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Connection Choice Codes

Chih-Ming CHEN†, Nonmember and Ying-ping CHEN†a), Member

SUMMARY Luby Transform (LT) codes are the first practical imple-
mentation of digital fountain codes. In LT codes, encoding symbols are in-
dependently generated so as to realize the universal property which means
that performance is independent of channel parameters. The universal
property makes LT codes able to provide reliable delivery simultaneously
via channels of different quality while it may also limit the flexibility of
LT codes. In certain application scenarios, such as real-time multimedia
transmission, most receivers have tolerable channels whose erasure rates
are not fixed, and channels of high erasure rate are outside the design box.
In this paper, Connection Choice (CC) codes are proposed to trade the uni-
versal property for better performance. The key to CC codes is replacement
of random selection with tournament selection. Tournament selection can
equalize the frequency of input symbols to join encoding and change the
degree distribution of input symbols. Our study indicates that CC codes
with appropriate degree distributions provide better performance than the
best known LT code when channels of high erasure rate can be ignored.
CC codes enable system designers to customize digital fountain codes by
taking into account the distribution of the erasure rate and create a new
possibility for setting trade-offs between performance and erasure rate.
key words: digital fountain code, forward error correction, LT code, era-
sure rate, connection choice

1. Introduction

Digital fountain codes are a new category of erasure cor-
recting codes that have been introduced in the last decade.
A well-known implementation of digital fountain codes is
the Luby Transform codes (LT codes) [1]. LT codes realize
the most important characteristic of digital fountain codes
called ratelessness, which allows unlimited output symbols
to be generated for variable code rates. Moreover, it has
been proven that the coding scheme of LT codes can of-
fer low overhead and good coding efficiency. First, the en-
coder decides the degree of each output symbol according
to a pre-defined probability distribution. Second, the gen-
eral but costly decoding approach, Gaussian elimination, is
replaced with belief propagation [2] at the receiver side. As
a result, reception overhead is slightly increased to secure
the benefit of much better decoding efficiency. Based on
the design, two conditions are considered in the scenario re-
garding whether source data can be successfully recovered.
The first one is a necessary condition that the receiver must
receive all pieces of source data. In other words, each in-
put symbol must be chosen and encoded in received output
symbols at least once. The other is that the set of received
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output symbols must have an appropriate configuration such
that belief propagation can successfully unpack all the out-
put symbols. These conditions may be satisfied by adopt-
ing applicable degree distributions and receiving sufficient
amount of output symbols.

The proposal of LT codes [1] gave rise to a family of
degree distributions based on theoretical analysis. The anal-
ysis showed that one of the proposed distributions, ideal
soliton distribution (ISD), has the optimal performance only
in the ideal case. The other one, robust soliton distribution
(RSD), was developed with robustness and flexibility. Two
parameters, c and δ, were introduced to adjust the distri-
bution and coding behavior of LT codes. According to the
analysis, k input symbols can be recovered with a success
probability 1− δ when extra O(

√
k ln2(k/δ)) output symbols

are received. Moreover, both soliton distributions are de-
signed to work with an average degree equal to or greater
than O(ln(k)) in order to satisfy the necessary condition for
successful decoding. The structure of error correction codes
can be represented as a Tanner graph with information and
check nodes. In LT codes, the degrees of check nodes are
decided by the given degree distribution, and information
nodes are chosen uniformly at random when the edges are
being built. The degree distribution of information nodes is
hence binomial. A degree distribution with average degree
greater than O(ln(k)) can guarantee that the probability of
an isolated information node will be less than 1/k. Clearly,
high average degrees reduce the probability that some in-
put symbols are missing at the receiver side. However, an-
other problem concerning the average degree is the compu-
tational cost. To generate an output symbol with degree d
requires d−1 Xor operations, and therefore, the average de-
gree of the adopted distribution dictates the computational
cost of LT codes. For example, the required operations of
LT codes with robust soliton distribution are O (k ln(k/δ)).
Such a cost is merely acceptable, and more efficient digital
fountain codes are still in need.

