
Incorporating significant amino acid pairs and protein domains
to predict RNA splicing-related proteins with functional roles

Justin Bo-Kai Hsu • Kai-Yao Huang •

Tzu-Ya Weng • Chien-Hsun Huang •

Tzong-Yi Lee

Received: 12 August 2013 / Accepted: 7 January 2014 / Published online: 19 January 2014

� Springer Science+Business Media Dordrecht 2014

Abstract Machinery of pre-mRNA splicing is carried out

through the interaction of RNA sequence elements and a

variety of RNA splicing-related proteins (SRPs) (e.g.

spliceosome and splicing factors). Alternative splicing,

which is an important post-transcriptional regulation in

eukaryotes, gives rise to multiple mature mRNA isoforms,

which encodes proteins with functional diversities. How-

ever, the regulation of RNA splicing is not yet fully elu-

cidated, partly because SRPs have not yet been

exhaustively identified and the experimental identification

is labor-intensive. Therefore, we are motivated to design a

new method for identifying SRPs with their functional

roles in the regulation of RNA splicing. The experimentally

verified SRPs were manually curated from research arti-

cles. According to the functional annotation of Splicing

Related Gene Database, the collected SRPs were further

categorized into four functional groups including small

nuclear Ribonucleoprotein, Splicing Factor, Splicing Reg-

ulation Factor and Novel Spliceosome Protein. The com-

position of amino acid pairs indicates that there are

remarkable differences among four functional groups of

SRPs. Then, support vector machines (SVMs) were utilized

to learn the predictive models for identifying SRPs as well

as their functional roles. The cross-validation evaluation

presents that the SVM models trained with significant

amino acid pairs and functional domains could provide a

better predictive performance. In addition, the independent

testing demonstrates that the proposed method could

accurately identify SRPs in mammals/plants as well as

effectively distinguish between SRPs and RNA-binding

proteins. This investigation provides a practical means to

identifying potential SRPs and a perspective for exploring

the regulation of RNA splicing.

Keywords RNA splicing � Spliceosome � Splicing-

related protein � Amino acid pair composition � Support

vector machine

Introduction

The pre-mRNA splicing is required for typical eukaryotes

that produce mature mRNA before it codes a correct pro-

tein through translation. The mechanism of RNA splicing

is done by a series of reactions that are regulated by the

splicing-related proteins (SRPs), which is a collection of

small nuclear RNAs (snRNAs) and proteins recruited to
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pre-mRNAs for carrying out intron excision [1, 2]. In

eukaryotes, transcriptome and proteome diversities are

enriched by a important mechanism of post-transcriptional

regulation called alternative splicing (AS) [3]. It means a

single pre-mRNA can give rise to multiple mature mRNA

isoforms, which encodes proteins with different structure

and function [4, 5]. Many studies have demonstrated the

critical roles of AS process in various developmental

stages, physiologies, diseases, and so on, and also caused

higher proportion of eukaryotic genes, especially in human

(higher than 50 %) [3, 6–9]. For instance, thousands of

alternatively spliced transcripts in the nervous system are

translated into their protein counterparts with the special

capacities in learning and memory, neuronal cell recogni-

tion, neuro-transmission, ion channel function, and recep-

tor specificity [10]. Therefore, in order to code a correct

protein with flexible function, precisely excising introns

from the pre-mRNA are required [11, 12].

The fidelity of intron excision is achieved by a two-step

splicing. During the first step, the adenosine nucleotide

located within the intron sequence known as ‘‘branch site’’

attacks on the 50 splice site. The reaction generates two

splicing intermediates such as a free exon 1 and a lariat-

exon 2. During the second step, exon 1 attacks on the 30

splice site and ligates to exon 2. This yields two splicing

products such as a spliced exon and lariat intron [4, 12],

and leads exon constitutively or alternatively spliced. Both

reactions are catalyzed by the macromolecular complex,

spliceosome, composed of five essential small nuclear

ribonucleoprotein particles (snRNPs) and hundreds of non-

snRNPs and specific proteins [1, 2]. Two types of

spliceosomes have been identified in eukaryotes and are

referred to as major (or U2-type) and minor (or U12-type)

spliceosomes [11, 13]. For the U2-type spliceosome, each

snRNP comprises of five short RNA molecular (U1, U2,

U4, U5 and U6 snRNAs) bound stably to two classes of

proteins, i.e., Sm proteins or Sm-like proteins, and specific

proteins that are uniquely associated with only one snRNP

[4, 11, 14, 15]. The function of snRNPs is useful to the

spliceosome formation, which starts with U1 snRNP

binding to the 50-splice site, followed by U2 snRNP bind-

ing to the intron branch site, association of the U4/U6.U5

tri-snRNP, and release of U1 and U4 snRNPs to form the

catalytic complex [1]. For the U12-type spliceosome, the

U1, U2, U4, and U6 snRNAs of the major spliceosome are

replaced by U11, U12, U4atac, and U6atac snRNAs,

respectively. The U5 snRNA seems to function in both the

major and minor spliceosome [15].

