
Human face aging with guided prediction
and detail synthesis

Ming-Han Tsai & Yen-Kai Liao & I-Chen Lin

Published online: 2 March 2013
# Springer Science+Business Media New York 2013

Abstract In this paper, we present an example-based method to estimate the aging process
of a human face. To tackle the difficulty of collecting considerable chronological photos of
individuals, we utilize a two-layer strategy. Based on a sparse aging database, an EM-PCA-
based algorithm with the personal guidance vector is first applied to conjecture the temporal
variations of a target face. Since the subspace-based prediction may not preserve detailed
creases, we propose synthesizing facial details with a separate texture dataset. Besides
automatic simulation, the proposed framework can also include further guidance, e.g.,
parents’ impact vector or users’ indication of wrinkles. Our estimated results can improve
feature point positions and user evaluation demonstrates that the two-layer approach pro-
vides more reasonable aging prediction.

Keywords Face aging . Image generation . Pattern analysis

1 Introduction

Aging human faces is a distinctive task in facial image processing and pattern analysis. It
aims at generating an elder face image from a young one, and has many important
applications, such as pursuing criminals, seeking missing children or face recognition.

If a child has been missing or a criminal has fled for a long period. Her or his facial
appearance usually changes due to the aging process. For the law enforcement agencies,
differences between the aged person and the early-taken photos make face identification
difficult. The same problem occurs in automatic face recognition systems. Portrait samples
in a recognition system were established at early days, and it is troublesome to update the
database every several years. While applying face aging techniques, the maintenance of a
portrait database can be easier and less frequent. It also improves the recognition accuracy.
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On the other hand, more and more online games or internet communities provide
personalized avatars as ones’ representatives. Applying aging simulation can increase
realism of virtual characters.

Facial aging is an inevitably biological process and makes plenty of changes on appear-
ance features. For instance, due to the elasticity loss of facial tissue, creases and wrinkles
gradually appear. Zimbler et al. [23] described the anatomy of facial aging. Recent research
shows that the bone structure, e.g., mandible, also changes significantly with age [19] and it
results in the changes of facial geometry. Besides, the aging process is also influenced by
various factors, such as inheritance, lifestyle, environment, and so on. The complicated
variations make it difficult to predict one’s aged face by a deterministic function or
simulation by a simplified physics model. Therefore, we take a statistical approach as the
basis and further adjust the prediction with examples.

It is challenging to collect qualified image examples for human aging analysis. The aging
database should have sufficient numbers of subjects. Each subject has to provide complete
photo samples from her/his childhood to elder ages, so called the age pattern. Fortunately, a
public human database, FG-NET (Face and Gesture Recognition Research Network) Aging
Database [21], helps us lighten the burden. We make use of this database, where 1002 photos
of 82 Caucasian subjects (35 females and 47 males) at different ages (0 to 69) are recorded.
Several examples are shown in Fig. 1.

Even with such ample contents, aging analysis is still difficult. In FG-NET, most subjects’
aging patterns are incomplete and the distributions of the “missing” ages are uneven.
Besides, most of the photos, taken several decades ago, were contaminated due to color
fading, digitization by scanning, and other noises. Hence, in addition to FG-NET, we include

Fig. 1 Example sequences in FG-NET [21]. Each row shows a portrait sequence of the same person from the
young to elder ages
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a supplementary facial texture dataset and propose a novel two-stage method for simulating
the age process.

In the first stage, we approximate the geometric and appearance variations with the FG-
NET database. Our approximation method is inspired by Aging Pattern Subspace (AGES)
algorithm by X. Geng et al. [6]. They used an Expectation-maximization (EM) algorithm
under Principal Component Analysis (PCA) subspace to full-fill the incomplete aging
database for improving the accuracy of an age recognition system.

However, our goal is to generate elder faces for art or entertainment usage, instead of
recognizing age numbers, and our inputs are only one or few pictures at child or youth ages.
When we directly apply AGES algorithm for elder data prediction, the results are unstable
and of bare personal characteristics. To solve this problem, we propose setting guidance
faces, according to the target’s characteristics. Our experiments show that the aged face can
preserve more personal characteristics and will not be dominated by few samples at that age.
Moreover, our system can further include enhancement vectors, such as the influence of the
parents by the similarities between the child and parents. That is not mentioned in related
articles.

Although our algorithm at the first stage can predict the variations of facial geometries
and appearance, the facial appearance are blurry due to two issues. First, the original image
resolutions in the FG-NET are about 5,000 pixels and a large portion of samples are in gray-
scale. Second, during the PCA-based estimation, facial textures are projected onto the
subspace composed by principal axes. High-frequency facial details are usually discarded,
but these wrinkles and creases are important visual cues for one’s age.