A successful improvement, called Raptor codes [3],
[4], was designed as a two-layer encoding structure. In its
second layer, weakened LT codes are implemented with de-
gree distributions of which the average degrees are much
lower than O(ln(k)). It can be understood that not all input
symbols will be chosen to join the encoding process due to
low average degrees and selection randomness. Therefore,
a set of block codes is integrated as a pre-coder in front of
the weakened LT codes to encode source data as interme-
diate symbols. The pre-coder has a fixed code rate, which
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allows a fraction of intermediate symbols to be lost while
the source data can still be reconstructed. Although the pre-
coder requires extra cost of space and computation, the total
coding time of Raptor codes is O(k). The success of Raptor
codes bases on the cooperation between weakened LT codes
and the pre-coder. In brief, the pre-coder shares the work-
load of LT codes and solves the problem that, when a degree
distribution with low average degree is adopted, some input
symbols may be missing in encoding or transmission.

For the same purpose, another solution is to reduce the
variance of frequency with which an input symbol is chosen
and encoded. In this work, a new scheme named connec-
tion choice (CC) codes is studied by introducing a different
selection mechanism for LT code encoding. The adopted se-
lection strategy can reduce the probability of input symbols
never being selected and effectively drop the error floor of
weakened LT codes. It means that the proportion of recov-
ered input symbols can be enhanced or even a full decoding
can be achieved and also that CC codes may be integrated
into Raptor codes as a substitution of weakened LT codes. In
fact, the new selection mechanism reforms the degree distri-
bution of input symbols. This feature provides the flexibility
of CC codes to cooperate with customized degree distribu-
tions and obtain better performance in different application
scenarios. Moreover, it is noted that, while trading the uni-
versal property for better performance, CC codes are still
rateless and suitable for the scenarios in which digital foun-
tain codes are suitable but fixed rate block codes may not be
applicable or efficient.

For the remainder of this paper, the details of connec-
tion choice are firstly introduced in Sect. 2. Although the
selection strategy is conceptually simple, its behavior makes
the coding behavior highly complicated such that theoreti-
cally analyzing the error probability is extremely difficult.
Consequently, simulation results are presented to demon-
strate the performance of CC codes in Sect. 3. Section 4 then
makes a further study of connection choice and illustrates
the characteristics of CC codes by using And-Or tree anal-
ysis. Finally, Sect. 5 introduces obtained degree distribution
instances to confirm the flexibility of CC codes, followed by
the conclusion given in Sect. 6.

2. Connection Choice

In LT codes, the relation between input symbols and output
symbols can be modeled as a Tanner graph. Each connec-
tion edge denotes that an input symbol is a part of some
output symbols. As aforementioned, we expect that all in-
put symbols have at least one connection edge for a pos-
sible full decoding. Therefore, a selection strategy called
tournament selection is introduced to stochastically equal-
ize the connection count of each input symbol. Tournament
selection is a common technique in the field of evolutionary
computation. The form of tournament selection attributed
to the unpublished work by Wetzel was studied in Brindle’s
dissertation [5], and more recent studies using tournament
selection can be found in [6]. The operation of tournament

selection is fairly simple and hence, a similar concept has
also been used in other domains, such as that Mitzenmacher
introduced the technique to achieve load balancing in dis-
tribution systems [7]. The details and the effect of utilizing
tournament selection in LT codes will be presented in this
section.