In addition to snRNPs, AS requires many of other

positive or negative non-snRNP proteins as trans-acting

factors, also known as SRPs, which are recruited to the

enhancer or silencer of cis-acting sequence elements of the

pre-mRNA to enhance or repress the regulation of splicing

process by recognizing nearby splice sites [9, 16–22]. Due

to the dynamic conformation and various functions of

SRPs, a previous work [23] has tried to categorize SRPs

into several major groups including snRNPs, splicing fac-

tors, splicing regulators and spliceosome-associated pro-

teins. One of the well-known splicing factors is serine/

arginine-rich protein (SR protein) which contains serine-

and arginine-rich carboxy-terminal domains [24–26]. SR

proteins are a highly conserved family of structurally and

functionally related splicing factors with a dual role in

splicing, affecting exons constitutively or alternatively

spliced [26]. One of the major proteins in splicing regu-

lators is hnRNP which can bind to pre-mRNA and block

the binding site for splicing factors [23]. SR protein kinase

is another major type of splicing regulators to modulate

constitutive and AS by phosphorylating SR proteins [27].

The SRPs other than snRNPs, splicing factors and splicing

regulators are classified into the category of novel splice-

osome-associated proteins, due to the regulatory roles of

some SRPs in splicing process could not be defined clearly

so far.

With the importance of SRPs in the regulation of pre-

mRNA splicing, many studies have paid attention to the

proteomic analysis using mass spectrometry [9, 28–32]. In

the analysis of in vitro-derived spliceosomes, 17 previously

known SRPs (including hnRNP proteins) and 23 Novel

SRPs are identified [33]; however, it was limited to species

visible in stained 2D-gels due to the multiplicity of pro-

tein–protein and protein-RNA interactions that modulate

the associations between splicing factors and pre-mRNAs.

Despite more than 200 human SRPs have been identified

based on comprehensive proteomic analysis over the last

few years [28, 29], many of newly identified proteins have

not yet been experimentally verified its function in pre-

mRNA splicing [11]. Thus, Jurica and Moore [1] have

manually conducted about 180 human SRPs would be

premature to label those proteins as bona fide SRPs.

Although an increasing number of SRPs has been

experimentally confirmed by mass spectrometry-based

proteomic studies, the wet-lab identification is proven to be

time-consuming and labor-intensive. Over the last few

years, several studies have been proposed to computa-

tionally predict RNA-binding proteins (RBPs) [34, 35].

Additionally, many computational methods have been

developed to identify RNA-binding residues on protein

sequences [36–45]. Recently, a study has investigated the

amino acid composition (AAC) in human splicing factors

[46]. These published works have demonstrated their

accuracy and stability; however, there is no computational

method dedicated to identify SRPs with their functional

roles. Thus, we are motivated to develop a systematic

approach focusing on the investigation and identification of

eukaryotic SRPs using the experimentally verified
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spliceosomal proteins and splicing factors. According to

the functional annotations in Splicing Related Gene Data-

base (SRGD) [47], this study further investigates into the

functional roles of SRPs in RNA splicing mechanism, such

as snRNP, Splicing Factor (SF), Splicing Regulation Factor

(SRF) and Novel Spliceosome Protein (NSP). Furthermore,

Fig. 1 The overall flowchart of the proposed method. It consists of four major parts: data collection and preprocessing, features investigation,

model learning and evaluation, and independent testing
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the independent testing sets, which are not included in the

training set, are adopted to evaluate the effectiveness of the

proposed method.

Materials and methods

Data collection and preprocessing

The overall flowchart of the proposed method is depicted in

Fig. 1. More than 380 experimentally confirmed SRPs in

humans were manually curated from two published litera-

tures [1, 11]. After the removal of redundant SRPs by

matching to UniProtKB [48] protein entries, it resulted in

283 non-redundant SRPs which are regarded as positive

data for feature investigation and model training. Addi-

tionally, human proteins which are not included in the

positive data were extracted from the UniProtKB and were

regarded as the candidate set of non-SRPs. In order to filter

out potential noise data for non-splicing proteins, the

remaining proteins consisting of keywords ‘‘RNA splic-

ing’’, ‘‘spliceosome’’, or ‘‘splicing factors’’ are removed.

As a result, totally 19,557 non-SRPs are regarded as neg-

ative data.

In the classification between SRPs and non-splicing

proteins, the prediction performance might be overesti-

mated due to a high sequence homology in the training set

or independent test set. Thus, it is necessary to remove the

homologous sequences in the dataset mentioned above,

respectively. With reference to the work by Panwar et al.