In the second stage, we propose using a texture synthesis approach to enhance detailed
facial appearances. Since the chronological variations have been approximated in the first
stage, in this stage, we do not need to carefully collect age patterns, but require abundant
face images of various ages in a higher resolution. Our facial texture database consists of 133
photos collected from the internet. After aligning and normalizing the portraits by 68 feature
points defined in FG-NET database, we search the most appropriate skin details according to
the estimated low-frequency aged face, and then transfer the details by patch-based texture
synthesis. Furthermore, based on our controllable synthesis method, users can also accen-
tuate the possible wrinkles, creases or disguise by intuitive graphical interfaces.

We compare our results with photos generated by related articles through user evalua-
tions. The experiments show that the proposed method can generate reasonable aged faces
and keep personal characteristics.

This paper is organized as follows. In Section 2, we introduce related articles and several
age recognition and prediction methods. In Section 3, we introduce how we utilize guided
aging patterns for aging simulation and how to apply parents’ effects in prediction. The
facial appearance synthesis and transfer are described in Section 4. Section 5 demonstrates
our results and comparisons. We conclude this paper in the last section.

2 Related work

This section describes related articles about age recognition and simulation of aging effects.
As mentioned above, the aging process changes both facial geometry (shape) and appear-
ance (texture). Researches in face aging usually focus on modeling and approximation of
these two points.

For facial image manipulation, Burt and Perrett [2] evaluated the facial colors and shape
in the same age bracket and extracted the difference between the means of the elder and
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young faces. Ramanathan and Chellappa [15] represented the growth-related shape varia-
tions of young faces by a craniofacial growth model. Hubball et al. proposed a data-driven
approach of aging simulation [8]. They used non-uniform radial basis function (NURBF)
and genetic algorithms for facial image parameterization and aging regression. The results
look reasonable but due to the native weakness of data regression, salient or irregular data
like wrinkles are under-fitted. Furthermore, an evolutionary computing method makes the
training process non-deterministic for different setting, and difficult for further user
intervention.

Suo et al. [20] proposed a compositional model for face aging. They divided face samples
into several components, e.g., hairs, eyes and mouths, from coarse to fine levels. They
represented faces of the same age group by a three-level graph. Then, they learned the
probabilities of face aging with Markov chains. This method generated impressive results
but required a large number of high-quality samples with precise alignment.

Cootes et al. proposed an Active Appearance Model (AAM) [4] that represented a face
image by subspace-projected parameters of facial shape and texture. This representation is
popularly used in human face research and is applied in several studies on aging recognition.
Wang et al. [22] propose formulating the age estimation on face images as a Bayesian
estimation problem. Lanitis et al. [9] projected the landmarks and grayscales image of a face
onto 50 parameters in the subspace. Then, they approximated one’s aging variations by
polynomial functions. For an unseen individual, they used weighted-blending aging func-
tions to estimate the aging effects. Geng et al. [6] proposed a method called Aging Pattern
Subspace (AGES). They first projected the shape and image data to the PCA subspace with
200 parameters and sorted these data in time order, named aging patterns. Then, they tackled
the problem of incomplete aging patterns by least squares fitting of subspace parameters.

Fu and Huang [5] demonstrated that manifold of conformal embedding analysis and
quadratic regression can improve the accuracy of age estimation. In the same year, Guo et al.
[7] presented another method for improvement by locally adjusting curves of support vector
regression. Ramanathan et al. [16] provide a thorough analysis of various aging modeling
methods.

Other researches simulated the aging effect on 3D face model. Based on a 3D morphable
face model [1], Scherbaum et al. [17] reconstructed a 3D face model from the input image,
and computed the individual aging trajectories of the 3D model. They rendered the aged 3D
face model back to the 2D image for the final composition.

In our work, besides prediction with guidance vectors, we also present a patch-based
method for detail transfer. A closely related work is Visio-lization algorithm proposed by
Mohammed et al. [13]. It was used for generating unseen facial images. They perturbed
parameters at principal eigenface subspace as a preliminary face, and seamlessly concatenat-
ed closest facial patches from a database with high-resolution portraits.

3 Aging effects by PCA-based prediction

3.1 Preparing training data

We use FG-NET aging database [21] as our primary training database. Here, we briefly
introduce how we arrange the training data for later evaluation.

Each sample in the FG-NET database contains the face image, identity, gender, age at the
taken year, and 68 points indicating facial features. To make the data comparable and grasp
the variations on geometry and appearance, we normalize color intensity and shape of each

804 Multimed Tools Appl (2014) 72:801–824



face images. At the first step, we rotate tilted faces to upright positions and scale the face by
the width of face features. Since a large portion of training samples are in grayscale, for
consistence, all images are transformed into grayscale ones. Then, we project the textures
about 5,000 pixels and geometry variations of 68 feature points to 200 parameters of PCA
subspace. The feature points we marked are show in Fig. 2. The subspace projection still
preserves more than 95 % variance of the original data. To keep the aging characteristics of
each gender, we process male and female data separately. Note that we separate male and
female only in the age-pattern reconstruction stage. The cross-gender operations in later
sections, such as similarity to parents, are performed on the identical space.