2.1 Tournament Selection

In CC codes, random selection is replaced by tournament
selection, used to select an input symbol for encoding. The
first step of employing tournament selection is to define a
parameter T called tournament size. At the time to decide
each input symbol for encoding, T input symbols are uni-
formly randomly selected as candidates, and the final deci-
sion is made according to the connection counters. Connec-
tion counters count the number of output symbols to which
an input symbol has been connected. The counter records
the degree of input symbols during the encoding process.
Out of these candidates, the input symbol with the lowest
counter value is chosen to take the part of the current en-
coding run. Figure 1 illustrates tournament selection with
an example. A Tanner graph is used to represent the re-
lation between input (square) and output (circle) symbols.
The connection edges indicate the coding structure between
these symbols. For example, the output symbol e1 is ex-
actly the input symbol s2, and e2 is generated by s1, s2, and
s4. The number in symbol nodes represents its degree or
counter value for the moment. The example shows the cod-
ing process of e4 with degree d = 2. For the first selec-
tion, tournament selection selects T (assuming T = 2) input
symbols as candidates (dashed lines in sub-figure (b)) and
compares their counter values. A solid line in sub-figure
(c) connects e4 with the final decision s3 that has a lower
counter value than s2. Then, another selection repeats the
procedure in sub-figure (d) and (e).

The procedure of CC codes is described as follows:

• Parameters

– (s1, s2, . . . , sk) : input symbols

Fig. 1 An example of tournament selection. The scenario here is to gen-
erate a new output symbol e4 of which the degree is 2.
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– (c1, c2, . . . , ck) : connection counters
– π(d) : degree distribution
– T : tournament size
– e : new output symbol

• Procedure to generate an output symbol

– Step 1) Sample a degree d from the distribution
π(d)

– Step 2) For i = 1, . . . , d do

∗ Step 2.1) Generate a random number se-
quence (r1, r2, . . . , rT ) to mark T input sym-
bols (sr1 , sr2 , . . . , srT ) as connection candi-
dates
∗ Step 2.2) Find the symbol with the mini-

mum connection count, say, smi ; i.e., cmi =

min(cr1 , cr2 , . . . , crT ).
∗ Step 2.3) If smi has already been selected, dis-

card smi and go to Step 2.1
∗ Step 2.4) Update the connection count cmi =

cmi + 1

– Step 3) Output e = sm1

⊕
sm2 . . .

⊕
smd

In step 2.1, whether or not T candidates are distinct
create two variants of tournament selection. The little dif-
ference between the two implementations could be ignored
when T � k. Both methods can be used for CC codes, and
duplicated candidates are allowed in this paper for conve-
nience on analysis. If there is a tie in step 2.2, a solution to
break it is to select one symbol uniformly at random among
the symbols with the same count value. Connection counters
record the encoding history of input symbols. They help to
identify the symbols that have fewer connections and should
be selected with a higher probability. As a result, the con-
nections distributed on input symbols are equalized.

2.2 Probability of Isolation

Luby has interpreted the process of connection construction
as a ball-bin problem [1]. If there are k input symbols and
N connections in the Tanner graph, encoding can be imag-
ined as throwing N balls into k bins uniformly at random.
The ball-bin model is also widely used to study the situa-
tions of job allocation or supermarket queuing. Tournament
selection can effectively reduce the variance of number of
balls in each bin and solve the problem of load balancing.
The literature [8] gives the proof of that the upper bound of
maximum loading is greatly reduced by the greedy selection
strategy. For a similar effect, we introduce tournament se-
lection into LT codes to reduce the probability of an isolated
information node in the Tanner graph or an empty bin in the
ball-bin model. The probability of a particular bin is empty
can be calculated as

(1 − 1/k)N ≈ e−N/k = e−K×d/k, (1)

where the total connections N is expressed by the number
of received K output symbols and average degree d of the

adopted degree distribution. Suppose the reception over-
head is small and K ≈ k,

e−K×d/k ≈ e−d. (2)

Hence, the probability depends solely on the average de-
gree when the number of received output symbols roughly
equals the size of input symbols. For the same situation in
the case of tournament selection, T candidates are chosen
uniformly at random before the actual input symbol is de-
termined to be encoded. It can be classified into two cases
if an input symbol is not chosen in one tournament selec-
tion event. First, the input symbol is not included in the T
candidates. Second, there is a tie and another symbol is cho-
sen. The second case occurs at most k − 1 times. If an input
symbol is never chosen to be encoded, it must be missed in
at least (K × d − (k − 1)) × T random selections. Thus, we
can derive the upper bound of the probability that an input
symbol is never encoded as

(1 − 1/k)(K×d−(k−1))×T ≈ e−(d−1)×T . (3)

Such a result indicates that tournament size T exponentially
influences the probability, and therefore the probability can
be reduced by increasing the average degree d or the new
parameter, tournament size T .

