
Abstract. Process capability indices have been proposed in the manufacturing
industry to provide numerical measures on process reproduction capability,
which are effective tools for quality assurance and guidance for process
improvement. In process capability analysis, the usual practice for testing
capability indices from sample data are based on traditional distribution
frequency approach. Bayesian statistical techniques are an alternative to the
frequency approach. Shiau, Chiang and Hung (1999) applied Bayesian
method to index Cpm and the index Cpk but under the restriction that the
process mean l equals to the midpoint of the two specification limits, m. We
note that this restriction is a rather impractical assumption for most factory
applications, since in this case Cpk will reduce to Cp. In this paper, we consider
testing the most popular capability index Cpk for general situation – no
restriction on the process mean based on Bayesian approach. The results
obtained are more general and practical for real applications. We derive the
posterior probability, p, for which the process under investigation is capable
and propose accordingly a Bayesian procedure for capability testing. To
make this Bayesian procedure practical for in-plant applications, we tabulate
the minimum values of Ĉpk for which the posterior probability p reaches
desirable confidence levels with various pre-specified capability levels.

Key words: Bayesian approach, posterior distribution, process capability
indices, posterior probability

1 Introduction

Process capability indices (PCI), Cp, Cpk, Cpm and Cpmk have been proposed in
the manufacturing industry and the service industry providing numerical
measures on whether a process is capable of reproducing items within
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specification limits preset in the factory (see Kane (1986), Chan, Cheng and
Spiring (1988), Pearn, Kotz and Johnson (1992), Kotz and Lovelace (1998)).
These indices have been defined as:

Cp ¼
USL� LSL

6r
;Cpk ¼ min

USL� l
3r

;
l� LSL

3r

� �
;

Cpm ¼
USL�LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðl� T Þ2

q ;Cpmk ¼min
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3
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3
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where USL is the upper specification limit, LSL is the lower specification limit,
l is the process mean, r is the process standard deviation (overall process
variation), and T is the target value. The index Cp considers the overall
process variability relative to the manufacturing tolerance, reflecting product
quality consistency. The index Cpk takes the magnitude of process variance as
well as process departure from target value, and has been regarded as a yield-
based index since it providing lower bounds on process yield. The index Cpm
emphasizes on measuring the ability of the process to cluster around the
target, which therefore reflects the degrees of process targeting (centering).
Since the design of Cpm is based on the average process loss relative to the
manufacturing tolerance, the index Cpm provides an upper bound on the
average process loss, which has been alternatively called the Taguchi index.
The index Cpmk is constructed from combining the modifications to Cp that
produced Cpk and Cpm, which inherits the merits of both indices.

Process yield is currently defined as the percentage of the processed
product units passing the inspections. Units are inspected according to
specification limits placed on various key product characteristics and sorted
into two categories: passed (conforming) and rejected (defectives). Thus, yield
is one of the commonly understood basic criteria for interpretations of the
process capability. Suppose a proportion conforming items is the primary
concern, then most natural measure is the proportion itself called the yield,
which we refer to as X defined as:

Y ¼
Z USL

LSL
dF ðxÞ ¼ F ðUSLÞ � F ðLSLÞ; ð1Þ

where F ðxÞ is the cumulative distribution function of the measured charac-
teristic X , USL and LSL are the upper and the lower specification limits
respectively. As the index Cpk provides a lower bound on the process yield, a
widely used criterion for measuring process, it has become the most popular
capability index used in the industry. Existing methods for testing the capa-
bility indices have focused on using the traditional but long time been widely
used distribution frequency approaches. The usual practice of judging process
capability by evaluating the point estimates of process capability indices is
highly unreliable, as there is no assessment on the error distributions of these
estimates. A point estimate to the index is not very useful in making reliable
decision. Interval estimation approach, in fact, is more appropriate and
widely accepted. But the frequency distributions of these estimates are usually
complicated that it is very difficult to obtain exact interval estimates. A
process is usually defined as a capable process if its capability exceeds a pre-
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specified value w. A reliable approach for testing process capability is to
establish an interval estimate, for which we can assert with a reasonable
degree of certainty that it contains the true PCI value. However, the con-
struction of such an interval estimate is not trivial, since the distributions of
the commonly used PCI estimators are usually quite complicated.

