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The subject of this research, the international express industry, is 
one of the fastest-growing sectors in the global economy. Express 
logistics operators can provide reliable, fast, on-demand, world-
wide, integrated, and door-to-door shipping services. In general, 
the core business of the express industry is the provision of value-
added, door-to-door transport and a highly time-sensitive delivery 
service. When any disruption occurs, these shipments may require 
the implementation of resilience strategies to mitigate the adverse 
influences of the disruption.

The concept of supply chain resilience emerged in 2004 and has 
become widely recognized. Resilience is first defined as the ability 
of a system to react quickly to undesired events and then return 
to its original state or move to a new, more desirable state after 
it is disturbed (2). Ta et al. then defined the resilience of a freight 
transportation system to be “the ability for the system to absorb the 
consequences of disruptions to reduce the impacts of disruptions 
and maintain freight mobility” (3).

Several previous studies incorporated resilience concepts into 
transportation network flow problems (4, 5), but previous studies 
have seldom dealt with the time-dependent values of shipments 
(6, 7). To reflect the time-sensitive characteristics of express deliv-
eries, four nonlinear time-dependent cargo value functions revised in 
this study from the work of Chen and Schonfeld (7), were considered, 
as shown in Figure 2.

Figure 2a illustrates the value for commodities that do not signifi-
cantly change over time, such as some economic goods. Here, µ(t) 
represents the market value of a commodity at time t, and µb spe-
cifically denotes the cargo value function of shipment b. Figure 2b 
illustrates the value for some perishable commodities (e.g., flowers 
and seafood), and the corresponding time-varying value function is 
expressed in Equation 1:

t
z

t

v

1

2
exp

1

2
(1)

2

( )µ =
π

− 












where v is the time period adjustment factor, and z is the time value 
adjustment factor. Here it is assumed that the value of v will be a 
smaller number for products with shorter lifetimes. In addition, the 
value of z is smaller when the corresponding product has a higher 
market price.

Technological products, such as smartphones and tablet comput-
ers, are classified as products with short life cycles, the value for these 
products is shown in Figure 2c. The life cycle is considered short 
because the price may drop every week because new versions are  
frequently launched on the market. Certain clothing fashions also 
have this feature because of the possibility that they may go out of 
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International express is a most time-sensitive industry, and members of 
this industry must be able to respond to disruptions quickly to ensure 
service quality and to avoid a loss of their competitiveness with other 
logistics service providers. Instead of a method that arbitrarily makes 
rushed decisions during the postdisruption phase, this paper describes 
a method for quantifying and optimizing resilience strategies based on 
concepts of integrated resource assignment, regardless of where the 
available resources are located in the logistics network studied or how 
much capacity can be rented from others. The study started with the 
use of a typical transportation network modeling approach and then 
incorporated nonlinear time-dependent cargo value functions into a 
multiobjective mixed-integer nonlinear programming problem. A set 
of optimal actions from resilience strategies, such as the selection of 
alternative routes, switching of shipping modes, rental of other carriers’ 
capacities, reallocation of local trucks, and prioritization of the order 
of shipments because of limited capacities, was considered. Decisions 
should be based on overall trade-off considerations and, at the same 
time, joint maximization of the product of the total time-dependent 
cargo value and the corresponding throughput and minimization of the 
costs incurred with resilience enhancement strategies.

Supply chain systems are increasingly threatened by natural and 
human-made disasters, as shown in Figure 1. Sheffi found that the 
impacts of a disaster on a supply chain are heightened under cur-
rent conditions in which product life cycles are ever shrinking and 
markets are unpredictable (1). When major disruptions occur, such 
as the volcano in Iceland in 2010 and the earthquake and tsunami 
in Japan in 2011, entire logistics systems are severely affected, and 
these effects can generate huge economic losses. Thus, many enter-
prises are motivated to draw up different resilience strategies to 
relieve the catastrophic impacts caused by disasters.
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FIGURE 1    Natural disasters reported from 1900 to 2010. (Source: EM-DAT emergency events database, 2010.)
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FIGURE 2    Time-dependent cargo value functions: (a) products with constant values over time, 
(b) perishable products, (c) commodities with short life cycles, and (d) holiday gifts.