After normalizing the face data, we construct the aging patterns for all subjects in the
database. An aging pattern is a sequence of an identity’s face data sorted from the young to
elder ages. However, the age range of subjects in FG-NET database is large (0 to 69), and the
age distribution of a subject’s samples is uneven and sparse (12 samples in average). If we
took one year as a slot, the aging patterns would become too specific, and plenty of slots
would be empty, so called missing data. In this case, the prediction procedure would be
unreliable and over-fitted for such sparse aging patterns.

Instead, we empirically divide 70 ages into 17 age groups according to visual distinction.
If there are more than one sample data of an identity in a certain group, we evaluate their
average as the representative. Table 1 shows the mapping between an original age and its
designated age group. Merging the age slots into 17 groups can effectively reduce the
missing data amount in aging patterns. An example is shown in Fig. 3. On the other hand,
discrete age groups may result in the boundary effect. For instance, an image of 40 year old
shall be close to both 35–39 and 40–49 groups, but it can affect only the 40–49 group. To
alleviate this problem, we can either put redundant samples (but of half influence) to nearby

Fig. 2 The 68 feature points defined in FG-NET database. More dense feature points are used to indicate the
month/lips, and fewer points are used for the face contour
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groups or weighted-combine the simulated results from the designated and nearby groups.
We take the first strategy in our system.

3.2 Aging pattern subspace

In this subsection, we briefly describe how to use AGES algorithm [6] to full-filled
incomplete aging patterns. We separate group data of an aging pattern into two types: the

Table 1 The mapping table be-
tween ages and age groups Original age Age group

0 to 1 0

2 to 3 1

4 to 5 2

6 to 7 3

8 to 9 4

10 to 12 5

13 to 15 6

16 to 18 7

19 to 21 8

22 to 24 9

25 to 27 10

28 to 30 11

31 to 34 12

35 to 39 13

40 to 49 14

50 to 59 15

60 to 69 16

Fig. 3 a The aging pattern of image data. The missing data in the aging pattern are marked “m”. b The aging
pattern data. 20 and 180 PCA parameters are used for geometry and appearance data, respectively
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available data and the missing data. The purpose of AGES algorithm is to conjecture
appropriate values of missing data according to available data in the database.

The AGES algorithm utilizes PCA to project the original data onto the subspace that
represents the major variability of the aging patterns. The projection from original data to
principal component subspace is

y ¼ WTðx� μÞ; ð1Þ
where x is an aging pattern from the training data and μ is the mean vector of all x. W is
composed of the principal eigenvectors of covariance matrix of x. If there are N aging
patterns in the database, the database can be represented as D={x1, x2, …, xN}. For an
identity k, 1≤k≤N, the parameters yk in the PCA subspace can be calculated by projecting xk
as (1) and the reconstruction of xk from yk is thus

bxk ¼ μþWyk : ð2Þ
However, plenty of slots are without data. We indicate an aging pattern xk as two parts:

the available data xk
a and the missing data xk

m. We calculate the mean value of available data
of target group i from all aging patterns, and set the mean value (it can include small
perturbations) as the initial guess of missing data xk

m(i). After full-filling missing data by
initial guesses, an Expectation-Maximization like algorithm can be used to learn the
appropriate values of age pattern from available data.

The EM-like algorithm iteratively utilizes the Estimation step and the Maximization step
to maximize expected likelihoods of missing data. In the Estimation step, yk cannot be
calculated by direct projection of xk. It should be solved from the available data in the aging
pattern as the least squares solution of

Wt
a
k

� �� �
yk ¼ xak � μt

a
k

� �� � ð3Þ
where Wt

a
k

� �� �
and μt

a
k

� �� �
are the corresponding parts in Wt and μt, and the t is the

iterative time stamp. The new parameters bxk can be calculated by (2). The missing data xk
m

is updated by bxmk , but the available data xk
a are constant since they are real data for reference.

In the Maximization step, we evaluate the transformation matrix Wt+1 and mean vector μt+1
by the updated data with standard PCA. The AGES algorithm uses the mean reconstruction
error between the available data xk

a and the reconstructive available data bxak as the objective
function.

e ¼ 1

N

XN
k¼1

xak �bxka� �T
xak �bxka� �

: ð4Þ

The EM-like algorithm performs iteratively until mean reconstruction error ε or the
iterative time reaches their thresholds. Figure 4 shows the results that missing data in the
aging pattern are full-filled by AGES algorithm. Figure 5 shows an example of iterative
refinement of missing data and the ground-truth image.