An alternative is to use the Bayesian approach, which essentially specifies
a prior distribution for the parameter of interest, and to obtain the posterior
distribution of the parameter and then infer about the parameter by only
using its posterior distribution given the observations. It is not difficult to
obtain the posterior distribution when a prior distribution is given, even in the
case where the form of the posterior distribution is complicated, as one could
always use numerical methods or Monte Carlo methods to obtain an
approximate but quite accurate interval estimate. This is the advantage of the
Bayesian approach over the traditional distribution frequency approach
(Kalos and Whitlock (1986)).

In this paper, we consider testing the most popular capability index Cpk
using Bayesian approach. We obtain the posterior probability p for which the
process under investigation is capable, and propose accordingly a Bayesian
procedure for capability testing. To make this Bayesian procedure practical
for in-plant applications, we tabulate the minimum values of Ĉpk for which
the posterior probability p reaches various desirable confidence levels. An
application example to the oil-hydraulic cylinders manufacturing process is
presented to illustrate the applicability of the proposed approach. Finally,
some concluding remarks are made in Section 7.

2 Distribution frequency approach for Cpk

Utilizing the identity minfa; bg ¼ ðaþ bÞ � ja� bj=2, the definition of the
index Cpk can be alternatively written as:

Cpk ¼
d � jl� mj

3r
; ð2Þ

where d ¼ ðUSL� LSLÞ=2 is half of the length of the specification interval,
m ¼ ðUSLþ LSLÞ=2 is the mid-point between the lower and the upper speci-
fication limits. The natural estimator Ĉpk is obtained by replacing the process
mean l and the process standard deviation r by their conventional estimators
�x and s, which may be obtained from a process that is demonstrably stable
(under statistical control).

Ĉpk ¼
d � j�x� mj

3s
¼ 1� j�x� mj

d

� �
Ĉp; ð3Þ

where �x ¼
Pn

i¼1 xi=n and s ¼ ½
Pn

i¼1 ðxi � �xÞ2=ðn� 1Þ�1=2. Under the assump-
tion of normality, Kotz and Johnson (1993) obtained the r-th moment, and
the first two moments as well as the mean and the variance of Ĉpk. In addition,
numerous methods for constructing approximate confidence intervals of Cpk
have been proposed in the literature. Examples include Chou, Owen and
Borrego (1990), Zhang, Stenback and Wardrop (1990), Franklin and Wass-
erman (1991), Kushler and Hurley (1992), Nagata and Nagahata (1994),
Tang, Than and Ang (1997), Hoffman (2001), and many others.
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Kotz and Johnson (2002) presented a thorough review for the develop-
ment of process capability indices during the years 1992 to 2000. Further-
more, from the estimated Ĉpk defined in (1), since Ĉp is distributed as
ðn� 1Þ1=2Cpðv�1n�1Þ, and n1=2 �x� mj j=r is distributed as the folded normal
distribution with parameter n1=2 l� mj j=r (see Leone, Nelson and Notting-
ham (1961) for details about this distribution). Thus, Ĉpk is a mixture of v�1n�1
and the folded normal distribution (Pearn, Kotz and Johnson (1992)). The
probability density function of Ĉpk can be obtained as (Pearn, Chen and Lin
(1999)), where D ¼ ðn� 1Þ1=2d=r, a ¼ ½ðn� 1Þ=n�1=2.

fĈpk
ðyÞ ¼

4An
P1
‘¼0

P‘ðkÞB‘ � Dnþ2‘

a2‘þ1
R1
0 ð1� yzÞ2‘zn�1

� exp � D2

18a2 a2z2 þ 9ð1� yzÞ2
� �n o

dz; y � 0;

4An
P1
‘¼0

P‘ðkÞB‘ � Dnþ2‘

a2‘þ1
R 1=y
0 ð1� yzÞ2‘zn�1

� exp � D2

18a2 a2z2 þ 9ð1� yzÞ2
� �n o

dz; y > 0;

8>>>>>>>><
>>>>>>>>:

ð4Þ

P‘ðkÞ ¼
e�ðk=2Þðk=2Þ‘

‘!
;An ¼

1

3n�12n=2C ðn� 1Þ=2ð Þ ;B‘ ¼
1

2‘C ð2‘þ 1Þ=2ð Þ :

Using the integration technique similar to that presented in Vännman
(1997), Pearn and Lin (2003) first obtain an exact and explicit form of the
cumulative distribution function of the natural estimator Ĉpk, under the
assumption of normality. The cumulative distribution function of Ĉpk is ex-
pressed in terms of a mixture of the chi-square distribution and the normal
distribution:

FĈpk
ðyÞ¼1�

Z b
ffiffi
n
p

0

G
ðn�1Þðb ffiffiffi

n
p � tÞ2

9ny2

 !
/ðtþn

ffiffiffi
n
p
Þþ/ðt�n

ffiffiffi
n
p
Þ

� �
dt; ð5Þ

for y > 0, where b ¼ d=r, n ¼ ðl� mÞ=r, Gð�Þ is the cumulative distribution
function of the chi-square distribution with degree of freedom n� 1, v2n�1, and
/ð�Þ is the probability density function of the standard normal distribution
Nð0; 1Þ. Based on the cumulative distribution function of Ĉpk, Pearn and Lin
(2003) implemented the statistical theory of the hypotheses testing, and devel-
oped a simple but practical procedure accompanied with convenient tabulated
critical values, for engineers/practitioners to use for decisions making in their
factory applications. Formulae for computing the power of the corresponding
test are also obtained. Pearn and Shu (2003) further developed an efficient
algorithm with Matlab computer program to find the exact (rather than just
approximate) lower confidence bounds conveying critical information regard-
ing the true process capability. An illustrative application of the lower confi-
dence bound to the power distribution switch was given. Their investigations
are all based on traditional distribution frequency approaches.

3 Bayesian approach for Cpk

Cheng and Spiring (1989) proposed a Bayesian procedure for assessing pro-
cess capability index Cp. Shiau, Hung and Chiang (1999) derived the posterior
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distributions for C2
p , C2

pm under the restriction that process mean l equals to
the target value T , and C2

pk under the restriction that the process mean l
equals to the midpoint of the two specification limits, m, with respect to the
two priors (a non-informative and a Gamma prior). Shiau, Chiang and Hung
(1999) applied Bayesian method to index Cpm relaxing the restriction on
l ¼ T . Wu and Pearn (2003) generalized this Bayesian procedure for testing
process capability index Cpm to cases where data are collected over time as
multiple samples. Shiau, Chiang and Hung (1999) also applied a similar
Bayesian approach for testing the index Cpk but under the restriction l ¼ m.
We note that this restriction is a rather impractical assumption for most
factory applications, since in this case Cpk will reduce to Cp. In the following,
we consider a Bayesian procedure for the capability index Cpk for general
situation – no restriction on the process mean. Thus, the results obtained are
more general and practical for real applications. A 100p% credible interval is
the Bayesian analogue of the classical 100p% confidence interval, where p is
the confidence level for the interval. The credible interval covers 100p% of the
posterior distribution of the parameter (Berger (1980)). Assuming that the
measures x ¼ fx1; x2; � � �; xng are random sample taken from independent and
identically distributed (i.i.d.) Nðl; r2Þ, a normal distribution with mean l and
variance r2. Then, the likelihood function for l and r is

Lðl; rjxÞ ¼ 2pr2
� 	�n=2� exp �

Pn
i¼1 ðxi � lÞ2

2r2

( )
ð6Þ

The most important problem in Bayesian inference is how to specify an
appropriate prior distribution. If prior information about the parameters is
available, it should be incorporated in the prior density. If we have no prior
information, we want a prior with minimal influence on the inference. There
are mainly two types of priors: informative and non-informative. Ideally, a
Bayesian should subjectively elicit a prior on the basis of available informa-
tion, expert opinion or past experience. Informative prior distributions
summarize the evidence about the parameters concerned from many sources
and often have a considerable impact on the results. For an example of
informative priors, conjugate priors, although being widely used, can only be
justified if enough information is available to believe that the true prior dis-
tribution belongs to the specified family; otherwise, the main justification for
using conjugate prior is their mathematical tractability.