94� Transportation Research Record 2378

style. This kind of time-dependent cargo value function is formulated 
in the following equations, where u is a price decay factor:
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Figure 2d illustrates the value for the most time-sensitive com-
modities (e.g., holiday gifts). Equation 3 indicates that the total cargo 
value approaches 0 if the total shipping time exceeds the specific 
time windows:
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When any nonrecurrent event occurs, the model seeks to optimize 
all available transportation resources to facilitate recovery of the 
system in a timely manner. A set of resilience enhancement strate-
gies identified from a literature review and interviews with practi-
tioners is considered in the model described here. These strategies 
include selection of alternative routes, switching of shipping modes, 
rental of other carriers’ capacities (if applicable), reallocation of 
local trucks, and prioritization of the order of shipments because of 
limited capacities.

The capacity to rent (e.g., extra containers or spare transporta-
tion modes) from other carriers is one major action that international 
express companies take in practice. Such an action can be further 
divided into two types: rental from noncontractual carriers and rental 
from contractual partners.

Because noncontractual carriers may not be able to provide suffi-
cient and efficient capacities, some logistics service providers tend to 
develop strategic alliances to achieve economies of scale and increase 
the use of unfilled space. Oum et al. described a strategic alliance as a 
medium- to long-term partnership formed by two or more firms with 
a common goal of improving competitiveness (8). For example, DHL 
Express and Polar Air Cargo Worldwide have a long-term contractual 
service agreement. The partnership transaction includes a commercial 
arrangement that gives DHL Express guaranteed access to the aircraft 
capacity of Polar Air Cargo Worldwide in key global markets. The 
transit times are reduced, and the reliability of delivery is increased. 
In general, contractual partners can provide a better level of service 
and satisfy contingent or emergent requirements in a timely manner. 
However, the total costs of maintenance of these contracts are higher 
than the cost to rent from noncontractual carriers.

During normal operations, international express companies tend 
to ship cargo by use of the fastest path and mode combinations 
(e.g., truck–air–truck). Trucks for inland transport need to deliver 
cargo by the departure times of scheduled flights at airports; other
wise, the cargo is delayed until the next available flight. However, 
rail and maritime modes of transport are considered only if the 
preplanned routes and modes are no longer available because of 
disruptions. These slow shipping modes are chosen for short-term 
transfers to other fast modes. For example, because airports in 
Shanghai, China, are usually overwhelmed during Japan’s Golden  
Week in April, some shipments are shipped through other inter
modal logistics operations (i.e., truck–port–truck–air) from the Port 
of Shanghai to the Port of Keelung in Taiwan and then transferred 
to the Taiwan Taoyuan International Airport. Airports in the United 
States are also overwhelmed during the Thanksgiving holiday in 
November of each year. This study also considers different intermodal 
operations to enhance the resilience capability of the system when 
severe disruptions occur.

Through interviews with practitioners, the authors observed that 
certain international express operators are using strategies to improve 
system resilience and robustness by allocating buffers (e.g., slack 
times) or additional resources (e.g., spare capacities) to absorb dis-
turbances. Although adequate buffers can help operators reduce the 
queuing pressure caused by disruptions, the high costs required to 
maintain spare capacities still limit the effects of systems used to 
create resilience.

The aim of the research described here is to study which resilience 
strategies international express companies should choose when dis-
ruptions occur and affect their delivery activities. The core concepts 
for integration of the resilience treatments are built into the proposed 
model and are illustrated in Figure 3.

The remainder of this paper is organized as follows: several resil-
ience strategies are developed from literature reviews and inter-
views with experts and practitioners. The relevant optimization 
problems are described in detail. Through a case study solved with 
commercial software, the optimal strategies and decisions needed 
to relieve the impacts of disruptions are determined. Finally, some 
concluding remarks are offered.

Model Assumptions and Formulations

The intermodal logistics network studied includes multiple hubs, 
multiple modes, multiple carriers, and multiple commodities. The 
network is given by G = (N, L), where G represents the directed 
network graph; N, which is equal to {1, . . . , n}, is the set of nodes; 
and L, which is equal to {(i, j) | i, j ∈ N} (where i and j are nodes), 
is the set of links. Cargos are denoted as a set of shipping orders,  
b ∈ B. Each order records a pair of origin and destination nodes with 
the corresponding time-dependent cargo value function. A path is 
defined as an acyclic chain of arcs.