3.3 Guided aging simulation for a single or few images

In most applications, such as aged face identification, the input is not an aging pattern
with sparse data, but few images at young ages. In this subsection, we describe how
to use the full-filled FG-NET database to predict aging effects by few or even one
input image.
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Assume that the age of the input image is given and it belongs to the r-age group. We first
extend the concept of EM-like data filling for an unseen image, and the subspace-projected
ynew of aging pattern is solved by

Wt
r
new

� �� �
ynew ¼ xrinput � μt

r
new

� �� �
; ð5Þ

where Wt
r
new

� �� �
and μt

r
new

� �� �
are the parts corresponding to r-th age group in Wt and μt.

After iteratively minimizing the reconstruction error, we can use ynew to reconstruct the
whole aging pattern. However, the estimated results are unstable, and the personal charac-
teristics may not be preserved.

The unsatisfactory prediction results from two issues: loss of temporal guidance and
insufficient variety of subjects. When we use multiple and sufficient input images of ages
across decades, the EM-like method can estimate aging effects from training data according
to both temporal (age groups) and spatial (geometry and appearance) variations. By contrast,
when using a single or few young images as the input, we can only rely on spatial similarity.
If the input subject is unlike to training subjects at that age, the unexpected prediction occurs.
Figure 6b is a prediction result from 17 to 41 years old by AGES method.

For more reasonable prediction, we propose generating a guide aging pattern at the initial
stage. We regard the difference between a subject and the mean face as the personal
characteristic of a certain age. The difference between the mean faces of two ages can be
considered as the main trend of aging. We can generate a new aging pattern by propagating

Fig. 4 The full-filled aging pattern. The images with dashed line frames are the missing data full-filled by
AGES method. The ages are marked above the image

Fig. 5 Iterative refinement of missing data. a The initial guess face image at 17 years old. b The image at 2nd
iteration c The full-filled missing image. d The ground truth image at 17 years old
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the personal characteristic of the input age to other age groups. We evaluate the guided aging
pattern Xguide ¼ xiguide 1 � i � 17g through minimizing an objective function:

arg min@
xiguide;i=2input

Ws xiguide � μi
Tgt gender

� 	2
� xrinput � μr

Tgt gender

� 	2

 �2

þWt 2xiguide � xi�1
guide � xiþ1

guide

� 	2
ð6Þ

where Tgt_gender is the gender of the input subject for aging prediction; μiTgt_gender is the
mean vector of the target gender at age group i and r is the index of age group which input
age belongs to. The first term of (6) preserves the personal face characteristics to the mean
faces, and the second temporal-coherence term keeps the aging process smooth weighted by
Ws andWt, separately. With the new pattern xguide as the initial vector, we can then apply the
EM-PCA process as Eq. (5).

Taking the differences among mean faces for aging prediction was also discussed in [2].
Nevertheless, instead of a deterministic assignment, we take the trend as a guide and
iteratively approximate the aging effects with the learned spatial and temporal variations
from the training data. Figure 6 shows the simulated face from 17 to 41 years old and the
ground truth. Other examples are shown in Fig. 12. The proposed aging with the guidance
pattern can apparently make more reasonable prediction than that by the AGES method.

As mentioned in subsection 3.1, we use gray-scale images in training for consistence. For
a color input image, we first transfer the data to YUV domains, and estimate the aging
effects based on the Y data. To synthesize a colored aged image, we can transfer the UV data
from the input to the aged image according to their pixel correspondences.

3.4 Adding Parents’ effects

In this subsection, we present how to guide the aging prediction by extending training data
for the input subject. In our paper, we take parents’ guidance vectors as an optional input. We
would like to emphasize that the aging relationship between parents and children is still a
complicated and worth-investigating topic. Here, we only demonstrate that our system has
the possibility to include various guided effects.

According to the Mendelian theorem, a child’s facial features may partially inherit from
his/her parents. We propose using such highly influential aging patterns in the training data.
If it is difficult to collect the parents’ aging patterns, we can generate guided aging patterns
of the parents by only one or few images.