On the other hand, non-informative prior, Bayesian analysis often leads to
the procedures with approximate frequency validity while retaining the
Bayesian flavor, thus allowing certain amount of reconciliation between the
two conflicting paradigms of statistics and providing with mutual justifica-
tion. Box and Tiao (1973) define a non-informative prior as prior, which
provides little information relative to the experiment. Bernardo and Smith
(1993) use a similar definition, they say that non-informative prior have
minimal effect relative to the idea, on the final inference. And Kass and
Wasserman (1996) stated two interpretations of non-informative priors.

Therefore, the first step for the Bayesian approach is to find an appro-
priate prior. Usually, when there is only a little or no prior information is
available, or only one parameter of interest, one of the most widely used non-
informative priors is the so-called reference prior, which is a non-informative
prior that maximizes the difference between information (entropy) on the
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parameter provided by the prior and by the posterior. In other words, the
reference prior allows the prior to provide information about the parameter
as little as possible (see Bernardo and Smith (1993) for more details). For this
reason, in this paper we adopt the following non-informative reference prior,

pðl; rÞ ¼ 1=r; 0 < r <1: ð7Þ
We note that the parameter space of the prior is infinite, hence the reference
prior is improper, which means that it does not integrate to one. However, it
is not always a serious problem, since the prior incorporate with ordinary
likelihood will lead to proper posterior. Furthermore, the credible interval
obtained from a non-informative prior has a more precise coverage proba-
bility than that obtained from any other priors. The posterior probability
density function (PDF), f ðl; rjxÞ of ðl;rÞ may be expressed as the following:

f ðl; rjxÞ / Lðl; rjxÞ � pðl; rÞ / r�ðnþ1Þ � exp �
Pn

i¼1 ðxi � lÞ2

2r2

 !

Since
Z 1
0

Z 1
�1

r�ðnþ1Þ �exp �
Pn

i¼1 ðxi�lÞ2

2r2

 !
dldr

¼
Z 1
0

r�ðnþ1Þ exp � 1

br2


 �
�
Z 1
�1

exp �nðl��xÞ2

2r2

 !
dl

" #
dr¼

ffiffiffiffiffi
p
2n

r
CðaÞba

And in order to satisfy the integration property, probability over PDF is 1, so
that

f ðl; rjxÞ ¼ 2
ffiffiffi
n
p

ffiffiffiffiffiffi
2p
p

CðaÞba r�ðnþ1Þ � exp �
Pn

i¼1 ðxi � lÞ2

2r2

 !
ð8Þ

where a ¼ ðn� 1Þ=2, b ¼ ½
Pn

i¼1 ðxi � �xÞ2=2��1 ¼ ½ðn� 1Þs2=2��1.
Subsequently, we consider the quantity Pr{process is capable |x} in the

Bayesian approach. Since the index Cpk is our focus in this paper, so we are
interested in finding the posterior probability p ¼ PrfCpk > wjxg for some
fixed positive number w.

4 The posterior probability

Given a pre-specified capability level w > 0, the posterior probability based
on index Cpk that a process is capable can be derived in the following way.
From equation (8), we have the posterior probability density function (PDF)
f ðl; rjxÞ of ðl; rÞ as the following, where

a ¼ ðn� 1Þ=2; b ¼ ½
Xn

i¼1 ðxi � �xÞ2=2��1 ¼ ½ðn� 1Þs2=2��1;

f ðl; rjxÞ ¼ 2
ffiffiffi
n
p

ffiffiffiffiffiffi
2p
p

CðaÞba
r�ðnþ1Þ � exp �

Pn
i¼1 ðxi � lÞ2

2r2

 !
:

Therefore, given a pre-specified capability level w > 0, the posterior proba-
bility based on index Cpk that a process is capable is given as
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p¼PrfCpk >wjxg¼Pr
d� l�mj j

3r
>w

����x
� �

¼Pr l�mj j< d�3rwjxf g

¼
Z 1
0

Z mþd�3rx

m�dþ3rx
f ðl;rjxÞdldr¼

Z 1
0

Z mþd�3rx
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p

ffiffiffiffiffiffi
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¼
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¼
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0
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 �
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d�ð�x�mÞ

s=
ffiffiffi
n
p � s

r
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r
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 �
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Next, we consider the two cases for derivation of posterior probability p as
follows:

CASE I: �x � m

If �x � m, then Ĉpk ¼ d�ð�x�mÞ
3s and d�ðm��xÞ

3s ¼ dþð�x�mÞ
3s ¼ Ĉpk þ 2

3 d where d ¼ �x�mj j
s .

