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F-actin plays a crucial role in composing the three-dimensional cytoskeleton and F-actin depolymer-
ization alters fate choice of mesenchymal stem/stromal cells (MSCs). Here, we investigated differential
gene expression and subsequent physiological changes in response to F-actin perturbation by latrunculin
B in MSCs. Nineteen genes were down-regulated and 27 genes were up-regulated in the first 15 min after
F-actin depolymerization. Functional enrichment analysis revealed that five genes involved in keratin
(KRT) intermediate filaments clustering in the chromosome 17q21.2 region, i.e., KRT14, KRT19, KRT34,
KRT-associated protein (KRTAP) 1-5, and KRTAP2-3, were strongly up-regulated. Transcription factor
prediction identified NKX2.5 as the potential transcription factor to control KRT19, KRT34, KRTAP1-5, and
KRTAP2-3; and indeed, the protein level of NKX2.5 was markedly increased in the nuclear fraction within
15 min of F-actin depolymerization. The peak of keratin intermediate filament formation was 1 h after
actin perturbation, and the morphological changes showed by decrease in the ratio of long-axis to short-
axis diameter in MSCs was observed after 4 h. Together, F-actin depolymerization rapidly triggers keratin
intermediate filament formation by turning on Kkeratin-related genes on chromosome 17q21.2. Such
findings offer new insight in lineage commitment of MSCs and further scaffold design in MSC-based
tissue engineering.
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1. Introduction assembly and dynamic structures of cytoskeletal filaments
contribute to the control of cell migration, proliferation, and shape

Actin filaments, microtubules and intermediate filaments are stability [2]. The organization of the F-actin network maintains the

the three major types of protein filaments that form the cytoskel-
eton in mammalian cells. Formation of cytoskeletal filaments is
dynamic in eukaryotic cells, and the cytoskeletal arrangement
needs to be reorganized to attain different physical properties [1]
Polymerized actin filaments (F-actins) are composed of two-
stranded helical polymers of actin monomers (G-actin). The self-
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3-dimensional cell structure that delivers signals from the extra-
cellular matrix (ECM) via integrin-actin connections [3] and signals
from the cell—cell junctions via cadherin-actin complexes [4]. F-
actins are sensitive to mechanical forces [5], and patterning of the
actin cytoskeleton is crucial for morphological events during
development such as tissue orientation, vasculogenesis, and stem
cell differentiation [6].

Engineering of the biomaterials in the scaffold to guide the fate
determination of stem cells through cell-matrix interaction by
regulating integrin signals and actin cytoskeleton organization has
been an attractive approach to offer proper cues for the cells seeded
into the scaffold constructs [7,8]. Actin cytoskeleton re-
organization can be achieved by F-actin depolymerization first
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Table 1
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Primers for real-time reverse transcription-polymerase chain reaction.
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Gene Primer sequence Produce (bp)
Runx2 F: 5'-GTGCCTAGGCGCATTTCA-3’ R: 5'-GCTCTTCTTACTGAGAGTGGAAGG-3' 78
C/EBP F: 5'-CGCTTACCTCGGCTACCA-3’ R: 5'-ACGAGGAGGACGTGGAGAG-3’ 65
PPARr F: 5'-TCCATGCTGTTATGGGTGAA-3’ R: 5'-TGTCAACCATGGTCATTTC-3' 113
MMP2 F: 5'-TGAAGCACAGCAGGTCTCAG-3’ R: 5'-GTGTTCAAACCAGGCACCTC-3’ 71
MMP9 F: 5'-TGTACCGCTATGGTTACACTCG-3’ R: 5'-GCCCCAGAGATTTCGACTC-3’ 60
ERK1 F: 5'-CCCTAGCCCAGACAGACATC-3' R: 5'-GCACAGTGTCCATTTTCTAACAGT-3’ 94
ERK2 F: 5'-CAAAGAACTAATTTTTGAAGAGACTGC-3' R: 5/-TCCTCTGAGCCCTTGTCCT-3’ 81
RhoA F: 5'-CAGAAAAGTGGACCCCAGAA-3' R: 5-TGCCTTCTTCAGGTTTCACC-3’ 147
ROCK1 F: 5'-CCCTCGAACGCTTTCTACA-3' R: 5'-CACAGGGCACTCAGTCACAT-3’ 104
ROCK2 F: 5'-TCAGTGGCATTGGGATAACAT-3’ R: 5'-TGCTGTCTATGTCACTGCTGAG-3’ 74
KRT14 F: 5'-TGGATCGCAGTCATCCAGAG-3’ R: 5'-ATCGTGCACATCCATGACCTT-3’ 73
KRT19 F: 5'-CAGCTTCTGAGACCAGGGTT-3’ R: 5'-GACTGGCGATAGCTGTAGGA-3' 70
KRT34 F: 5'-TTAACCGCAGGGAAGTGGAGC-3’ R: 5'-GCTGGATACCACCTGCTTGTT-3’ 71
KRTAP1-5 F: 5'-CCACCTCTGGACCACTAACAA-3’ R: 5'-GTCCCCAGTGAAGGGTCAAG-3' 126
KRTAP2-3 F: 5'-AGCTGATCCTCAAGCACGAA-3’ R: 5'-GAGAGGGCCAGGATTAGCTG-3' 80
18S rRNA F:5'-ATGGCCGTTCTTAGTTGGTG-3’ R:5'-AACGCCACTTGTCCCTCTAA-3’ 132