Three failure types caused by disruptions are defined in this study, 
namely, link, node, and mode failures. Three adjustment factors (αm

ij, 
βi, and γi, where m is the mode) describe the capacity reductions 
after disruptions. Other basic assumptions are listed below:

•	 All attributes within the studied network, such as link travel costs, 
times, and capacities by different transportation modes, are given;

•	 The information about available routes and terminals is already 
known during the predisruption phase;

•	 Each order is detachable, which means that vehicles can transport 
partial amounts of cargos based on optimized results; and

•	 The rental time includes the time to dispatch the rented capacity 
from the carriers (if renting activities become applicable).

The model is expressed as follows:
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FIGURE 3    Conceptual model for integration of resilience treatments  
(max = maximum; min = minimum).
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where

	 M	=	set of modes,
	 Tr	=	set of trucks,
	 Ai	=	set of aircraft,
	 Sh	=	set of ships,
	 Ra	=	set of trains,
	 E	=	set of multicarrier recovery activities,
	 o	=	set of origins,
	 d	=	set of destinations,
	 OS	=	set of service centers in origin country,
	 OP	=	set of seaports or airports in origin country,
	 DS	=	set of service centers in destination country,
	 DP	=	seaports or airports in destination country,
	 TP	=	seaports or airports in transshipment country,
	 fij

bm	=	� amount of cargo with shipping code b on arc (i, j) 
shipped by mode m,

	 WLij	=	capacity of private trucks reallocated to arc (i, j),
	 KRij

me	=	� rental capacity of mode m on arc (i, j) from partner e,
	 Ab	=	 total shipping time of cargo with shipping code b,
	 Km

ij	=	� maximum allowable capacity of arc (i, j) for 
mode m,

	 KLi	=	capacity of available trucks at node i,
	 Wij	=	� capacity of original truck allocation on arc (i, j) 

before disruption occurs,
	 WAij	=	available flight capacity on arc (i, j),
	 AKij

me	=	� available rental capacity on arc (i, j) of mode m by 
carrier e,

	 RCij
me	=	� cost of rental capacity from carrier e for mode m 

on arc (i, j),
	 C*	=	 truck reallocation costs,
	 Sj	=	service time and cargo sorting time at node i,
	 Tij

m	=	 travel time from node i to node j via mode m,
	 RTi

me	=	� total rental process time of mode m from carrier e 
at node i,

	 T*	=	extra time spent on reallocation of trucks,
	 DMb

od	=	� total demand with shipping code b from origin o to 
destination d,

	 µ(t)b	=	� time-dependent cargo value function of cargos 
with shipping code b, and

	yij
me and δij

bm	=	 indicator variables.

To satisfy customers’ delivery requests as much as possible, the 
first objective function (Equation 4) is derived from the maximi-
zation of total system throughputs. A priority rule for those ship-
ments with higher cargo time values is further defined here. That is, 
shipments with higher priority will be shipped first if capacities are 

insufficient. If the system operators want to implement resilience 
enhancement strategies, all incremental resilience costs will be con-
sidered, as shown in the second objective function (Equation 5.) 
Both objective functions are optimized on the basis of overall trade-
off considerations, and the express company must simultaneously 
balance customer satisfaction and the recovery costs.

Equations 6 to 8 express the link capacity constraints. Equations 9 
and 10 represent the mode capacity constraints for ground transpor-
tation. Equations 11 and 12 indicate the mode capacity constraints 
for transnational transportation. Equations 13 and 14 ensure that the 
sum of truck capacities and rental capacities satisfy the requirements. 
Equations 15 and 16 state the flow conservation constraints. Equa-
tions 17 and 18 express the demand constraints. Equation 19 speci-
fies that at most one path can be chosen for an identical shipment, 
and Equations 20 and 21 define the binary indicator variables δij

bm 
and yij

me. The variable δij
bm is equal to 1 if cargo flow with shipment b 

passes through arc (i, j) by mode m and 0 otherwise. The variable yij
me 

is equal to 1 if the recovery capacity (KRij
me) is not 0 and 0 otherwise. 

Equation 22 calculates the total shipping time.