[49], homologous sequences in the training set are removed

by CD-HIT. Firstly, CD-HIT forms a cluster with a rep-

resentative sequence having the longest length which is

then compared to the remaining sequences. If the similarity

between a target sequence and the representative sequence

is above the user-selected sequence identity threshold

which refers to the pairwise sequence identity between two

proteins, then the target sequence is considered homolo-

gous to the representative sequence [50]. Different values

were tested for the sequence identity parameter as shown in

Table 1. The resulting dataset given a sequence identity

parameter of 40 % contains 217 positive sequences and

13,333 negative sequences of training set. According to the

functional annotation of SRPs in SRGD, all 217 SRPs are

further categorized into four major groups including

snRNP, SF, SRF and NSP. This results in 54 snRNPs, 63

SFs, 15 SRFs and 85 NSPs.

Features extraction

This study aims to investigate the AAC, functional

domains, and protein–protein interactions in the 217 human

SRPs, as well as in the four functional groups. In order to

investigating the difference of the composition of amino

acids between SRPs (positive data) and non-splicing pro-

teins (negative data), each protein sequence is represented

using a vector {xi, i = 1,…,n} labeled according to its

corresponding protein group (e.g. splicing factor or non-

splicing protein). The vector xi has 20 elements for the

AAC and 400 elements for the amino acid pair composition

(AAPC). For AAC, the 20 elements specify the numbers of

occurrences of 20 amino acids normalized with the total

number of residues in a protein. On the other hand, for

AAPC, the 400 elements specify the numbers of occur-

rences of 400 amino acid pairs normalized with the total

number of dipeptides in a protein.

In order to identify the significant difference of amino

acid pairs between positive data and negative data, a mea-

surement of F-score [51, 52] has been applied to calculate a

statistical value for each amino acid pair. The F-score of the

ith value of 400 amino acid pairs is defined as:

F�score ið Þ

¼
x
ðþÞ
i � xi

� �2

þ x
ð�Þ
i � xi

� �2

1
nþ�1

Pnþ

k¼1 x
ðþÞ
k;i � x

ðþÞ
i

� �2

þ 1
n��1

Pn�

k¼1 x
ð�Þ
k;i � x

ð�Þ
i

� �2

ð1Þ

where xi; x
ðþÞ
i and x

ð�Þ
i denote the average frequency of the

ith amino acid pair in whole, positive, and negative data

sets, respectively; n? denotes the number of positive data

set and n- denotes the number of negative data set; xk,i
(?)

denotes the frequency of ith amino acid pair in the kth

positive instance, and xk,i
(-) denotes the frequency of ith

amino acid pair in the kth negative instance.

Several amino acid residues of a protein can go through

mutation without changing its structure, and two proteins

may share similar structures with different AACs. In this

work, evolutionary information is obtained using position-

specific scoring matrix (PSSM). PSSM profiles have been

extensively utilized in protein secondary structure predic-

tion, subcellular localization and other approaches in

Table 1 Data statistics after using CD-HIT

Sequence

identity (%)

Positive data of

training set

Positive data of

independent test set

Negative

data

100

(original)

283 99 19,557

90 274 94 18,897

80 271 94 18,447

70 266 94 17,727

60 249 88 16,710

50 229 82 15,255

40 217 80 13,333
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bioinformatics [53–55]. The PSSM profiles of each protein

were obtained by using PSI-BLAST search against the non-

redundant database of protein sequences compiled by

NCBI [56]. Due to the fact that the data consists of protein

sequences with variable length, a weighted score of fea-

tures is obtained by summing up the position-specific

scores of the same amino acids occurring in a protein

sequence to get a uniform number of features. Figure S1

(Additional File 1) displays in detail how to generate a 400-

dimensional (20 9 20 residue pairs) PSSM feature vector

for each SRP and non-splicing protein. PSSM profile is a

matrix of m 9 20 elements where m represents the protein

sequence length and 20 represents the position-specific

scores for each type of amino acid. Then, the PSSM profile

is transformed to a 20 9 20 matrix by summing up each

row of same amino acid in the PSSM profile and the var-

iable is denoted as ‘‘x’’. Finally, every element of 400-

dimensional PSSM vector is divided by the length of the

sequence and then is scaled by 1
1þe�x for normalizing the

values between 0 and 1.