Runx2, runt-related transcription factor 2; C/EBPB, CCAAT-enhancer-binding protein beta; PPARY, peroxisome proliferator-activated receptor gamma; MMPs, matrix met-
alloproteinases; ERKs, extracellular signal-regulated kinases; RhoA, Ras homolog gene family, member A; ROCKs, Rho-associated, coiled-coil containing protein kinases; KRTs,
keratins; KRTAPs, keratin-associated proteins.

and subsequent re-arrangement. Latrunculin B (LAB) is a G-actin
sequestering molecule, which is membrane permeable and binds to
monomor G-actin to prevent F-actin assembly [9,10]. LAB causes
the concentration-dependent disruption of the F-actin, and enables
the investigation of the effects of F-actin depolymerization.
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However, F-actin depletion-induced cell death may be a conse-

quence of high concentration treatment of LAB [11].

Mesenchymal stem/stromal cells (MSCs) are fibroblast-like
adherent cells that possess multiple differentiation capacities
[12,13]. It is well known that MSCs undergo spontaneous
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Fig. 1. Depolymerization of F-actin by latrunculin B (LAB). (A) 24-h treatment with LAB at up to 100 nM did not affect the viability of mesenchymal stem cells (MSCs), and 30 nM of
LAB and below did not alter MSC viability in the first 7 days. (*, #, $ p < 0.05, n = 3) (B) LAB (30 nM) altered the shape of MSCs and the arrangement of F-actin in fibroblast-like MSCs.
(C) Total amount of F-actin in MSCs was significantly decreased after 1 h of LAB (30 nM) treatment. (*p < 0.05, n = 6) (D) LAB (30 nM for 1 h) significantly disrupted F-actin in both

the nucleus and cytoplasm.
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differentiation in response to physical cues in the environment, such
as matrix stiffness [14], the shape/size of a cell chamber, and me-
chanical forces [ 15]. The actin cytoskeleton in MSCs is composed of a
large number of thin, parallel microfilament bundles that extend
across the entire cytoplasm [16,17], and F-actin depolymerization is
known to alter the tri-linage differentiation ability of MSCs [17—21].
We previously report that a decrease in F-actin formation in MSCs by
thymosin beta-4, a F-actin sequestering peptide, results in a delay in
osteogenic differentiation. Under adipogenic induction, however, a
decrease in F-actin formation in MSCs accelerated maturation of
adipocytic differentiation. F-actin depolymerization-induced alter-
ation of differentiation is independent of differentiation regulation
initiated by a fate-determining transcriptional factors (TFs) [18].

Although alteration of the differentiation potential is a conse-
quence of actin cytoskeletal perturbations in MSCs, the most sen-
sitive genes and how MSCs immediately react to the event of F-
actin depolymerization are still unclear. In addition, interactions
among different types of cytoskeletal responses to actin depoly-
merization in MSCs have not been reported. The aim of this study is
to investigate the initial responses of MSCs upon actin cytoskeleton
perturbation. We hypothesize that actin depolymerization, a
physical stress for a cell, may rapidly regulate gene expressions, and
which leads to the morphological change and alteration of differ-
entiation potential in MSCs. Latrunculin B (LAB) is used to trigger
actin depolymerization in this study.
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2. Materials and methods
2.1. Isolation and culture of MSCs

MSCs from human orbital fat tissues were isolated and culture expanded as
described previously [22]. All the samples were used with the informed consent of
subjects, and the approval from the Institutional Review Board of TMU-Wan Fang
Hospital has been obtained prior to the commencement of the study. Adipose tissues
removed from the orbital cavity were fragmented, digested, and filtered. After the
removal of fluid by centrifugation, cells from the resulting pellet were plated in non-
coated tissue culture flasks (BD Biosciences, Franklin Lakes, NJ, USA) and maintained
in Mesen Pro Medium (Invitrogen, Carlsbad, CA, USA).

2.2. Induction of actin depolymerization by LAB

Cells were seeded in 96-well tissue culture plates at a concentration of 1 x 10%
cells/100 pl/well. Subsequently, the cells were treated with serial concentrations of
LAB. After 1, 4, or 7 days of incubation, cell viability of each cell line was determined
by an MTT colorimetric assay (Sigma—Aldrich, St. Louis, MO, USA). Cell viabilities
were determined as a percentage of the untreated control.