Fig. 6 Aging simulation by a single input image. a The input image at 14 years old. b The 41-years-old image
simulated by AGES. c The 41-years-old image simulated by the proposed method. d The ground truth image
at 41 years old
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In our prediction, we separate male and female subjects to grasp the aging effects
of the corresponding gender, but a child may also resemble her/his parent of the
opposite gender. To utilize the resemblance and retain the gender-dependent aging
estimation, we remove the gender characteristics of parents in the opposite gender by
compensating the difference between mean faces of two genders at the age group.
Similar to the personal guidance vector, parents’ guided aging patterns: Xfather guide ¼
xifather guide 1 � i � 17g and Xmother guide ¼ xiMother guide 1 � i � 17g can be formu-

lated by minimizing gender difference as follows:

arg min @
xifather guide;i=2input

Ws xifather guide � μi
Male

� 	2
� xfather age

father input � μfather age
Male

� 	2

 �2

þWt 2xifather guide � xi�1
father guide � xiþ1

father guide

� 	2

arg min @
ximother guide ;i=2input

Ws ximother guide � μi
female

� 	2
� xmother age

mother input � μmother age
female

� 	2

 �2

þWt 2ximother guide � xi�1
mother guide � xiþ1

mother guide

� 	2

ð7Þ

where father_age and mother_age are the indices of father’s and mother’s age group,
respectively. xfather_input and xmother_input are the parameters of parents’ input images,
respectively.

One intuitive thought is directly included these new guidance vectors in the training data
as aging patterns of two new subjects. On the contrary, we can accentuate the parents’ effects
according to their resemblances to the target child.

Assume that the target child can be approximated by linear combination of parents’ faces
at the input child age r. We solve the impact ratios of father Rf and mother Rm by minimizing
the energy function Ep:

Ep ¼ Rf x
r
father guide þ Rmx

r
mother guide � xrinput

� 	2
ð8Þ

A new aging pattern can be generated according to similarity ratio to parents as shown in
(9). The new training database become

DParent ext ¼ Dorigin [ Rf � xFather guide þ Rm � xMother guide

� � ð9Þ
Another idea is to fit the child’s initial guidance vector for the parents’ pattern. The

original guided aging pattern in (6) is to propagate the personal characteristic of the input age
to other age groups. To propagate the parents’ characteristics to whole age groups, we may
use the combined parent aging pattern in (9) as additional guidance. We require the new
guided vector in (6) not only keep similar distance to mean of all age groups, but also be
close to parents’ aging pattern.

Both methods perform well in our experiments. The direct guided method keeps
more parents’ characteristic on child’s face, but the first method is moderate and not
overemphasized. Since a child may be affected by her/his parents more or less, the
faithfulness of these two methods differs from person to person. In some cases,
children’s faces are affected more by environment, or life style, an alternative guid-
ance vector should be designed. Therefore, we set this part as an optional tool for
users. Figure 7 shows an example by these two methods.
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4 Facial detail enhancement

In the above sections, we utilize PCA subspace from FG-NET aging patterns to approximate
reasonable aging effects. Under the projective subspace with blurry training samples, it is
difficult to model most of facial details. In this section, we describe how to enhance the
detailed wrinkles or creases, which are important cues in visual identification of an elder
face.

4.1 Elder skin texture synthesis

The first step of detail enhancement is to generate a detailed face close to the guided
prediction result, since most images in FG-NET are without sufficient details. We
make use of the flourishing Internet search techniques and collected 71 male and 62
female images of age 20 to 70. Most portraits have distinct ages, and some were
indicated empirically.

An intuitive thought is to find the closest face image and transfer the details to the
predicted face. This image can be close to the target in average, but it may not be appropriate
to every parts of the target face. For example, the nasolabial folds and forehead wrinkles are
fit for the target image, but the shape and shade of the noses are different.

To fit for all parts of the face and preserve the image resolution as well, we
propose using patch-based texture synthesis to generate the closest face texture. The
patch-based texture synthesis is inspired by Visio-lization method [13]. Their purpose
is to generate faces of inexistent identities by stitching patches from database. On the
contrary, we use patches to piece up the image closest to a low-frequency reference
face.

After alignment and normalization, we divide all images in the texture database
into regular patches. For a reference face (target) image, it is also divided into
patches, and each reference patch is then compared with all of the patches at the
same position in the texture database. In the comparison process, we aim at finding
the patch with the smallest sum of the square difference (SSD) in pixel values to the
reference patch. We can also find the patch with the closest gradient values and adjust

Fig. 7 Adding Parents Effects. a The input image. b Father’s image. cMother’s image. d Aged images by our
method without parent’s effects. e Aged image (to 40–49 years old) with parents’ effect. Upper (e): Including
parents’ mixed pattern into training database. Lower (e): Fitting the guidance vector to parents’ one. f Real
images (upper 40, lower 32 years old)
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their gains. Therefore, we define the cost function between two patches Pa and Pb as
the combination of intensity and gradient differences:

Cost Pa;Pbð Þ ¼
X
i

PaðiÞ � PbðiÞk k2 þ λ
X
i

rPaðiÞ � rPbðiÞk k2; ð10Þ

where i is the pixel index; ∇ represents the gradient operator; 1 is the weight for the
gradient term. In our implementation, 1=1.

