; Alca ('L;l Ah,)

sn=1 |, My (sy) = . )
h, /
A Cqo (Z Ahz>
c i=1
0 0 ~I‘1 Qg 0 0
Do, : : 0
Qn=| - o ) withI'; =T, and N = .
"lo ... 0o -I.|’ : o 0
Iy r, o 0 0 B

5. NUMERICAL EXAMPLES

A simple network with four nodes and five links illustrated as Figure 1 is used to show the
numerical results of the proposed models. There is only one OD pair w= {node 1, node 4} which



516

H.-J. CHo aNDp M.-C. HwaNG

Figure 1. Graph of numerical example.

Table 1. Parameters of link cost function.

Links Aa B, kq
1 40 20 80
2 60 30 80
3 20 10 120
4 50 25 25
5 30 15 80

Table 2. Results of numerical example for homogeneous user model (M1).

Flow Travel Time

Initial ititgo‘g' S;::t.dey Initial ?titgoa(,)t Sé‘.?:;iey

Path 1 40 51.06 56.16 103.29 103.84 103.79
Path 2 50 53.13 56.95 109.58 104.05 103.79
Path 3 30 15.69 6.89 116.76 107.91 103.80
Link 1 70 66.75 63.05 51.72 49.69 47.72
Link 2 50 53.13 56.95 64.58 65.84 67.70
Link 3 30 15.69 6.89 20.04 20.01 20.00
Link 4 40 51.06 56.16 51.56 55.15 56.07
Link 5 80 68.82 63.84 45.00 38.22 36.08
Predicted OD travel time by ATIS 125.00 104.25 103.79

120 %

80

60

L

50

Figure 2. Evolutions of path 1 flow dynamics and
unit PTTL;,E,‘th 1,w (M1). (Dashed line: predicted
OD travel time by ATIS; gray line: travel time of

100

150

path 1; black line: flow of path 1.)

200

50

80

70

60

50

/\_/'

50 100

Figure 3. Evolutions of path 2 flow dynamics and
unit PTTL;a:hz,w {M1). (Dashed line: predicted
OD travel time by ATIS; gray line: travel time of

path 2; black line: flow of path 2.)
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Figure 4. Evolutions of path 3 flow dynamics and
unit PTTLY ), 5 ,, (M1). (Dashed line: predicted

200

50 100 150 200

Figure 5. Evolutions of predicted OD travel time

by ATIS and ETDY, (M1). (Dashed line: predicted
OD travel time by ATIS; gray line: travel time of

path 3; black line: flow of path 3.)

OD travel time by ATIS; dotted line: OD demand;
gray line: sum of path flows.)

Table 3. Results of numerical example for M2. Two-class users model with identical

predicted OD travel time for two user classes, i.e., (15) with n = 2; C1 denotes user
class one and C2 user class two.

Flow Travel Time
i State at Steady i State at Steady
Initial | 3"900 | “State | M8l | 37200 | “state
C1 20 21.95 22.23
Path 1 103.29 103.79 103.79
C2 20 31.84 33.94
C1 25 25.81 26.08
Path 2 109.58 103.80 103.79
C2 25 29.30 30.88
C1 15 9.55 6.62
Path 3 116.76 105.72 103.79
C2 15 1.57 0.25
Cl1 35 31.50 28.85
Link 1 51.72 48.67 47.71
C2 35 33.41 34.19
C1 25 25.81 26.08
Link 2 64.58 66.76 67.71
C2 25 29.30 30.88
C1 15 9.55 6.62
Link 3 20.04 20.00 20.00
C2 15 1.57 0.25
C1 20 21.95 22.23
Link 4 51.56 55.11 56.08
C2 20 31.84 33.94
C1 40 35.36 32.70
Link 5 45.00 37.05 36.08
C2 40 30.87 31.13
Predicted OD travel time by ATIS

125.00 103.88 103.79

is connected by three paths denoted as path 1 = {link 1, link 4}, path 2 = {link 2, link 5}, and
path 3 = {link 1, link 3, link 5}, respectively. The parameters of the link cost functions are set
in Table 1 with the same function form as co(f%) = Ag + Ba(fE/ks)*.

The following three examples (M1, M2, and M3) were solved using the high-order Runge-Kutta
numerical method with the OD demand fixed as 120. The initial conditions, assumed identical
parameters of the propensity of path flow dynamics, and parameters to denote the sensitivity
of predicted travel time dynamics for the homogeneous user model (M1), i.e., (9), are given as
(h3, K3, h3, 2, e, B) = (40, 50, 30,125, —0.0006, 0.1). Table 2 shows the dynamics of flows, travel
times, and predicted OD travel times by ATIS at three different states for the first example.
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Figure 6. Travel time evolutions of M2. (Dashed  Figure 7. Path flow evolutions of user class one in
line: predicted OD travel time; light gray line:  M2. (Light gray line: path 1; medium gray line:
path 1; medium gray line: path 2; black line:  path 2; black line: path 3.)

path 3.)
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Figure 8. Path flow evolutions of user class two in

M2. (Dashed line: predicted OD travel time; light

Figure 9. Evolutions of predicted OD travel time
gray line: path 1; medium gray line: path 2; black

by ATIS and ETD?, (M2). (Dashed line: predicted
line: path 3.)

OD travel time by ATIS; dotted line: OD demand;
gray line: sum of path flows.)

100 150 200

Figure 10. Evolutions of path travel times and C1
predicted OD travel times for M3. (Dashed line:
C1 predicted OD travel time; light gray line: path
1; medium gray line: path 2; black line: path 3.)