Thus,

p ¼ PrfCpk > wjxg ¼
Z 1
0

2r�n

CðaÞba exp �
1

br2


 �
� U 3

ffiffiffi
n
p

Ĉpk �
s
r
� 3

ffiffiffi
n
p

w
� �h

þU 3
ffiffiffi
n
p

Ĉpk þ
2

3
d
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� s

r
� 3
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n
p

w

 �

� 1

�
dr

CASE II: m > �x

If m > �x, then d�ð�x�mÞ
3s ¼ dþðm��xÞ

3s ¼ Ĉpk þ 2
3 d and d�ðm��xÞ

3s ¼ Ĉpk where d ¼ �x�mj j
s .

Thus,

p ¼ PrfCpk > wjxg ¼
Z 1
0

2r�n

CðaÞba exp �
1

br2
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� U 3
ffiffiffi
n
p

Ĉpk þ
2

3
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� s
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� 3

ffiffiffi
n
p

w

 �


þU 3
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n
p

Ĉpk �
s
r
� 3

ffiffiffi
n
p

w
� �

� 1
i
dr

From both cases,
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p ¼ PrfCpk > wjxg ¼
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By changing the variable, let y ¼ br2, then dy ¼ 2br dr, and s
r ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

ðn�1Þy

q
.

Therefore, the posterior probability p may be rewritten as:
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s ,

b1ðyÞ ¼ 3
ffiffiffi
n
p
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and Uð�Þ is the cumulative distribution function of the standard normal dis-
tribution. Note that the posterior probability p depends on n, w, d and Ĉpk.

5 Bayesian procedure for testing Cpk

As we can see it is rather complicated to compute posterior probability p in
(9) without advanced computer programming skills. However, by noticing
that there is a one-to-one correspondence between p and C� when n and w are
given, and by the fact that Ĉpk can be calculated from the process data, we
find that the minimum value of C� required to ensure the posterior proba-
bility p reaching a certain desirable level, can be useful in assessing process
capability. Denote this minimum value of C� for probability p as C�ðpÞ. Thus,
we can find the value of C�ðpÞ satisfies equation (9) for various p, where p is a
number between 0 and 1, say 0.95, for 95% confidence interval, which means
that the posterior probability that the credible interval contains the true value
of Cpk is p. Suppose for this particular process under consideration to be
capable, the process index must reach at least a certain level w, say, 1.00 or
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1.33. From expression (9) we have the probability p ¼ PrfCpk > wjxg based
on the observed process data. Moreover, to see if a process is capable (with
capability level w and confidence level p), we only need to check if
Ĉpk > C�ðpÞ. Throughout this paper it is assumed that the process measure-
ments are independent and identically distributed from a normal distribution,
and the process is under statistical control. We remark that estimation of
these capability indices is meaningful only when the process is under statis-
tical control.

To make this Bayesian procedure practical for in-plant applications, we
calculate the values of C�ðpÞ for various values of n= 10(5)160 and d=
0(0.5)2.0 with posterior probability p= 0.90, 0.95, and 0.99 and w= 1.00,
1.33, 1.50, 2.00. Tables 1(a)-1(c) summarize the values of C�ðpÞ with w= 1.00,
for p= 0.90, 0.95, and 0.99, respectively. Tables 2(a)-2(c) summarize the
values of C�ðpÞ with w= 1.33, for p= 0.90, 0.95, and 0.99, respectively.
Tables 3(a)-3(c) summarize the values of C�ðpÞ with w= 1.50, for p= 0.90,
0.95, and 0.99, respectively. And the values of C�ðpÞ with w= 2.00, for p=
0.90, 0.95, and 0.99 are displayed in Tables 4(a)-4(c), respectively. Interested
readers may visit the following website for details of those tables: http://
www.nctu.edu.tw/~qtqm/paper/cpktables/. For example, if w= 1.33 is the
minimum capability requirement, then for p= 0.95, n= 100, d= 0.5, C�ðpÞ=
1.5173 by checking Table 2(b). Thus, the value Ĉpk calculated from sample
data must satisfy Ĉpk ‡ 1.5173 to conclude that Cpk ‡ 1.33 (process is capable).
From these tables we observe that for each fixed p and n the value of C�ðpÞ
decreases as d increases. Figures 1–4 display the value of C�ðpÞ versus d=
j�x� mj=s for sample size n= 10(10)50 from top to bottom in plots, with w=
1.00 and p= 0.95. This phenomenon can be explained by the following
argument. For a fixed Ĉpk, since