Cells with serial concentrations of LAB treatment were stained by TRITC-labeled
phalloidin (1: 100, Sigma—Aldrich), and G-actin was quantified by a Western blot
analysis. The concentration of LAB (30 nm) that significantly decreased F-actin for-
mation without cytotoxicity was determined for use in the induction of actin
depolymerization.

2.3. Image quantification of F-actin and cell shape

Total amount of f-actin in a confocal image were measured using HSB approach
of Image] [23] with the brightness threshold set to 100, and the percentage of
coverage area was calculated for comparison of the changes of f-actin after LAB.
More than six confocal images in each condition were measured. The long-axis and
short-axis diameter of cells were manually marked, and the length was measured by
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Fig. 2. Responses of fate-determining genes and actin-associated genes to actin depolymerization in mesenchymal stem cells (MSCs). During the first hour of latrunculin B (LAB)
treatment, gene expression of runt-related transcription factor 2 (Runx2) significantly decreased (A), while that CCAAT-enhancer-binding protein beta (C/EBPf) had increased at the
end of 1 h (B) rather than peroxisome proliferator-activated receptor gamma (PPARY) (C). The Ras homolog gene family member A (RhoA) (D), Rho-associated, coiled-coil containing
protein kinase (ROCK)1 (E), and ROCK2 (F) decreased 30 min after LAB treatment. Matrix metalloproteinase (MMP)-2 (D) and MMP-9 (E) were not altered by LAB in the first hour.
Extracellular signal-regulated kinase (ERK)1 (F), but not ERK2 (G), was transiently decreased by LAB at 30 min (*p < 0.05, n = 3).
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Fig. 4. Analysis of chromosome location of differentially expressed genes (DEGs). (A) A chromosome distribution analysis revealed that seven DEGs are on chromosome 17, six on
chromosome 1, and four on chromosome 9. (B) Chromosome locations of DEGs showed that 35 genes are located on the q arm and 11 on the p arm. (C) The top five DEGs
upregulated by LAB, i.e., keratin (KRT)14, KRT19, KRT34, keratin-associated protein (KRTAP)1-5, and KRTAP2-3, were clustered in an area of chromosome 17q21.2.
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Image]. The ratio of long- to short-axis diameter in a cell was calculated for com-
parison of the changes in shapes of MSCs after LAB treatment. Twenty cells and
above in each condition were marked in this experiment.

2.4. Microarray data processing

Gene profiling was performed in MSCs with or without LAB treatment for 15 min
using an Affymetrix U133A 2.0 array (Affymetrix, Santa Clara, CA, USA). Three in-
dependent experiments were performed for the microarray analysis. Gene expres-
sions in MSCs were analyzed over 20,000 annotated Homo sapiens gene probes.
Image acquisition and probe quantification were performed using Affymetrix Gen-
eChip Operating Software. Microarray quality control was performed using R
package affyQCReport [24]. The gcrma function of R package affy was applied to
normalize CEL files using the RMA method [25].

2.5. Identification of actin depolymerization-sensitive genes and functional analysis

Actin depolymerization-sensitive genes were defined as genes with more than
2-fold differential expression in all three paired samples between LAB treated and
untreated control. All of these were considered to be differentially expressed genes
(DEGs). A gene set enrichment analysis (GSEA) was performed using the Database
for Annotation, Visualization and Integrated Discovery (DAVID) [26] for the Gene
Ontology (GO) analysis, pathway analysis, transcription factor analysis, etc.

2.6. Quantitative real-time reverse-transcription polymerase chain reaction (RT-
PCR)

The putative target genes after the functional enrichment analysis were confirmed
by a real-time RT-PCR. Total RNAs were reverse-transcribed into complementary (c)
DNAs using an Omniscript RT kit (Qiagen, Hilden, Germany). A real-time RT-PCR was
performed using an SYBR supermix kit (Bio-Rad, Hercules, CA, USA). Samples were
subjected to 40 cycles of 95 °C for 15 s, followed by 60 °C for 30 s and 72 °C for 30 s. An
18S rRNA primer was included in every plate as an internal loading control. The
messenger (m)RNA level of each sample for each gene was normalized against that of
18S rRNA mRNA. The relative mRNA level was determined as 2[(Ct/185 rRNA-Ct/gene of in-
terest)] primers for the real-time RT-PCR in this study are listed in Table 1.