S0

100 150 200

Figure 11. Evolutions of path travel times and C2
predicted OD travel times for M3. (Dashed line:
C2 predicted OD travel time; light gray line: path
1; medium gray line: path 2; black line: path 3.)
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Table 4. Results of numerical example for M3. Two-class users model with user-
specific predicted OD travel time for two user classes, i.e., (16) with n=2; C1 denotes

user class one and C2 user class two.

Flow Travel Time
i State at Steady i State at Steady
Initial | % _"900 | State | ™2l | Y200 | “State
C1 20 22.62 24.56 U
Path 1 103.29 103.04 103.78
C2 20 30.40 31.60 I S
C1 25 26.56 28.71
Path 2 109.58 103.09 103.78
C2 25 27.80 28.24
C1 15 9.66 6.72
Path 3 116.76 104.91 103.78
C2 15 1.36 0.15
C1 35 32.28 31.28
Link 1 51.72 48.21 47.71
C2 35 31.76 31.75
Cl1 25 26.56 28.71
Link 2 64.58 66.40 67.70
C2 25 27.80 28.24
Cl1 15 9.66 6.72
Link 3 20.04 20.00 20.00
C2 15 1.36 0.15
C1 20 22.62 24.56
Link 4 51.56 54.82 56.07
C2 20 30.40 31.60
C1 40 36.22 35.43
Link 5 45.00 36.69 36.08
C2 40 29.16 28.39
Cl 125.00 103.88 103.79
Predicted OD travel time by ATIS
C2 125.00 102.99 103.79
120 \ 120 ‘\
\‘\‘ “\
110 Ay e wf 3 —
‘\‘ /I' g . - . e \\ ——
100 ‘\\*“"// it !t T
90 a0t
80 80
70r 0 /\
60 /\\\/m e 60 N ot
50 100 150 200 50 100 150 200

Figure 12. Evolutions of C1 predicted OD travel
time by ATIS and ETD},, (M3). (Dashed line:
C1 predicted OD travel time by ATIS; dotted line:
OD demand; gray line: sum of path flows for C1.)

Figure 13. Evolutions of C2 predicted OD travel
time by ATIS and ETD},, (M3). (Dashed line:
C2 predicted OD travel time by ATIS; dotted line:
OD demand; gray line: sum of path flows for C2.)
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It is clear that the steady state satisfies the Wardrop’s user equilibrium and the predicted OD
travel time is equal to the path travel times of which path flows are positive simultaneously.
Numerical results by the evolutions of network dynamics illustrated from Figures 2-5 also show
that the path flow increases (decreases) as path travel time is less (more) than the predicted OD
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10

50 100 150 200 50 100 150 200

Figure 14. Path flow evolutions of C1 in M3. Figure 15. Path flow evolutions of C2 in M3.
(Light gray line: path 1; medium gray line: path 2;  (Light gray line: path 1; medium gray line: path 2;
black line: path 3.) black line: path 3.)

travel time and predicted OD travel time increases (decreases) as OD demand is more (less) than
the sum of path flows.

The second example is set for the multiclass user model with identical predicted OD travel time
by ATIS (M2), i.e., (15) as n = 2. Parameters of the propensity of path flow dynamics for the
two classes are assumed to be different but the same within a user class. They are —0.0006 and
—0.003 for class one and class two, respectively. The other inputs of the second example are the
same as the previous case, and the outputs reveal that the steady state is qualified as a Wardrop’s
user equilibrium. The embedded mechanisms of adjustments are also sustained by the results
in Table 3 and Figures 6-9. However, two additional facts are found that sensible users occupy
better routes sooner than less sensible users in the evolution process until equilibrium is reached,
and the ratio of first-class users to second-class users for three paths at a steady state is different
from that at the initial status. The latter one can be interpreted as the result of the former
and evidently due to various parameters of the propensity of path flow dynamics. Moreover,
we remind readers that the shares of OD demand for two user classes might be changed in the
processes.

Finally, the third case is prepared for the two-class user model with the user-specific predicted
OD travel time by ATIS (M3), ie., (16) as n = 2. All inputs are the same as the second
example but each user class is provided with a dedicated OD travel time predicted by ATIS and
an equal OD demand, i.e., D13 = Dy; = 60. Unsurprisingly, the outcome, shown in Table 4
and Figures 10-15, follows the asymptotic behaviors claimed in the previous section. It is also
observed that the adjustment speeds in M3 are less than that in M2 from the initial conditions
to the 200" time state. It is in that the path flow dynamics are limited by a fixed and smaller
OD demand for user class two in M3. However, it seems to be reasonable that the OD demand
ratio of user class one to user class two should not be overly distorted in the evolution processes
even though the total OD demand is kept unchanged. This point should be a necessary check
when M2 is implemented into the empirical study.

6. CONCLUSIONS

In this paper, the authors deal with further developments of vehicular network dynamics in a
day-to-day time scale by using a nonlinear dynamical system approach. Incorporating the total
perceived travel time loss (or saving) into the proposed models, time change rates of path flows
are generated on a flow-weighted base to prevent the path flow dynamics from being insensible of
flow level which have been formulated in previous studies [4,24]. Issues of heterogeneous users and
corresponding means of providing travel information are also considered in multiclass users models
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by dividing path users into several classes according to the sensitivity of path flow dynamics due
to the total perceived travel time loss (or saving) for each user class. The equilibrium solutions
of presented models are analyzed mathematically to be the Wardropian equilibria and proved to
be asymptotically stable in the sense of Lyapunov. The lemma of the Lipschitz condition for the
proposed dynamical system is a key in the proof of existence and uniqueness by the way of the
fundamental theorem of differential equations. Based on these results, the proposed models build
an analytical linkage between the Wardrop’s user equilibrium and the empirical adaptability of
route preference under the operations of intelligent transportation systems.
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