Previous works on protein prediction have exhibited the

ability of distinguishable domain regions in the classifica-

tion of proteins [57]. In this work, domain information is

regarded as a feature for classifying the functional roles of

SRPs. To investigate the preference of functional domains

in each functional group, this study referred to the anno-

tations in InterPro [58]. InterPro is an integrated resource,

which was developed initially as a means of rationalizing

the complementary efforts of the PROSITE [59], PRINTS

[60], Pfam [61], and ProDom [62] databases, for providing

protein ‘‘signatures’’ such as protein families, domains and

functional sites. The domain information of each SRP in

the training data is collected by referring to its corre-

sponding InterPro ID in the UniProtKB database. The

collected domains are then utilized to evaluate the pre-

dictive performance in identifying SRPs as well as the

functional roles of SRPs.

Model learning and cross-validation evaluation

Support vector machine (SVM) is applied to generate

computational models that incorporate the encoded set of

features. Based on binary classification, the concept of

SVM is to map the input samples into a higher dimensional

space using a kernel function, and then to find a hyper-

plane that discriminates between the two classes with

maximal margin and minimal error. A public SVM library,

LibSVM [63], is used to train the predictive model with

positive and negative training sets, which are encoded with

reference to various training features. The radial basis

function (RBF) K(Si, Sj) = exp (-ckSi - Sjk2), where Si

and Sj are the feature vectors of two input samples, is

selected as the kernel function of SVM. The gamma

parameter (c) defines the extent of the influence of a single

training sample, with low values meaning higher influence

[64]. Cross-validation is important to the application of the

predictor [65]. The predictive performance of the con-

structed models is evaluated by performing k-fold cross-

validation. The training data is divided into k groups by

splitting each dataset into k approximately equal sized

subgroups. In this work, k is set to five. During cross-

validation, each subgroup is regarded as the validation set

in turn, and the remainder is regarded as the training set.

Next, the following measures of predictive performance of

the trained models are defined:

Sensitivity (Sn) ¼ TP

TPþ FN
; ð2Þ

Specificity (Sp) ¼ TN

TNþ FP
; ð3Þ

Accuracy (Acc) ¼ TPþ TN

TPþ FNþ TNþ FP
; ð4Þ

where TP, TN, FP and FN represent the numbers of true

positives, true negatives, false positives and false

negatives, respectively. Additionally, the usefulness

values of true positive (UsefulnessPOS) and true negative

(UsefulnessNEG) predictions for independent testing are

defined as well:

UsefulnessPOS ¼ TP

TPþ FP
; ð5Þ

UsefulnessNEG ¼ TN

TNþ FN
: ð6Þ

A hybrid approach is employed in this work by com-

bining different sets of feature vectors with the goal of

improving prediction performance. Three AAC-based

types of hybrid combinations are explored. In the first

combination, the effect of combining AAC with the

information of functional domain is explored. In the second

combination, the effect of combining amino acid pairs

composition with the functional domain is explored. In the

third combination, the effect of combining PSSM with

functional domain is explored. Additionally, the parame-

ters of the predictive model, cost and gamma value of the

SVM models are optimized to maximize predictive accu-

racy. In optimization of SVM parameter C and RBF kernel

parameter gamma, the grid search is applied to obtain the

parameters that achieve the best accuracy during k-fold

cross-validation. Then, the hybrid combinations of features

that yield the highest accuracy are employed to construct

predictive models for independent testing. Finally, the

SVM model trained with the combined features and the

selected parameters (C and gamma) are evaluated the

predictive performance using independent testing data.

J Comput Aided Mol Des (2014) 28:49–60 53
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Independent testing

In case of over-fitting to the training set the performance of

constructed models might be overestimated in classifying

between SRPs and non-splicing proteins. Hence, the

independent testing is required to evaluate the actual per-

formance of the predictive models. The SRPs of indepen-

dent testing set is constructed from UniProtKB by

extracting the human proteins which are not among the

positive data of training set and are obtained from the

resulting dataset by collecting protein entries annotated as

‘‘RNA splicing’’, ‘‘spliceosome’’, or ‘‘splicing factors’’.

The UniProtKB uses such annotations to define a protein

entry that has been experimentally identified to be essential

for RNA splicing. In order to filter out potential noise data

for non-splicing proteins, the remaining proteins consisting

of keyword ‘‘RNA-binding’’ are removed. This yielded 99

protein sequences which are then regarded as positive data

for independent testing. Given a sequence identity param-

eter of 40 % in CD-HIT, the resulting dataset contains 80

positive sequences, as presented in Table 1. To generate

the negative data for independent testing, the negative data

(13,333 protein sequences) is then randomly divided into

two sets: 7,777 protein sequences are regarded as negative

data for model training and 5,556 protein sequences are

regarded as negative data for independent testing.

In order to test the effectiveness of the proposed method

in identifying SRPs from other mammalian species, a total

of 142 experimentally verified splicing factors in mouse

and rat species were extracted from published literature

[11]. Additionally, 309 SRPs of Arabidopsis thaliana were

collected from the ASRG database [66]. Furthermore, to

test the ability of our method in differentiating between

SRPs and RBPs, the human proteins consisting of keyword

‘‘RNA-binding’’ and not included in the positive data of

training set are extracted from UniProtKB. This resulted in

a total of 584 human RBPs for the evaluation of predictive

specificity.