Model Applications and  
Analytical Results

The purpose of this work is to optimize the resilience decisions on 
the basis of the consideration of two objectives. Fatemeh and Tarokh 
developed a compromise programming approach for k objectives to 
minimize the distance between some reference point and the feasible 
objective region (9). This approach was also adopted in this study. 
When k objective functions of {f1(x), f2(x), . . . , fk(x)} [where f(x) rep-
resents function f corresponding to input x] are considered to be opti-
mized simultaneously, some corresponding design references of {f *1, 
f *2, . . . , f *k } are assigned on the basis of the lower bound of each objec-
tive function {f1,max, f2,max, . . . , fk,max} (for the minimization problems). 
Thus, the problem is reformulated as shown in Equation 23:
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where w is the weight of each objective function and p is a specified 
exponent.

Because the unit of each objective function might be different, 
a normalization process is required. The multiobjective mixed-
integer nonlinear programming problem studied is solved with the 
LINGO (Version 12.0) program, and all programs are executed on a 
PC with an Intel Core i7 processor and a central processing unit with 
a 2.93-GHz processor and 4 GB of RAM. Here it is assumed that the 
maximum allowable resilience duration is 6 days.

The network studied contains nine nodes and 12 links, as shown 
in Figure 4. Five shipments (b = 1, 2, 3, 4, 5) with two kinds of com-

Trucks or Rail8

9

6

7

3

4

1

2

5
Air or Sea

Service center

Airport/harbor

FIGURE 4    Network configuration in the case study.
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modities are studied. The time-dependent cargo value functions and 
demand information are shown in Table 1.

Four modes are considered, namely, truck (m = 1), aircraft (m = 
2), rail (m = 3), and ship (m = 4). Link capacity and transportation 
time are listed in Table 2. The capacities of self-owned trucks and 
flights are recorded in Table 3. The capacities of the trucks and the 
cargo processing time at each node are given. Table 4 shows the 
parameter settings for rental activities. The capacity reduction fac-
tors caused by disruptions are as follows: γ3 is equal to 0.1, α1

13 is 
equal to 0.4, and α1

24 is equal to 0.4. Here, γ3 equal to 0.1 indicates 
that only 10% of the capacity at Node 3 remains unused. Similarly, 
α1

24 equal to 0.4 means that the capacity at Link (2, 4) is 40% of the 
original capacity.

All optimized results are listed in Table 5. For example, cargo 
whose shipping code is 1 is transported from Node 1 to Node 4 
by truck, from Node 4 to Node 5 by sea, from Node 5 to Node 7 
by air, and from Node 7 to Node 8 by truck. All demands are 
satisfied, and the total shipping time is 274 h. Most cargo shipped 
over such a long period of time consists of commodities with 
a constant cargo time value setting. Most perishable commodi-
ties are delivered by air. Some shipments could not be completed 
(i.e., the shipping code is 2) because of limited link capacities 
during the postdisruption phase. Table 6 shows that some trucks 
were reallocated to Links (1, 4) and (2, 3). In addition, the system 
operators had to rent some capacity from other maritime carriers 
at Link (4, 5).

TABLE 2    Settings of Link Capacities and Corresponding 
Transport Times

Link (i, j) Kij
m Tij

m (h) Link (i, j) Kij
m Tij

m (h)

m = 1 m = 3

(1, 3)   22 3.3 (1, 3)   30 4.7

(1, 4)   23 20.6 (1, 4)   15 11.7

(2, 3)   24 23 (2, 3)   15 10

(2, 4)   18 7 (6, 8)   15 5

(6, 8)   26 13 (7, 8)   25 7.5

(6, 9)   25 2.5 (7, 9)   22 10.2

(7, 8)   27 17.2

(7, 9)   18 19.2

m = 2 m = 4

(3, 5)   50 7 (4, 5) 120 96.2

(4, 5)   40 6 (5, 7) 120 96.2

(5, 6)   50 6.3

(5, 7)   40 6

TABLE 1    Demand and Time-Dependent Cargo  
Value Functions

b
Origin, 
Destination

Shipment 
Demand  
(lb thousands) Time Value Function

1 1, 8 10

µb = 202 2, 9   7

3 1, 9
 

  5

{µ = < ≤
>

100 0 200
10 200

t
t

b4 2, 8   6

5 1, 9   3

TABLE 3    Capacities of Self-Owned 
Trucks and Aircraft

Link (i, j)
Wij (no. of 
vehicles)

WAij (no. of 
vehicles)

(1, 3) 4 NA

(1, 4) 0 NA

(2, 3) 0 NA

(2, 4) 4 NA

(3, 5) NA 20

(4, 5) NA 20

(5, 6) NA 20

(5, 7) NA 20

(6, 8) 1 NA

(6, 9) 3 NA

(7, 8) 4 NA

(7, 9) 0 NA

Note: No. = number; NA = not available.