Several constraints are further considered to improve the stitched result. To keep smooth
stitching, we require the cost at boundary of adjacent patches should also be under a user-
defined threshold. To keep the symmetry of human faces, we restrict the two symmetric
patches in the right and left parts of a face should be selected from the same image. The
process of patch-based synthesis is shown in Fig. 8.

Even with the minimum intensity and gradient cost and boundary constraints, obvious
gaps may still occur between two adjacent patches selected from different texture sources.
We use Poisson image editing [14] to remove the artifact boundary between two adjacent
patches and preserve gradients within two patches. The image of directly stitched patches
and the adjusted image are shown in Fig. 9b and c, respectively.

4.2 Transferring appearance details

After stitching the most appropriate skin patches, we have to transfer the creases and
wrinkles of the texture image to the predicted face. One popularly-used approach for image
transfer is Expression Ratio Image (ERI) by Liu et al. [12]. Given a pair of expressive and
neutral faces of an individual, their deduction shows that the surface variations of an aligned
pixel can simply be approximated by their intensity ratio if Lambertian reflectance assump-
tion is applied.

In our case, we only have a low-frequency target face Tbase (e.g., Fig. 9a) and a composite
face with details Sdetail (e.g., Fig. 9c). To acquire the intensity ratios, we have to create a
corresponding face without details. Thus, we apply Gaussian filter to Sdetail and denote the
smoothed face as Sbase. Under the Lambertian reflectance model, the intensity of an image S
at pixel p can be formulated as

SðpÞ ¼ kðpÞ
XLNum

i¼1
Ii nðpÞ � lið Þ ð11Þ

Fig. 8 The process of patch-based skin texture synthesis. The most appropriate patch is retrieved from the
skin texture database according to gradient and intensity differences, boundary and symmetric constraints
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where Ii and li are the intensity and direction of light source i and LNum is the light source
amount; k(p), n(p) are the reflectance coefficient and surface normal at pixel p. Our detail
ratio of a pixel p can be represented as

SdetailðpÞ
SbaseðpÞ ¼

PLNum
i¼1 Ii ns detailðpÞ � lið ÞPLNum
i¼1 Ii ns baseðpÞ � lið Þ : ð12Þ

Assume that ns_base and nt_base, the surface normal of the Sbase and Tbase are nearly
identical, and the lighting conditions are also similar. We can therefore approximate the
detail-enhanced image of Tbase as

TdetailðpÞ � TbaseðpÞ SdetailðpÞSbaseðpÞ : ð13Þ

An example of detail transfer is shown in Fig. 9, where image a and c are Tbase, Sdetail and
d is the detail-transferred image Tdetail.

4.3 Interactive detail enhancement

We have introduced the images predicted by our guided prediction algorithm and enhanced
by appearance detail transfer. However, certain parts of the predicted face can be too blurry
for search of wrinkle patches. In other cases, a user or witness would like to suggest or
enhance the predicted results.

Interestingly, since the patch-based detail enhancement (4.1) searches the most
appropriate patches according to gradients and intensities. Users can intuitively paint
on the predicted faces and our system can automatically extract the possible wrinkles
and creases from texture database. Figure 10 shows two examples of interactive detail
enhancement.

5 Experiment and discussion

We performed two types of experiments to evaluate the effectiveness of our method. First,
we compared feature-point accuracy of our results with comparative methods and the
ground-truth data. Second, we performed user studies to evaluate the responses from users.

Fig. 9 a The original target image. b The original patches of a stitched face. c The face image adjusted by
Poisson image editing. d The target image enhanced by detail ratios
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We used FG-NET database for training and testing. The data of a testing subject are
excluded during the training stage. We also filter out images in side view, with glasses or
conspicuous beard. To validate the aging effects, we chose three age gaps: from 5 to 30, from
10 to 40, and from 20 to 50, in our experiment. All compatible image pairs fit these three
gaps are included in our experiments. For examples, we took a 12-years-old image of an
identity as the testing image, and her/his 43-years-old image was regarded as the ground-
truth. The EM optimization runs 10 iterations and the poisson image editing runs 180
iterations.

To analyze the advantages and weakness of different aging methods, we reproduced the
AGES [6] as our primary comparative method. That is because this algorithm is one of the
few aging prediction method that performs with sparse training data, like FG-NET. Our
system is implemented by C++ and Matlab C library. When performing on a PC of i7-
2600 K CPU with 8 GB memory, the synthesis time of each image is less than 2 min.

5.1 Evaluation of feature-point accuracy

We used leave-one-out approach to compare the feature-point accuracy of the AGES and our
guidance method with the ground-truth. As above-mentioned, we took FG-NET identities
with valid data in three age gaps as our testing subjects. For a testing subject, her/his aging
pattern was excluded from the training data, and only one image at the young age was used
as the input.