2.7. Western blot analysis

Equivalent amounts of cell lysate were resolved by 10% sodium dodecylsulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene
difluoride (PVDF) membranes. After blocking, the membranes were incubated with a
rabbit polyclonal antibody against G-actin (1: 500, Cytoskeleton, Denver, CO, USA)and a
mouse monoclonal antibody against a-tubulin (1: 10% Sigma—Aldrich), NK2 homeobox
5 (NKX2.5) (1: 100, Santa Cruz, Santa Cruz, CA, USA), or activator protein 2 gamma
(AP2y) (1: 100, Abcam, Cambridge, UK) for 1 h. Membranes were then respectively
treated with a goat anti-rabbit peroxidase-conjugated antibody (1:5000, Santa Cruz)
and goat anti-mouse peroxidase-conjugated antibody (1:5000, Santa Cruz), and the
immunoreactive proteins were detected using an enhanced chemiluminescence kit
(Pierce, Rockford, IL, USA) according to the manufacturer’s instructions.

2.8. Immunofluorescence staining

Cells were seeded on cover slips at a density of 3 x 10° cells per well in 6-well
plates. The cells were fixed, and nonspecific antibody binding sites were blocked by
incubating with 1% bovine serum albumin (BSA) in phosphate-buffered saline (PBS)
at 37 °C for 1 h. Further, cells were incubated for 1 h at 37 °C with TRITC-labeled
phalloidin (1: 100, Sigma—Aldrich) and a mouse monoclonal antibody against hu-
man pan-keratin (1: 25, Abcam), followed by a 1:100 dilution of a DyLight 488-
conjugated secondary antibody. Then, the cover slips were incubated with DAPI
for nuclear staining. Images were taken using a Zeiss LSM 410 confocal microscope
(Carl Zeiss, Thornwood, NY, USA).

2.9. Statistical analysis

Statistical analyses were performed using the Statistical Package for Social Sci-
ence software (vers. 16, SPSS, Chicago, IL, USA). Differences in viability without and
with LAB treatment at each concentration, gene expressions, total amount of F-actin
or the ratio of long- to short-axis diameter in a cell without and with LAB treatment
at each time point were performed by ANOVA tests; the F values showing statistical
significance (p < 0.05) were further analyzed with post-hoc tests; and Student’s ¢t-
test was used for post-hoc test of different time points after LAB treatment as
compared to the control samples.

3. Results
3.1. F-Actin and cell shape in MSCs after LAB treatment

The concentration of LAB in this study was determined to be
that which triggered actin depolymerization in MSCs without

affecting their viability [27]. Since it is known that the doubling
time of MSCs is 2—3 days [22,28], the relative viabilities of MSCs
treated with various concentrations of LAB were measured at 1,
4 and 7 days. MSC viability was significantly reduced by LAB at
>500 nM after 1 day and at >100 nM after 4 and 7 days, but it
was not altered by <30 nM of LAB up to 7 days (Fig. 1A). Based on
these findings, 30 nM of LAB was chosen for subsequent experi-
ments. Under confocal microscopic observation and quantifica-
tion F-actin signals in confocal images, F-actin consisted of long
fibers with a multidirectional distribution in MSCs in undiffer-
entiated medium (Fig. 1B, CTL). Treatment with 30 nM of LAB for
1 h and longer markedly decreased F-actin signals in MSCs
(Fig. 1C), and the morphological change was not significant at 1 h
(Fig. 1B, LAB 1 h). After 8 and 24 h of LAB treatment, change of cell
shape was obviously (Fig. 1B, LAB 8 h and 24 h). The Western blot
analysis demonstrated that 30 nM of LAB for 1 h significantly
disrupted F-actin in MSCs in both the nucleus and the cytoplasm
(Fig. 1D).

3.2. Actin cytoskeleton- and fate-determined gene expressions

In our previous work, we demonstrated that F-actin depoly-
merization inhibited osteogenic differentiation and facilitated
adipogenic differentiation of MSCs during the first week of

Table 2

List of up-regulated genes after LAB treatment for 15 min.
Gene Log,FoldChange Chromosome Location
KRTAP1-5 4.301 17, q21.2
KRT14 3.049 17, q21.2
KRTAP2-3 2.979 17, q21.2
KRT34 2912 17, q21.2
KRT19 2.838 17, q21.2
HINT3 2.67 6, q22.32
MMP1 2.344 11, q22.2
EREG 2.084 4, ql3.3
RAB27B 2.063 18, q21.2
GPX7 2.016 1, p32.3
ALDH1A3 1.833 15, q26.3
HIST1H1C 1.699 6, p22.2
HECW2 1.566 2, q32.3—q32.1
Cl11orf87 1.547 11, q22.3
HENMT1 1.542 1, p13.3
FCRLB 1.534 1, q23.3
RHOU 1.484 1, q42.13
NOTCH3 1.422 19, p13.12
PSG5 1.391 19, q13.31
MAST4 1377 5, q12.3
FAM43A 1.375 3, q29
OSR1 1.356 2, p24.1
FAM149A 1.311 4, q35.1
MRAP2 1.181 6, ql4.2
PTGES 1.143 9, q34.11
ARLAC 1.124 2, q37.1
OCIAD2 1.097 4, pl1

The bold values are the top 5 up-regulated genes by LAB.