Ĉpk ¼
d � j�x� mj

3s
¼ d=s� d

3
; ð10Þ

then s becomes smaller when d becomes larger, and a smaller smeans that it is
plausible that the underlying process is tighter (i.e. with smaller r). Since the
estimation is usually more accurate for data drawn from a tighter process, it is
then plausible that the estimate Ĉpk is more accurate with a smaller s. In this
case the required minimum value is smaller, so we need only a smaller C�ðpÞ
to account for the smaller uncertainty in the estimation. Intuitively, if the
estimation error in our estimate is potentially large, then it is reasonable that
we need a large C�ðpÞ to be able to claim that the process is capable, and this
means that the corresponding minimum value C�ðpÞ should be large as well.
Thus the value of C�ðpÞ decreases as d increases. Another observation from
the tables is that the value of C�ðpÞ decreases as n increases for fixed d and p.
This can also be seen from the same argument as above, a larger n implies that
Ĉpk is more accurate.

6 Capability testing with applications

In current practice, a process is called ‘‘Inadequate’’ if Cpk< 1.00; it indicates
that the process is not adequate with respect to the production tolerances
(specifications), either process variation (r2) needs to be reduced or process
mean (l) needs to be shifted closer to the target value T . A process is called
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‘‘Capable’’ if 1.00 £Cpk<1.33; it indicates that caution needs to be taken
regarding to process distribution, some process control is required. A process
is called ‘‘Satisfactory’’ if 1.33 £Cpk<1.50; it indicates that process quality is
satisfactory, material substitution may be allowed, and no stringent quality
control is required. A process is called ‘‘Excellent’’ if 1.50 £Cpk< 2.00; it
indicates that process quality exceeds satisfactory. Finally, a process is called
‘‘Super’’ if Cpk ‡ 2.00. Many companies have recently adopted criteria for
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Fig. 1. Plots of C�ðpÞ versus d for w ¼ 1:00, p ¼ 0:95, and n ¼ 10; 20, 30, 40, and 50 (top to
bottom in plot)

0.0 0.5 1.0 1.5 2.0

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

Fig. 2. Plots of C�ðpÞ versus d for w ¼ 1:33, p ¼ 0:95, and n ¼ 10; 20; 30; 40, and 50 (top to
bottom in plot)
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evaluating their processes that include process capability objectives more
stringent. For example, Motorola’s ‘‘Six Sigma’’ program essentially requires
the process capability at least 2.0 to accommodate the possible 1.5r process
shift (see Harry (1988)). Table 1 summarizes some commonly used capability
requirements and fractions of nonconformities (in ppm) corresponding to
process conditions.

We now describe a Bayesian procedure in the following. A 100p% credible
interval means the posterior probability that the true PCI lies in this interval
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Fig. 4. Plots of C�ðpÞ versus d for w ¼ 2:00, p ¼ 0:95, and n ¼ 10; 20; 30; 40, and 50 (top to
bottom in plot)
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Fig. 3. Plots of C�ðpÞ versus d for w ¼ 1:50, p ¼ 0:95, and n ¼ 10; 20; 30; 40, and 50 (top to
bottom in plot)
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is p. Let p be a high probability, say, 0.95. Suppose for this particular process
under consideration to be capable, the process index must reach at least a
certain level w, say, 1.33. Next, from the process data, we compute (or check
the tables) the lower bound of the credible interval for the Cpk index. Thus, if
Ĉpk > C�ðpÞ, then we say that the process is capable in a Bayesian sense.
Otherwise, we do not have sufficient information to conclude that the process
meets the preset capability requirement, and then we tend to believe that the
process is incapable in this case.