After aligning eyes (FG-NET feature point no.29 and 34) of aged images to the ground-
truth, we calculate the average errors of feature points estimated by AGES and the proposed
methods. The results are listed in Table 2. The average error of a region (e.g., face contour,
eyes, nose, mouth) evaluates the average point distances between the regions at the ground

Fig. 10 Two examples of interactive aging enhancement. The 1st column shows the original reference or
predicted faces; the 2nd column shows the detailed face by patch-based transfer; the 3rd column shows
indication curves assigned by users; the 4th column shows the results by interactive enhancement
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truth and the predicted face (regions are aligned by their region centers). The average error of
a normalized region evaluates the average point distances between the normalized regions at
the ground truth and the predicted face (regions are aligned by their region centers; the
region width on a predicted face is scaled to fit the ground truth), and the errors of weighted
combination of normalized regions evaluate the sum of the normalized region errors
multiplied by the corresponding region width.

Notice that we not only compare the whole face shape but also feature contours. That’s
because the magnitude of position errors may not always consist with user perceptions. For
instance, the FG-NET has dense feature points around the mouth. If the predicted mouth
shape looks similar but is lightly shifted or scaled, the average position error will greatly
increase. Therefore, we further compare the facial regions, including face contour, eye, nose,
and mouth, respectively. Moreover, we also calculate the normalized region errors, where
regions are normalized according to the regions widths. The weighted combination errors
can be analogous to the weighed sum of region dissimilarities according to users’ views.

In the two younger groups 5-to-30 and 10-to-40, our proposed method apparently out-
performs the AGES. But, in the 20-to 50-group, the average position errors of the proposed
method and AGES are similar. That is because 1) we have only few data between this age
gap in the FG-NET. 2) In this age, human face geometry (feature point positions) changes
relatively less from aging, but more due to living style and environment. Fatness and other
age-invariant issues may dominate the position errors, and this makes two prediction
methods fall into similar feature position errors.

5.2 User studies

Since we presented two techniques for aging prediction, to clarify their effects, we separated
our method as our guided prediction and our full method. The former one made use of the
guidance vectors in subspace prediction; the later one employed both the guided prediction
and detailed texture synthesis.

Twenty-two volunteers, from 20 to 25 years old, participated in the user evaluation.
We introduce three sets of experiments: reasonableness of aging, the best aging, and
similarity to the ground-truth, to measure responses from users’ perception. The first
evaluation has 107 testing data, the second one has 37 testing groups, and the third
evaluation has 80 testing data. The evaluation time for each volunteer was around one
to one and a half hours.

Table 3 Average scores of user evaluations

Experiment 1 (reasonableness of aged images)

General dataset (30 identities) AGES Our guided prediction Our full method

Grade 4.51 5.03 6.68

Standard Dev. 1.08 0.78 0.54

Experiment 2 (the best aging image)

General dataset (30 identities) AGES Our guided prediction Our full method

Approval percent 8 % 7 % 84 %

Experiment 3 (similarity to the ground-truth elder image)

General dataset (30 identities) AGES Our guided prediction Our full method

Grade 4.34 5.14 6.10

Standard Dev. 0.65 0.80 0.81
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In the first evaluation reasonableness, we simultaneously displayed a real young
face image and a synthesized aged image by one of the testing algorithms. We also
informed users of the ages of these two images but did not provide any information
about the way of synthesis. According to the source image and the indicated ages,
users had to rate satisfaction and reasonableness of the aged image by a one-to-nine
score (1: very poor; 3: poor; 5: average/acceptable; 7: good; 9: satisfactory). Each
user sequentially evaluated all aged images of testing subjects, and the aged images of
different methods occurred in a random order. The general dataset we used includes
30 identities from the above-mentioned three training age gap sets.

As shown in Table 3 and Figure 11, in the general data set (FG-NET identities
conforming to the three age gaps), the guided prediction surpass AGES about a half
points, and the full method reach 6.68 points in average. This means our aging
prediction is reasonable and more consistent. Figure 12 shows examples in the test.

In the second evaluation, we simultaneously displayed a real young face image and
three synthesized aged images by different algorithms. These aged images were placed
in a random order. We also informed users of the young and target age. Users were
asked to choose the most reasonably aged image. Our results got 84 % of approvals
in the general dataset.

In the third evaluation similarity, we simultaneously displayed a real elder face
image and a synthesized image at the same age by one of the algorithms. Similar to
the first evaluation, users had to evaluate the similarity of an aged image by a one-to-
nine score. Our full method got the best scores 6.1 as shown in Table 3. Figure 13
shows the results.

5.3 Discussion

In this subsection, we discuss the advantages and disadvantages of two methods according to
experiments and user evaluations.