KRTAP1-5, keratin associated protein 1-5; KRT14, keratin 14; KRTAP2-3, keratin
associated protein 2-3; KRT34, keratin 34; KRT19, keratin 19; HINT3, histidine triad
nucleotide binding protein 3; MMP1, matrix metalloproteinase 1; EREG, epiregulin;
RAB27B, Rab-27B; GPX7, glutathione peroxidase 7; ALDH1A3, aldehyde dehydro-
genase 1 family, member A3; HIST1H1C, histone cluster 1, H1c; HECW2, HECT, C2
and WW domain containing E3 ubiquitin protein ligase 2; C110rf87, chromosome
11 open reading frame 87; HENMT1, HEN1 methyltransferase homolog 1; FCRLB, Fc
receptor-like B; RHOU, ras homolog family member U; NOTCH3, Neurogenic locus
notch homolog protein 3; PSG5, Pregnancy-specific beta-1-glycoprotein 5; MAST4,
Microtubule Associated Serine/Threonine Kinase Family Member 4; FAM43A, family
with sequence similarity 43, member A; OSR1, oxidative-stress responsive 1;
FAM149A, family with sequence similarity 149, member A; MRAP2, melanocortin 2
receptor accessory protein 2; PTGES, prostaglandin E synthase; ARL4C, ADP-
ribosylation factor-like 4C; OCIAD2, OCIA domain containing 2.
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induction [18]. In the current study, we found that expression of
the runt-related transcription factor 2 (Runx2) gene, a fate-
determining TF for osteogenic differentiation, was inhibited by
LAB in the first hour (Fig. 2A). Two TFs of adipogenic differenti-
ation, i.e.,, CCAAT-enhancer-binding protein beta (C/EBPB) and
peroxisome proliferator-activated receptor gamma (PPARY) were
also measured. C/EBPf responded to LAB within 1 h (Fig. 2B),
while PPARy was not altered in the first hour of LAB treatment
(Fig. 2C).

The Ras homolog gene family member A (RhoA) and its effector
proteins of Rho-associated coiled-coil containing protein kinases
(ROCKs) regulate the actin cytoskeleton through the formation of
stress fibers [29]. In addition, matrix metalloproteinases (MMPs),
especially MMP-2 and -9 [30,31], and extracellular signal-regulated
kinases (ERKs) [32] are reactive to actin cytoskeleton reorganiza-
tion and morphological changes. We showed that gene expressions
of RhoA (Fig. 2D) and ROCK1 (Fig. 2E) in MSCs were inhibited by
LAB at 1 h, while ROCK2 (Fig. 2F) showed only a transient response
to LAB at 30 min. Gene expressions of MMP-2 (Fig. 2G), MMP-9

3939

(Fig. 2H), and ERK2 (Fig. 2]) were not altered, while ERK1 (Fig. 21I)
was transiently inhibited by LAB at 30 min.

3.3. Differentially expressed genes after F-actin depolymerization

To determine which effector genes immediately respond to F-
actin depolymerization, a microarray analysis of MSCs before and
15 min after LAB treatment was performed. The 2-fold up- or
down-regulated genes after LAB treatment in all three paired
samples were defined as DEGs, which represent effector genes
that responded to F-actin depolymerization. Among the 46 DEGs
identified, the heat map graph showed that 27 of them were up-
regulated, and 19 were down-regulated (Fig. 3A). Results of the
gene set enrichment analysis revealed that most genes sensitive
to LAB-induced F-actin depolymerization were involved in the
organization of intermediate filaments, especially keratin fila-
ments. Several genes involved with the epidermis, ectoderm, and
epithelium were also rapidly up-regulated by LAB within 15 min
(Fig. 3B).
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Fig. 5. Association of upregulation of genes on chromosome 17q21.2 and an increase in nuclear NKX2.5. Genes of (A) keratin (KRT)14, (B) KRT19, (C) KRT34, (D) keratin-associated
protein (KRTAP)1-5, and (E) KRTAP2-3 were sensitive and transiently responsive to F-actin depolymerization. (*p < 0.05, n = 3) (F) NK2 homeobox 5 (NKX2.5), a potential
transcription factor of KRT19, KRT34, KRTAP1-5, and KRTAP2-3, significantly increased in the nuclear fraction in the first 15 min. (G) Activator protein 2 gamma (AP2y), a potential
transcription factor of KRT14, KRT19, and KRT34, showed no response to latrunculin B (LAB) treatment within the first hour.
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3.4. Keratin-associated DEGs cluster on chromosome 17q21.2