Results and discussion

Composition of amino acids in splicing-related proteins

The comparison of AAC between SRPs and non-splicing

proteins is presented in Fig. 2, which indicates the

enrichments of Arginine (R), Aspartic Acid (D), Glutamic

Acid (E) and Lysine (K) residues in SRPs. The dominance

of these amino acid residues indicates its contribution in

RBP and protein–protein interactions. The over-represen-

tation of R and K in SRPs is reasonable because these

positively charged residules can easily interact with nega-

tively charged RNA. Another abundant amino acid group

observed in SRPs is the negatively charged residue (D and

E) which are easily located on surface area of a protein for

interacting with other SRPs. Interestingly, Leucine (L) is

Fig. 2 Percent composition of twenty amino acids between splicing-

related proteins (positive data) and non-splicing proteins (negative

data). This investigation indicates the enrichments of Arginine (R),

Aspartic Acid (D), Glutamic Acid (E) and Lysine (K) residues in

SRPs. The abundance of R and K in splicing factors is reasonable

because these positively charged residules can easily interact with

negatively charged RNA. Another abundant amino acid group

observed in splicing factors is D and E which are negatively charged

residues and are easily located on the surface area of a protein to

interact with other splicing factors
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observed to be the most prominent among all under-rep-

resented residues.

To investigate the difference of AAC among four

functional groups, the percent composition of 20 amino

acids in each group is illustrated in Fig. 3. In snRNP group,

an over-represented amino acid group is nonpolar, aliphatic

residues including Isoleucine (I), L, Methionine (M) and

Valine (V). In the group of splicing factors (SFs), a posi-

tively charged residue (R) is over-represented and a polar

residue (S) is slightly enriched. A remarkable enrichment

of Glycine (G) is observed in SRF group. The small size

and flexibility of G residues is probably making it suitable

for the structural adjustments required during the splicing

regulation [67]. In NSP group, there is no over- or under-

representation of amino acids when comparing to other

three groups. Another view of AAPC may identify the

difference between NSP and other groups.

Previous studies have demonstrated that AAPC could be

a useful feature for yielding a better performance as com-

pared to AAC-based methods [52, 68, 69]. In order to

investigate this claim in terms of identifying SRPs, the

frequency differences of 400 amino acid pairs between 217

positive and 7,777 negative sequences are calculated, as

shown in Figure S2 (Additional File 1). In the 20 9 20

matrix, amino acid pairs marked in red indicates over-

representation in SRPs while amino acid pairs marked in

green indicates under-representation. This investigation

shows that DD pair is over-represented in SRPs as well as

D residues paired with K, E and R. It would be noticed that

Cysteine (C) residues paired with other residues are under-

represented in SRPs. In an attempt to make the comparison

of AAPC among snRNP, SF, SRF and NSP groups, fur-

thermore, the frequency differences of 400 amino acid

pairs of four functional groups are presented in Fig. 4. This

investigation shows that SF and SRF groups contain

remarkable enrichments of amino acid pairs. Many amino

acid pairs are slightly enriched in snRNP group. For NSP

group, there is no significant amino acid pair when com-

paring to other three groups.

In the prediction of SRPs as well as the functional roles,

the importance of amino acid pairs is further evaluated by

means of F-score measurement for identifying the signifi-

cant amino acid pairs in a specific data set. The positive

and negative frequencies of each amino acid pair are

computed by means of dividing the number of positive or

negative proteins containing the target amino acid pair by

the total number of positive or negative sequences,

respectively. Then, the statistical significance of each

amino acid pair is calculated by the hypergeometric test (p

value) [70]:

PðtÞ ¼
XT

t

CT
t � CK�T

k�t

CK
k

ð7Þ

where K is the background set represented by the number

of all proteins and T is the sample set represented by the

number of SRPs; k is the number of all proteins having the

target amino acid pair and t is the number of SRPs con-

taining the target amino acid pair. A smaller p value stands

for a greater statistical significance. In this work, the amino

acid pair containing a p value \0.05 is considered as a

statistically significant amino acid pair (SSAAP).