The AGES method, an iterative least-square approximation, has demonstrated its success of
filling missing data in age patterns [6]. However, for the most circumstances, only few or even a
single young image can be provided as the input. AGES method is possibly trapped around the
mean face of the target age. In our user studies, it got median scores and volunteers reported that
it sometimes cannot preserve personal characteristics. The original AGESwas designed for age
estimation of facial images, and worked in PCA or other subspace, where high-frequency
details like creases or wrinkles cannot be properly represented. Nevertheless, this seminal

Fig. 11 The comparison of A: AGES, G: our guided prediction and O: our full method in experiment 1 and 3.
a The first three bars show the average and standard deviation of three methods. b, c, d, e, f Exemplar five
aging examples by three methods as shown in Fig. 12
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algorithm helps our system fill the initial aging-pattern database and the EM-like framework is
extended for our base of aging simulation with personal guidance.

The proposed method takes a hybrid strategy. We utilize EM-like data filling with guidance
vectors to predict the bases of aged faces, where more personal characteristics can be preserved.
Patch-based facial detail synthesis is further applied to compensate the high-frequency wrinkles.

Fig. 13 Examples of experiment 3 (similarity). Each row shows an example. a Input image. b Aged images
of AGES. c Aged image of our full method. d Real aged image. NOTE: for fair comparison, all images were
shown in gray-scale in user evaluation

Fig. 12 Examples in experiment 1 (reasonableness). Each row shows an example. a Input image. b Aging
image of AGES. c Aging image of guided prediction. d Aging image of our full method. NOTE: for fair
comparison, all images were shown in gray-scale in user evaluation

�
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We conduct experiments to evaluate the effects of our method. We found that with our
guidance vector, the geometry (feature point) prediction for young to middle ages can be
more accurate. Using our synthetic aged images as training data can improve the recognition
rate of elder faces. Moreover, our results get the highest point among three methods in user
study “reasonableness”, “the best aging” and “similarity to the ground-truth elder image”.
Our proposed method performs not only more detailed aging face, but also more reasonable
personal characteristics. The small standard deviations show that our results are of more
consistent qualities.

There are two major limitations of the proposed method. First, our method is based on
statistical analysis and pattern matching. The prediction is feasible within the convex
combination of training data. For instance, identities in FG-NET are Caucasian; the predic-
tion may be biased when applying to Asian or African descents. Figure 14 shows an
example. The limitation can be alleviated by extending datasets with more diverse aging
patterns and textures. The other limitation is regarding the features. Currently, we do not
exploit any prior domain knowledge and take all facial pixels of even weights for training.
Our results may not be directly applicable to specific recognition systems, where special
features are accentuated. More aged results by our methods are shown in Figure 15.

6 Conclusion and future work

A novel two-layer approach for facial image aging is proposed in this paper. At first, we
approximate aged face in the aging-pattern subspace with the personal guidance vector.
Detailed aged features, such as wrinkles and creases, can be synthesized and transferred with
an additional facial appearance dataset.

The proposed method, considering personal characteristics and aging trends from exam-
ples, can generate reasonable aging prediction. It also overcomes the lack of details in

Fig. 14 Examples of two failure results. The left column is input face image. The 1st row shows an Asian
male aged from his childhood. Since the training data are all Caucasians, the aged result (mid) tends to grow
like a Caucasian, but not Asian. The 2nd row shows a reasonable aging result (mid), but do not resemble to the
real aged face (right). That is because the real person is thinner in cheeks and there are no other age patterns in
database like that. Besides, the oblique view of a face causes inaccuracy of feature point location, it also
disturb the prediction
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previous aging methods. The objective experiments and user studies show that our
aged results are comparable to those generated by related methods. Moreover, the
proposed framework is flexible and extendable for user controls. It can easily include
parents’ effect vectors or users’ sketch indication for guidance in the aging process.
The proposed method is the first few articles that provide such controllable properties
during aging prediction. The results can be applied to Art and Entertainment, increas-
ing realism of virtual characters.

One possible extension is to combine with face or hair swapping techniques [3], a
user can arbitrarily generate aged portraits from single young image. Currently, we
regard the parents’ effect as an optional tool, and preliminarily use weighted-blending
for parents’ effect vectors. We think it is worth to further investigate how parents’
features influence the aging prediction of a child. Besides, it is also possible to collect

Fig. 15 More examples by our results. The 1st rows: input images from the FG-NET. The 2nd rows: aged
images of the 1st rows by our method. The 3rd rows: input images not included in FG-NET. The 4th rows:
aged images of the 3rd rows by our method. NOTE: The input of Mona Lisa was first rectified by View
Morphing method [18]
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3D aging patterns by model-based [1] or scanning techniques [10]. For facial wrinkles
and creases, image-based 3D modeling [11] improves the level of details. These
techniques will benefit the side-view or 3D face aging.
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