In addition to functional grouping by the gene set enrichment
analysis, we analyzed the chromosome distribution of DEGs.
Although 46 DEGs were distributed on 20 different chromosomes,
chromosomes 17 and 1 were the two most sensitive chromosomes
to actin perturbation (Fig. 4A). Moreover, we found that most of the
DEGs were located on the q arm of the chromosomes (Fig. 4B).
Notably, six up-regulated DEGs were located on 17q21.2 (Fisher
extract p value = 1.1E-9), and five of these six were keratin-
associated genes: keratin-associated protein 1-5 (KRTAP1-5), ker-
atin 14 (KRT14), KRTAP2-3, KRT34, and KRT19. Using the UCSC
genome browser, we identified a region of keratin-associated gene
clusters from ch17:38,900,000 to 39,800,800 (Fig. 4C). Remarkably,
the above-described 5 keratin-associated genes located on 17q21.2
were also the top five DEGs up-regulated by LAB (Table 2).

To confirm that the keratin-associated genes on chromosome
17q21.2 were most sensitive and most rapidly responsive to F-actin
depolymerization, gene expression levels of these five keratin-
associated genes in MSCs before and after LAB treatment were
measured by real-time RT-PCR. The time-dependent gene expres-
sions of KRT14 (Fig. 5A), KRT19 (Fig. 5B), KRT34 (Fig. 5C), KRTAP1-5
(Fig. 5D) and KRTAP2-3 (Fig. 5E) exhibited a similar pattern after
LAB treatment. All five of these keratin-associated genes located on
17q21.2 were highly up-regulated in the first 15 min (Fig. 5A—E).

3.5. TFs associated with up-regulation of keratin genes on 17q21.2

To elucidate the key regulator that modulates the DEGs trig-
gered by F-actin depolymerization, TF predictions were performed
using the DAVID database. NKX2.5, AP2y, c-REL, GATAG6, and
interferon regulatory factor 1 (IRF1) were potentially TFs by tar-
geting the up-regulated DEGs (Table 3). The power and multiple of
change of differential expression regulated by these TFs showed
that NKX2.5 regulated 19 of 26 (70.4%) up-regulated DEGs, while
IRF1 regulated 11 of 26 (40.7%). CREL, GATAG, and AP2y regulated 7,
7, and 5 up-regulated DEGs, respectively (Table 4). None of the
predicted TFs showed a significant alteration of gene expression
according to the microarray analysis (Table 4, Log2 multiples of
change of <1). Although NKX2.5 and IRF1 regulated most of the up-
regulated DEGs, NKX2.5 potentially turned on four keratin-
associated genes on 17q21.2, while IRF1 showed no effect on
keratin-associated genes on 17q21.2 (Table 3). In addition, AP2y
only regulated five of the up-regulated DEGs, among which three
were keratin-associated genes on 17q21.2 (Table 3). According to
the above findings, NKX2.5 and AP2y probably serve as potential
TFs for keratin-associated genes on 17q21.2.

Western blot analysis was performed to confirm the key TFs
regulating the targeted Kkeratin-associated genes on 17q21.2. We
demonstrated that NKX2.5, the potential TF for KRT19, KRT34,
KRTAP1-5, and KRTAP2-3, was mainly in the nuclear fraction and
increased in the nuclear fraction in the first 15 min of LAB treat-
ment (Fig. 5F). AP2y, the potential TF for KRT14, KRT19, and KRT34,
was dominant in the cytoplasmic fraction and was not affected by
LAB in the first hour (Fig. 5G).

3.6. Keratin intermediate filament formation after F-actin
depolymerization

Keratins are intermediate filament-forming proteins that are
abundant in epithelial tissues [33]. According to our data in Figs. 3—
5 and Tables 2—4, transcriptions of genes involved in keratin-
associated intermediate filaments on 17q21.2 were activated by F-
actin depolymerization within 15 min. We further tested whether
keratin intermediate filament formation followed F-actin

Table 3
Potential transcription factors of up-regulated genes after LAB treatment.

Transcription Target
genes

Transcription Target
factor genes

Transcription Target

factor factor genes

MMP1

ALDH1A3
NOTCH3 HECW?2

MMP1 MAST4 NOTCH3

EREG MAST4

RAB27B ARLAC

ALDH1A3 IRF1 ARLAC

HECW2 HECW2

Cliorf87 OCIAD2  GATA6 krT19 |

FCRLB RAB27B HECW?2

RHOU ALDH1A3 RAB27B

NOTCH3 HENMT1 EREG

MAST4 Cl1orf87 MMP1

OSR1 EREG MRAP2

FAM149A FAM149A MAST4

PTGES HISTIH1C

ARLAC MAST4

OCIAD2

The bold values are the top 5 up-regulated genes by LAB in MSCs.

NKX2.5, NK2 homeobox 5; AP2y, activator protein 2 gamma; IRF1, interferon reg-
ulatory factor 1.