3. Simulation

For observation, simulations are conducted in this section
to demonstrate the performance of CC codes. Connection
choice being able to reduce the isolation probability means
that degree distributions with a lower average degree might
become feasible. Because we have no intention to introduce
more new elements into the coding scheme, for simplicity
and convenience, ideal soliton distributions with a shorter
length are adopted in the simulation.

3.1 Short Ideal Soliton Distribution

Ideal soliton distribution, ρk(d), for input symbols size k is

ρk(d) =

{ 1
k for d = 1

1
d(d−1) for d = 2, 3, . . . , k .

The average degree of ρk(d) is the sum of the harmonic se-
ries up to k, H(k) ≈ ln(k). The length, k, influences the prob-
ability of degree one and average degree of ISD. Since CC
codes can adopt distributions with lower average degrees,
a shorter ISD form with the parameter of ln(k) instead of
k is considered, denoted as Short ideal soliton distribution
(SISD) ηk(d) and given as

ηk(d) =

{
ρu(d) if d ≤ u
0 otherwise

, where u = �ln(k)	.

SISD follows the form of ISD, and we bound the maximum
encoding degree by �ln(k)	. The average degree of ηk(d) is
hence less than ln(ln(k)).
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According to Sect. 2.2, the probability of an input sym-
bol never being encoded approximates e−d for LT codes and
can be adjusted to e−(d−1)×T for CC codes. We can compute
a value of T such that CC codes would have roughly the
same probability as LT codes. Let dρk be the average de-
gree of ISD, dηk be the average degree of SISD. By letting

e−(dηk−1)×T = e−dρk , we have

e−(ln(ln(k))−1)×T = e− ln(k)

T = ln(k)/(ln(ln(k)) − 1),

which gives a guideline to decide T when SISD is adopted
to work in CC codes. It should be noted that there are lots
of approximation in the calculation and it gives a sign that
the tournament size grows very slowly to provide the effect
for large sizes of k, meaning that little extra cost is required
to use tournament selection.

3.2 Simulation Results

To examine the performance of CC codes, the simulation re-
sults for input symbols size k = 1000 are presented in this
section. The performance here is defined as the average re-
ception overhead required for a successful recovery. We re-
peat the complete encoding/decoding process to obtain the
performance indicator. Our simulation includes LT codes
adopting robust soliton distributions and CC codes adopt-
ing short ideal soliton distribution with different tournament
sizes. Moreover, the analysis of RSD gives the upper bound
of the error probability of LT codes, and we also know that
RSD is not the optimum for a finite size (i.e., k < ∞). Many
studies [9]–[12] made attempts to optimize the degree distri-
bution for LT codes with finite length. [10] even developed
an approach to obtain the optimal degree distribution, while
the results are unfortunately limited within k < 30 due to
the very high order of computational complexity. In order
to emphasize the better performance of CC codes, the best
degree distribution listed in the literature [12] for k = 1000
is included in the comparison. The best degree distribution
is named as “BDD” in Table 1.