To illustrate how we apply the proposed procedure to actual data col-
lected from the factory. We consider the following example taken from a
company engaged mainly in making oil-hydraulic cylinder components and
oil-hydraulic cylinder (oil-hydraulic propeller) assembly. Oil-hydraulic
equipment is required for automation and oil-hydraulic cylinders are the
main component of such equipment. The pistons are one of the most critical
parts of oil-hydraulic cylinders. A typical piston for the oil-hydraulic cylin-
ders has a 20 mm inner diameter. When the oil goes through the oil-hydraulic
cylinder, it can exert pressure and make the piston move. The two points C
are the grooves on the piston that must be fitted with the U-shaped oil seal to
prevent the oil from leaking when the piston move. If the oil leaks, it affects
the efficiency and performance of the oil-hydraulic cylinder. There are two
points called A and two points called B, which are the prominent parts of the
piston holding two U-shaped oil seals to make them assuming the pressure
from the oil-hydraulic cylinder. Since it is the U-shaped oil seals, and is not
the main body of the piston in direct contact with the tube of the oil-hydraulic
cylinder, then it is essential to make the piston grooves (called point C)
complying with the required manufacturing specifications.

The manufacturing specifications for the grooves of the piston are set to
the followings: USL = 13.25 mm, LSL = 13.15 mm, target value T = 13.20
mm. The capability requirement for this particular model of oil-hydraulic
cylinder was defined as "Satisfactory" if Cpk > 1.33. The process has been
justified to be well in-controlled, and is near normally distributed. The col-
lected sample data (a total of 150 observations) are displayed in Table 2. The
sample mean �x = 13.201 and sample standard deviation s = 0.00969 are first
calculated. For n= 150, we calculate the value of the estimator
Ĉpk ¼ ðd � j�x� mjÞ=ð3sÞ= 1.6925, and d ¼ �x� mj j=s= 0.103. By solving the
posterior probability (9), the critical value is found to be C�ðpÞ= 1.4869
based on w= 1.33, p = 0.95, and n= 150. Note that the computer program
for calculating C�ðpÞ is available from authors. Since Ĉpk = 1.6925 is greater
than the critical value C�ðpÞ = 1.4869 in this case, it is therefore concluded
with 95% confidence (a= 0.05) that the grooves of the piston manufacturing
process satisfies the requirement ‘Cpk > 1.33’. Thus, at least 99.9934% of the

Table 1. Some commonly used capability requirements and nonconformities corresponding to
process conditions

Process conditions Cpk values Non-conformities

Incapable Cpk < 1:00 > 2700 ppm
Capable 1:00 � Cpk < 1:33 < 2700 ppm
Satisfactory 1:33 � Cpk < 1:50 < 66 ppm
Excellent 1:50 � Cpk < 2:00 < 6.795 ppm
Super 2:00 � Cpk < 0.002 ppm

232 W.L. Pearn and C.-W. Wu



produced oil-hydraulic cylinders are conformed to the manufacturing speci-
fications, which are considered satisfactory and reliable in terms of product
quality (originally set by the product designers or the manufacturing engi-
neers).

7 Conclusions

In the last decade, numerous process capability indices have been proposed to
provide measure on whether a process is capable of reproducing items
meeting the quality requirement preset by the product designer. Those indices
are effective tools for process capability analysis and quality assurance. In
process capability analysis, the usual practice for estimating the capability
indices from sample data are based on the traditional distribution frequency
approach. An alternative is to use the Bayesian approach. The Bayesian
approach specifies a prior distribution for the parameter of interest, to obtain
the posterior distribution for the parameter, then infer about the parameter
using it posterior distribution given the observations. This paper considers
estimating and testing capability index Cpk using Bayesian approach. The
posterior distribution of Cpk is derived and an accordingly Bayesian proce-
dure for capability testing is proposed. For users’ convenience in applying our
Bayesian procedure, we tabulate the minimum values of Ĉpk required to
ensure the posterior probability p reaching various pre-specified capability
levels.
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