The shaded values are to distinguish the top 5 up-regulated genes from potential
transcription factors.

depolymerization. Under confocal microscope, LAB gradually
reduced F-actin signals by decreasing the thickness and length of
actin filaments in MSCs in the first 4 h (Fig. 6A—D, red signals).
Different from F-actin, keratin filament formation increased and
peaked at 1 h after LAB treatment (Fig. 6A—C, green signals).
Interestingly, keratin signals had decreased at 4 h of LAB treatment
in the cytosol except for the perinuclear region (Fig. 6D, green
signals). Quantification of confocal images revealed that the F value
of cell shape change after LAB treatment is 2.56 (p = 0.032). The
ratio of long- to short-axis diameter in MSCs was significantly
decreased by LAB treatment at 4 h (p = 0.004), 8 h (p = 0.013), and
24 h (p = 0.017) (Fig. 6E—G), showing that changes of cell shape in
MSCs was significant after treatment with LAB for 4 h.

4. Discussion

In this study, we explore the crosstalk between actin filaments
and intermediate filaments in MSCs triggered by F-actin depoly-
merization, and identify NKX2.5 as a potential TF in the regulation
of keratin-associated genes on chromosome 17g21.2. MSCs are
fibroblast-like cells maintaining their 3-dimensional structure
mainly through F-actin under normal conditions (Figs. 1B, 6A and
7A). LAB-induced rapid F-actin depolymerization increases the
risk of cytoskeleton collapse and also triggers the transcriptional
regulation on effector genes (Figs. 2—4, Table 2), especially the up-
regulation of KRTAP1-5, KRTAP2-3, KRT14, KRT19, and KRT34 on

Table 4
Power and fold change of differential expression of NKX2.5, IRF1, c-REL, GATA6 and
AP2y.

Transcript factor Count of Percentage (%) P-value Log2Fold
target genes Change

NKX2.5 19 70.4 8.7E-2 0

IRF1 11 40.7 3.0E-2 0.73

c-REL 7 259 1.2E-1 —-0.01

GATA6 7 259 1.3E-1 -0.24

AP2y 5 18.5 1.8E-1 0

NKX2.5, NK2 homeobox 5; AP2y, activator protein 2 gamma; IRF1, interferon reg-
ulatory factor 1.
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Fig. 6. Formation of keratin filaments as a consequence of F-actin depolymerization. (A—D) During the first 4 h of latrunculin B (LAB) treatment, the thickness and length of
intracellular actin-filaments were progressively disrupted (red signals). (A) The signal of keratin intermediate filaments was much lower than actin filaments in mesenchymal stem
cells (MSCs) under normal conditions. (B) Keratin intermediate filaments were found at the cell periphery of MSCs after treatment with LAB for 15 min. (C) One hour after LAB
treatment, the periphery and perinuclear area were filled with keratin intermediate filaments. (D) Strong perinuclear keratin signals were observed in MSCs 4 h after LAB treatment.
(E) The ratio of long-axis/short-axis diameter in MSCs was significantly decreased by LAB after 4 h (*p < 0.05, n = 20). (F, G) Long axis in a cell was marked with white line, while
short axis was lined by green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

17921.2 through NKX2.5 (Figs. 5 and 7B, Tables 3 and 4). Thus,
keratin intermediate filament formation replaces F-actin to
compensate for the collapse of actin cytoskeleton (Fig. 6B—D, 7C).

In the cytoskeleton, F-actins act as the tension sensor [5], while
intermediate filaments play a role as a mechanical stress absorber
[34]. Intermediate filaments are composed of cell type-specific
filament-forming proteins such as lamins in the nucleus, vimen-
tin in fibroblasts and many cells of mesenchymal origin, desmin in
muscle cells, keratins in epithelial cells and their derivations, and
neurofilaments in neurons [35,36]. Intermediate filaments and
their associated proteins have been found to be the major compo-
nents in mediating cytoskeletal crosstalk [37]. In this study, LAB
disrupted the actin cytoskeleton by depolymerizing F-actin to
perturb the 3-dimensional structure of MSCs. Our results showed
that keratins, rather than other intermediate filament-forming
proteins, quickly responded to F-actin depolymerization in the
first 15 min (Figs. 3 and 5, Table 2) and formed intermediate fila-
ments within 1 h (Fig. 6A—D) in MSCs to prevent cell collapse.
Physiologically, intermediate filament protein polymerization
starts from the peripheral cell membrane to the nuclear membrane
[1,38], and a time lag from the genetic expression to protein

production is essential. This may be the explanation why transient
keratin intermediate filament formation was observed from 1to4 h
after LAB treatment (Fig. 6C and D), and keratin signals at peri-
nuclear region were predominant at 4-h of treatment (Fig. 6D).
With such interactions between actin filaments and intermediate
filaments, MSCs maintained their viability (Fig. 1A). However, as a
consequence, the morphological change occurred (Figs. 1B and 6E-
G) and the fate alteration of MSCs may also be related.