Investigation of functional domains in splicing-related

proteins

In order to analyze preference of functional domains in

SRPs, the experimentally verified domains of 217 SRPs in

Fig. 3 Percent composition of twenty amino acids in four functional groups of SRPs
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the training data is collected by referring to the ‘‘InterPro’’

field in UniProtKB. This resulted to a total of 284 func-

tional domains existing in SRPs. As shown in Table S1

(Additional File 1), the functional domains which are

present in more than 5 SRPs are selected as distinguishable

domains in the classification between SRPs and non-

splicing proteins. It is observed that the most enriched

functional domain is the ‘‘Nucleotide-bd a/b plait’’ with

InterPro ID: IPR012677 which exists in 48 SRPs. Another

enrichment of functional domain is the ‘‘RNA recognition

motif domain’’ with InterPro ID: IPR000504 which exists

in 46 SRPs. Additionally, the preference of InterPro

domains in four functional groups is also investigated. As

shown in Table S2 (Additional File 1), a total of 104, 99,

21 and 151 InterPro domains are detected in snRNPs, SFs,

SRFs and NSPs, respectively. Table 2 shows the top ten

enriched protein domains in snRNP, SF, SRF and NSP

groups. The most distinguishable functional domain in

snRNPs is ‘‘Like-Sm ribonucleoprotein (LSM) domain’’

with InterPro ID: IPR001163. The ‘‘Nucleotide-bd a/b

plait’’ and ‘‘RNA recognition motif domain’’ are the most

enriched domains in SF, SRF and NSP groups. Although

the most enriched domains are common among SR, SRF

and NSP groups, several domains in SRF group, such as

‘‘Protein kinase-like domain’’, ‘‘Protein kinase, ATP

binding site’’, ‘‘Protein kinase, catalytic domain’’ and

‘‘Zinc finger, CHHC-type’’, are distinguishable from SR

and NSP groups. In order to evaluate the predictive per-

formance of using the functional domains, the SVM

models are trained using a x-dimensional vector, where x is

the number of the distinguishable domains,represented by a

binary score: 1 if present and 0 otherwise.

Cross-validation performance in the prediction of SRPs

In the binary classification between 217 SRPs and 7,777

non-splicing proteins, the SVM models trained with four

basic features such as AAC, AAPC, PSSM and functional

Fig. 4 The frequency differences of 20 9 20 amino acid pairs

among snRNP, SF, SRF and NSP. The amino acid pair with red box

indicates an over-representation in a specific functional group

comparing to the other three groups; on the other hand, green box

means an under-representation

56 J Comput Aided Mol Des (2014) 28:49–60
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domain (FD) are evaluated the predictive performance

using five-fold cross-validation. Additionally, the SSAAPs

detected by F-score measurement are also utilized to

examine the improvement of prediction performance when

comparing to the SVM model trained with AAPC. As

presented in Table 3, among the basic features, the SVM

model trained with functional domain (FD model) yields

the best accuracy (88.9 %) but gives a worst sensitivity.

The SSAAPs model could provide a better prediction

accuracy than the SVM model using all of 400 amino acid

pairs. With the consideration of a balanced sensitivity and

specificity, the PSSM model outperforms other SVM

models. In the cross-validation evaluation of three AAC-

based combinations, the SVM model trained with the

hybrid combination of PSSM and FD yields the best per-

formance. In our further test, the SVM model learned from

Table 2 Top ten enriched InterPro protein domains in four functional

groups of SRPs

Ranking InterPro

ID

InterPro description Number

of SRPs

snRNP (54 SRPs)

1 IPR001163 Like-Sm ribonucleoprotein

(LSM) domain

15

2 IPR010920 Like-Sm ribonucleoprotein

(LSM)-related domain

15

3 IPR000504 RNA recognition motif domain 8

4 IPR012677 Nucleotide-binding, alpha–beta

plait

8

5 IPR015880 Zinc finger, C2H2-like 4

6 IPR003604 Zinc finger, U1-type 3

7 IPR000690 Zinc finger, C2H2-type matrin 3

8 IPR024888 U1 small nuclear

ribonucleoprotein A/U2 small

nuclear ribonucleoprotein B

2

9 IPR013085 Zinc finger, U1-C type 2

10 IPR015943 WD40/YVTN repeat-like-

containing domain

2

SF (63 SRPs)

1 IPR012677 Nucleotide-binding, alpha–beta

plait

23

2 IPR000504 RNA recognition motif domain 22

3 IPR014001 DEAD-like helicase 5

4 IPR001650 Helicase, C-terminal 5

5 IPR011545 DNA/RNA helicase, DEAD/

DEAH box type, N-terminal

5

6 IPR011046 WD40 repeat-like-containing

domain

5

7 IPR015943 WD40/YVTN repeat-like-

containing domain

5

8 IPR019775 WD40 repeat, conserved site 5

9 IPR001680 WD40 repeat 5

10 IPR017986 WD40-repeat-containing domain 5

SRF (15 SRPs)