TABLE 4    Parameter Settings for Rental Activities

Carrier
Link 
(i, j)

AK ij
me (no. of 

vehicles)
RC ij

me  
($ hundreds) RT i

me (h)

m = 1

e = 1 (1, 3) 15 10   5
(1, 4) 20 25   5
(2, 3) 20 22 16
(2, 4) 20 6 16
(6, 8) 15 12   4
(6, 9) 15 6   4
(7, 8) 25 18 16
(7, 9) 10 22 16

e = 2 (1, 3) 20 11 18
(1, 4) 10 24 18
(2, 3) 15 21   6
(2, 4) 15 9   6
(6, 8) 20 11 14
(6, 9) 15 5 14
(7, 8) 10 17   6
(7, 9) 25 21   6

m = 2

e = 1 (3, 5) 20 210   4
(4, 5) 10 230   6
(5, 6) 20 210 10
(5, 7) 10 230 10
(3, 5) 10 150   4
(4, 5)   0 170   6
(5, 6) 10 150 10
(5, 7)   0 170 10

m = 3

e = 1 (1, 3) 27 11 10
(1, 4) 11 76 10
(2, 3) 13 67 10
(6, 8) 12 27 10
(7, 8) 21 39 10
(7, 9) 20 67 10

m = 4

e = 1 (4, 5) 56 120 20
(5, 7) 56 120 20

e = 2 (4, 5) 56 119.3 20
(5, 7) 56 119.3 20
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gies might be worth considering, such as the use of optimal reserved 
capacities at some hubs with high vulnerabilities.

The problem studied was formulated as a multiobjective mixed-
integer nonlinear programming problem. In this multivariable non-
linear optimization problem, it is somewhat difficult to guarantee 
a global minimum. The bound is not readily identifiable because 
(a) the mixed-integer programming problem uses linear program-
ming or the Lagrangian relaxation method to find the bounds and 
(b) some nonlinear constraints do not satisfy the requirements of the 
Karush–Kuhn–Tucker conditions. In addition, some hybrid meta-
heuristic techniques will be tested to improve program run times in 
the future (10).
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TABLE 6    Results of Truck Reallocations  
and Rental Capacities

Link

Original Truck 
Allocations  
(no. of vehicles)

No. of Truck 
Reallocations 
(no. of vehicles)

Rental 
Capacity 
(tons)

(1, 3) 4 0 NA

(1, 4) 0 4 NA

(2, 3) 0 1 NA

(2, 4) 4 3 NA

(4, 5) NA NA 28a

aData are for shipment by sea.

TABLE 5    Overall Optimized Results of the Case Study

Path Freight 
Quantity/
Demand 
(lb thousands)

Transportation 
Time Spent on 
Delivery (h)b

Normal 
Operation Postdisruption

1 1→3➔5➔7→8 1→4…5➔7→8 10/10   274

2 2→4➔5➔6→9 2→3➔5➔6→9 2/7   61.8

3 1→3➔5➔6→9 1→4➔5➔6→9 5/5   94.4

4 2→4➔5➔7→8 2→4➔5➔7→8 6/6 103.2

5 1→3➔5➔6→9 1→4➔5➔6→9 3/3   72.4

Note: → = truck; - - - = rail; ➔ = air; . . . = sea.

Conclusions

Nowadays, international express companies rarely respond to 
severe disruptions through the use of systematic measures to 
determine how to transport cargo in a timely manner. In prac-
tice, the decisions are usually made through discussions and are 
influenced by the experiences of customer service personnel. To 
improve such decisions, a quantitative method for the optimiza-
tion of resilience strategies during the postdisruption phase was 
developed.

Although the case studies tested seemed to be relatively simple, 
the main purpose was to test and demonstrate the ability of the pro-
posed models and optimize the resilience strategies when disrup-
tions occur. The results show that the resilience strategies decrease 
the total shipping time and increase the delivery rate before the cus-
tomers’ requested deadlines. The use of proactive resilience strate-