A pure channel without erasure was implemented and
all data points are averaged over 106 independent simulation
runs. Figure 2 shows the successful full recovery rate under
different receiving overheads. The successful full recovery
rate is the percentage of runs that source data have fully
uncovered over the 106 runs. In the figure, LT codes with
RSD present the expected performance consistent with the
analysis in the literature, BDD obviously outperform RSD,
and the results of CC codes depend on the tournament size.
According to the derivation in Sect. 2.2, an applicable tour-
nament size T should be around ln(k)/(ln(ln(k)) − 1) ≈ 7
for k = 1000. In the experiment, the average degree of
ISD(ρk(d)) and SISD(ηk(d)) is respectively 7.49 and 2.6.
Tournament size more than 7.49/(2.6 − 1) = 4.68 ensures
a sufficiently small probability of isolated nodes. Hence,
CC codes with tournament size T = 5 delivers better perfor-
mance than both LT codes with RSD and BDD.

Table 1 The known best degree distribution from the literature [12] is
denoted as “BDD” and the three customized degree distributions with dif-
ferent characteristics for CC codes are “CCD’s.” All the degree distribu-
tions are designed for LT codes with message size k = 1000.

Degrees BDD CDD1 CDD2 CDD3
1 0.1297 0.0636 0.0798 0.1281
2 0.2661 0.4261 0.3947 0.2471
3 0.3215 0.3586 0.2975 0.4235
5 0.0770 0.0247 0.1391 0.0770
8 0.1245 0.0472 0.0027 0.0074
13 0.0003 0.0328 0.0077 0.0656
21 0.0196 0.0291 0.0556 0.0030
34 0.0336 0.0021 0.0000 0.0075
55 0.0154 0.0000 0.0018 0.0221
89 0.0010 0.0091 0.0000 0.0053
144 0.0001 0.0043 0.0211 0.0011
233 0.0008 0.0023 0.0000 0.0122
377 0.0104 0.0000 0.0000 0.0000
d 9.6111 5.5764 6.8811 8.1931

Fig. 2 Simulation results on the successful recovery rate.

Fig. 3 Simulation results on the bit error rate.

Figure 3 examines the simulation results from a differ-
ent aspect, the bit error rate (BER), which represents the ra-
tio of unsolved input symbols to all input symbols. A com-
mon behavior is shown where the curves go down rapidly
to their respective error floors when a sufficient reception
overhead is received. The behavior reflects the two condi-
tions described in Sect. 1. High error rate before the drop is
due to the failure of belief propagation. Many input sym-
bols are still unsolved even though the number of received
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output symbols has been greater than k. Once the chain re-
action of belief propagation occurs, most symbols can be
recovered except for the symbols in a trapping set, which
causes error floors of error correcting codes. A trapping set
may be attributed by the input symbols never encoded or a
non-vanishing cycle. CC codes integrate the tournament se-
lection and lower node degrees. Most output symbols with
lower degrees is advantageous for belief propagation. The
error rate of CC codes with appropriate T size can fall early
in the figure. In addition, tournament selection contributes
to eliminate possible isolation nodes and effectively drop the
error floor. We can obtain the same conclusion from the ob-
servation in Fig. 3 that the error floor of CC codes reduces
as tournament size increases.

On both performance indicators, the successful decod-
ing rate and the bit error rate, CC codes show a better per-
formance than LT codes with RSD and even the known best
degree distribution to the our limited knowledge. Although
the modification in CC codes is confined within the mech-
anism of symbol selection, the encoding behavior becomes
too complicated to be analyzed by using a method similar
to that used in [1]. Consequently, we consider an indirect
approach to analyze CC codes in next section.

4. Investigation

Many theoretical studies have been proposed to demonstrate
the performance of LT codes with particular degree distri-
butions. Most of them are based on estimating the size of
ripples. However, the method does not seem to work in the
case of CC codes because encoding symbols are not inde-
pendent anymore. To analyze CC codes, a series generation
of encoding symbols should be considered in the same time.
For the situation, we look for help from an convenient analy-
sis tool called And-Or tree analysis [13], also introduced by
Luby. The tool provides an intuitive framework to carry out
the analysis for random processes. In error correction, it was
utilized to analyze the failure probability while belief prop-
agation works on a Tanner graph in which degree distribu-
tions of information and check nodes are both known. This
section will describe how to obtain the degree distribution
of input symbols in CC codes, and then different degree dis-
tributions of output symbols are examined by And-Or tree
analysis.