1 IPR012677 Nucleotide-binding, alpha–beta

plait

8

2 IPR000504 RNA recognition motif domain 8

3 IPR011009 Protein kinase-like domain 3

4 IPR017441 Protein kinase, ATP binding site 3

5 IPR008271 Serine/threonine-protein kinase,

active site

3

6 IPR000719 Protein kinase, catalytic domain 3

7 IPR012996 Zinc finger, CHHC-type 2

8 IPR002290 Serine/threonine-/dual-specificity

protein kinase, catalytic domain

1

9 IPR011989 Armadillo-like helical 1

10 IPR016024 Armadillo-type fold 1

NSP (85 SRPs)

1 IPR000504 RNA recognition motif domain 18

2 IPR012677 Nucleotide-binding, alpha–beta

plait

18

Table 2 continued

Ranking InterPro

ID

InterPro description Number

of SRPs

3 IPR014001 DEAD-like helicase 7

4 IPR001650 Helicase, C-terminal 7

5 IPR011545 DNA/RNA helicase, DEAD/

DEAH box type, N-terminal

7

6 IPR011046 WD40 repeat-like-containing

domain

5

7 IPR015943 WD40/YVTN repeat-like-

containing domain

5

8 IPR001680 WD40 repeat 5

9 IPR017986 WD40-repeat-containing domain 5

10 IPR000467 D111/G-patch 5

Table 3 Cross-validation performance of the investigated features in

differentiating between 217 SRPs and 7,777 non-splicing proteins

Features Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

Amino acid composition

(AAC)

76.0 77.8 77.8

Amino acid pair

composition (AAPC)

79.2 78.0 78.1

Statistically significant

amino acid pairs

(SSAAPs)

78.3 78.6 78.6

Position-specific scoring

matrix (PSSM)

79.7 79.9 79.9

Functional domain (FD) 44.7 90.0 88.9

AAC ? FD 74.7 81.0 80.8

SSAAPs ? FD 79.2 81.7 81.6

PSSM ? FD 80.6 82.0 82.0

SSAAPs ? PSSM ? FD 80.6 82.6 82.5

The best performance is marked in bold
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the combination of SSAAPs, PSSM and FD could provide

a best and balanced performance with 80.6 % sensitivity,

82.6 % specificity, and 82.5 % accuracy.

Cross-validation performance in classifying

the functional roles of SRPs

In the multi-class classification among four functional

groups of 217 SRPs, the one-against-all SVM is adopted.

As given in Table 4, when distinguishing 54 snRNPs from

163 SRPs, the SVM model trained with SSAAPs and FD

achieves a best performance with 81.5 % sensitivity,

81.6 % specificity and 81.6 % accuracy. In the differenti-

ation between 63 SFs and other 154 SRPs, the SVM model

trained with SSAAPs and FD could provide a best per-

formance with 81.0 % sensitivity, 81.2 % specificity and

81.1 % accuracy. In the identification of 15 SRFs, the FD

model gives a best performance with 86.7 % sensitivity,

84.2 % specificity and 84.3 % accuracy, which is equal to

the preidction ability of SVM model learned from the

SSAAPs, PSSM and FD. In the classification of 85 NSPs,

the SVM model trained with SSAAPs and FD performs

best in comparison to other models. Interestinly, the

models trained with PSSM could not perform as better in

the prediction of SRPs, partly due to the limited number of

data set in the four functional groups. Overall, the SVM

models trained with the combination of SSAAPs and FD

could provide an average accuracy of over 80.0 % in the

classification among 54 snRNPs, 63 SFs, 15 SRFs and 85

NSPs.

Independent testing performance

After the cross-validation evaluation, the SVM models

containing best performance are further examined by

independent testing data. As shown in Table 5, the SVM

model trained with the combination of SSAAPs, PSSM and

FD could provide a sensitivity of 88.8 % in positive testing

data (80 potential SRPs) and a specificity of 84.3 % in

negative testing data (5,556 non-splicing proteins) in

human. In order to test the ability of the selected model to

identify SRPs from other mammalian species, a total of

142 experimentally verified SRPs in mouse and rat were

manually extracted from published literature and were used

to test the best model learned from human SRPs. Table 5

shows that the human model could yield a sensitivity of

Table 4 Cross-validation performance of the investigated features in categorizing 217 SRPs into four functional groups

Features snRNP (54 sequences) SF (63 sequences) SRF (15 sequences) NSP (85 sequences)

Sn

(%)

Sp

(%)

Acc

(%)

Sn

(%)

Sp

(%)

Acc

(%)

Sn

(%)

Sp

(%)

Acc

(%)

Sn

(%)

Sp

(%)

Acc

(%)

Amino acid composition (AAC) 70.4 69.9 70.0 69.8 67.5 68.2 73.3 73.3 73.3 61.2 60.6 60.8

Amino acid pair composition (AAPC) 70.4 71.20 70.9 68.3 66.2 66.8 80.0 74.3 74.7 62.3 62.1 62.2