In total, 54 keratins have been identified in two families, i.e.,
type 1 for acidic and type II for neutral and basic keratins [33].
Keratin intermediate filaments, which are abundant in epithelia
such as that of the skin, hair, and liver, form cytoskeletal networks
and maintain cell function [34,39,40]. According to our findings,
KRTAP1-5, KRTAP2-3, KRT14, KRT19, and KRT34 are the most
sensitive genes to F-actin depolymerization in MSCs (Figs. 3—5,
Table 2). In the epidermis, KRT14 is the major keratin in basal cells
of stratified epithelium and is essential for a stable and normal
epidermis [33,40]. KRT19, also known as cytokeratin 19, is an
epithelial stem/progenitor cell marker found in limbal progenitor
cells [41], hair follicle stem cells [42], and bipotential hepatic pro-
genitor cells [43]. KRT34 is a type | hair keratin [44], and KRTAPs are
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Fig. 7. Schema of this study (A) Under normal conditions, actin filaments were dominant cytoskeleton supporting the mesenchymal stem cell (MSC) structure. (B) F-actin
depolymerization by LAB in MSCs triggered keratin-associated gene expressions on chromosome 17g21.2 with transcriptional regulation by NKX2.5. (C) Depolymerized actin
filaments were replaced by keratin intermittent filaments to prevent collapse of the cytoskeleton, and keratin intermediate filament formation began at the cell periphery and

condensed in the perinuclear area in MSCs upon F-actin depolymerization.

involved in hair follicle differentiation and regulation [45,46]. MSC
transplantation is effective in promoting skin wound healing by
both differentiation into KRT14-expressing cells and a paracrine
effect [47—49]. Aljitawi et al. report that cytokeratin 19-positive
cells with hair-like structures are generated from MSCs [50],
while Hwang et al. demonstrate that transplanted MSCs in vivo first
differentiate into cytokeratin 19-expressing oval cells and later into
albumin-producing hepatocyte-like cells [51]. Recently, Shi et al.
report that F-actin depolymerization triggers a mesenchymal—
epithelial transition in fibroblasts [21], but little is known about
MSCs. Herein, we discovered that disruption of F-actin triggered
transient increases in the expressions of KRT14, KRT19, KRT34,
KRTAP1-5, and KRTAP2-3 in the first hour (Fig. 5A—E), and the
impacts of such changes on MSC differentiation into epithelial cells,
hepatocytes, and hair follicles are being evaluated in our lab.

The chromosome 17q21.2 gene domain contains 27 type I ker-
atin genes [52]. We demonstrated that only five genes were
strongly up-regulated after actin filament perturbation (Fig. 4C),
and four of them were potentially regulated by the same tran-
scription factor, i.e.,, NKX2.5 (Tables 3 and 4). NKX2.5 is a well-
known marker of precardiac cells that binds with GATA4 to acti-
vate the cardiac atrial natriuretic factor during cardiac develop-
ment [53]. Mutation of the NKX2.5 gene is associated with
congenital heart disease [54| and thyroid dysgenesis [55]. It is
known that nuclear translocation of NKX2.5 and GATA4 drives the

cardiac differentiation of MSCs [56]. In addition, NKX2.5 has been
reported to inhibit myocyte differentiation, and the over-
expression of NKX2.5 promotes neuronal cell differentiation in
skeletal myoblasts [57]. In this study, we explored how F-actin
depolymerization enhanced NKX2.5 in the nuclear fraction within
15 min (Fig. 5F) without altering NKX2.5 gene expression (Table 4);
therefore, the transcriptional regulation of NKX2.5 by F-actin
depolymerization could be ruled out. However, impacts of actin
perturbation on translational and post-translational regulation of
NKX2.5 in MSCs and the interaction between F-actin and NKX2.5
needs to be further investigated.

In this study, we point out that keratin intermediate filament
and NKX2.5 on transcriptional regulation of chromosome 17q21.2
are putative targets for F-actin depolymerization-induced gene
regulation during cytoskeleton re-organization in MSCs. Such
findings can be taken into consideration for the future develop-
ment of scaffolds in MSC-based tissue engineering, so that cell fate
determination of the MSCs in the scaffolds can be more accurately
controlled.

5. Conclusion
The increase in Keratin intermediate filaments in MSCs is an

immediate compensatory response to F-actin depolymerization.
The interaction between actin filaments and intermediate
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filaments is achieved by rapidly turning on Kkeratin-associated
genes on chromosome 17q21.2 which are potentially regulated by
NKX2.5. The results of this study have unraveled critical in-
teractions between actin filaments and keratin intermediate fila-
ments and the regulatory mechanism of the biophysical effects
initiated by F-actin depolymerization in MSCs. Such findings have
provided new insight into further scaffold design in MSC-based
tissue engineering.
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