Statistically significant amino acid pairs

(SSAAPs)

74.1 71.8 72.4 71.4 71.4 71.4 80.0 76.7 77.0 64.7 66.7 65.9

Position-specific scoring matrix (PSSM) 68.5 66.9 67.3 63.4 64.3 64.1 80.0 79.2 79.3 60.0 59.8 59.9

Functional domain (FD) 77.7 78.5 78.3 76.2 77.9 77.4 86.7 84.2 84.3 77.6 77.3 77.4

AAC ? FD 74.1 73.0 73.3 73.0 74.7 74.2 80.0 79.2 79.3 71.8 70.5 71.0

SSAAPs ? FD 81.5 81.6 81.6 81.0 81.2 81.1 86.7 80.7 81.1 78.8 79.5 79.3

PSSM ? FD 72.2 74.8 74.2 69.8 70.8 70.5 86.7 80.2 80.6 72.9 72.0 72.4

SSAAPs ? PSSM ? FD 79.6 79.1 79.3 79.3 80.5 80.2 86.7 84.2 84.3 78.8 78.8 78.8

The best performance is marked in bold

Table 5 The independent testing performance

Dataset Human

SRPs

Mammal

SRPs

(mouse

and rat)

Plant

SRPs

(A.

thaliana)

Human

RBPs

Number of

positive data

80 142 309 –

Number of

negative data

5,556 – – 584

True positive

(TP)

71 135 252 –

False negative

(FN)

9 7 57 –

True negative

(TN)

4,684 – – 501

False positive

(FP)

872 – – 83

Sensitivity (%) 88.8 95.0 81.6 –

Specificity (%) 84.3 – – 85.8

UsefulnessPOS

(%)

7.5 – – –

UsefulnessNEG

(%)

99.8 – – –

RBPs RNA-binding proteins
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95.0 % on mouse and rat SRPs. Additionally, the inde-

pendent testing shows that the selected model could cor-

rectly identify 81.6 % of 309 Arabidopsis thaliana SRPs.

In order to evaluate the ability of the selected model in

differentiating between SRPs and RBPs, the independent

testing demonstrates that the selected model could achieve

a specificity of 85.8 % in 584 human RBPs extracted from

UniProtKB. Moreover, a total of 110 mouse SRPs with

their functional roles, which are non-homologous to human

SRPs, are used to examine the selected models in classi-

fying the functional roles of human SRPs. As given in

Table 6, the selected models with best combination of

hybrid features could yield the accuracies of 74.5, 71.8,

81.7 and 73.6 % in classifying 8 snRNPs, 57 SFs, 15 SRFs

and 30 NSPs, respectively.

Conclusions

In this work, the investigation of AAC reveals that there is

a remarkable enrichment of amino acids in SRPs, as well as

in snRNP, SF and SRF groups. The investigation of AAPC

also reveals that there are significant amino acid pairs in

SRPs and remarkable frequency differences of amino acid

pairs among four functional groups. The preference of

functional domains in SRPs is also investigated and uti-

lized to identify the SRPs with their functional roles. The

evaluations of cross-validation and independent testing

show that the SVM model trained with the information of

SSAAPs, PSSM and FD could provide a promising per-

formance. Although the feature of PSSM is not effecitive in

classifying the functional roles of SRPs, the model trained

with only FD could provide a favorable performance.

Overall, the SVM models trained with the combination of

SSAAPs and FD could provide an effective classification

among snRNPs, SFs, SRFs and NSPs. Moreover, the

independent testing indicates that the proposed method

could identify the SRPs in mammals and plant. Recently,

various computational methods have been proposed for the

identification of RBPs. The independent testing also dem-

onstrates that the selected model could distinguish the

SRPs from RBPs.

The importance of SRPs have been exhibited in pre-

mRNA splicing as well as the transcript diversity of AS in

several diseases. However, in vivo or in vitro identification

of SRPs are subject to technical limitations. Thus, the

selected models with best performance could be adopted to

implement a web-based tool for identifying the SRPs with

their functional roles. In eukaryotic cells SRPs work together

to carry out their functional roles in RNA splicing mecha-

nism by protein–protein interactions (PPIs) and protein-

RNA interactions. With an attempt to study the protein

interaction network among SRPs, the information of

experimentally verified protein–protein interactions is inte-

grated from five public databases, as shown in Table S3

(Additional File 1). Table S4 (Additional File 1) shows that a

high percentage of SRPs are involved in protein–protein

interactions among themselves. This preliminary analysis

indicates that a protein participating in many PPIs with SRPs

might be a potential SRP or plays an important role in the

regulation of RNA splicing. Thus, the consideration of PPIs

between SRPs and other proteins could be a practical means

to identifying novel SRPs in prospective study.
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