4.1 Degree Distribution of Input Symbols

Before the use of And-Or tree analysis, it is necessary to
know the node degree distribution of the Tanner graph. The
degree distribution of check nodes is user-defined in both LT
codes and CC codes. In contrast, the degree distribution of
information nodes is a binomial distribution since LT codes
build the connections uniformly at random, while it is not
so intuitive with tournament selection. The history of the
ball-bin process influences the location of the next ball. It is
extremely difficult to consider all the possibilities and com-
pute accurate results. As a secondary solution, we develop a

dynamic programming algorithm to approximate the distri-
bution of the ball-bin model with tournament selection. Let
X be the random variable of the number of balls in a bin,
and fn(x) denotes the probability mass function of X after
totally n balls were thrown. Consider fn(x) as the probabil-
ity function at n-th moment. At beginning of the moment,
all bins are empty and we set the initial probability function
as f0(0) = 1. When balls are thrown in bins one by one,
we estimate the change based on current probability func-
tion and update it for the next moment. For large bins size
k, the probability, fn(x), means a proportion of bins which
have x balls. The proportion may increase or decrease de-
pends on the location of the new ball at this moment. Let
PmT

n (x) presents the probability that the minimum number
of balls in T candidates bins is x at the n-th moment; in other
words, the probability means that the n+1-th ball will be al-
located in a bin which has x balls. Therefore, the proportion
of bins with x balls will decrease with probability PmT

n (x)
and increase with PmT

n (x − 1) as

fn+1(x)= fn(x)−PmT
n (x)/k+PmT

n (x−1)/k. (4)

To complete the dynamic programming, the remaining job
is to calculate the probability, PmT

n (x), which can be con-
sidered as that the number of balls in all candidate bins
are greater than x and at least one candidate has x balls.
Given the cumulative distribution function of X, Fn(x) =∑x

i=1 fn(i), the probability can be calculated as

PmT
n (x) = (1 − Fn(x − 1))T − (1 − Fn(x))T . (5)

However, another important factor not yet considered
is the erasure rate of communication channel. The function
of tournament selection is based on the history of encoding
processes. If erasure occurs, the sender and receiver will
have asynchronous state of node degree distributions. As-
sume that the event of erasure occurs with erasure rate p,
the 1/(1 − p) times of encoding symbols should be sent out
for receiver that there is sufficient information to complete
the recovery. Following such a situation, we reform the ball
distribution in the ball-bin model by throwing N/(1−p) balls
and considering that each ball may be erased with probabil-
ity p. First, the proportion, p, of N/(1 − p) balls will be
erased so there is totally N balls on average. Second, a bin
with x balls will decline according to the binomial distribu-
tion B(x, p). More precisely, the probability of a bin with x
balls reducing to i is

(
x
i

)
· px−i · (1− p)i. To integrate the steps

in this section, the procedure can help us to estimate the ball
distribution in the ball-bin model for any given four param-
eters, N balls, k bins, tournament size T , and erasure rate p.
Figure 4 shows the examples for ball-bin model with differ-
ent parameters. Involving tournament selection effectively
reduces the variance of the distribution, but the randomness
of the erasure presents a counter force to reform the result
back to the binomial distribution. The erasure rate may in-
fluence the performance of CC codes.
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Fig. 4 The ball distributions in the ball-bin model with different param-
eters.

4.2 And-Or Tree Analysis

To make a further study on CC codes, And-Or tree analy-
sis is utilized to explain the reason why some degree dis-
tributions perform better. And-Or tree analysis measures
the failure rate of belief propagation by iteratively analyz-
ing the greedy edge punning in a Tanner graph. Edges in
a Tanner graph always connect an information node and a
check node. We define the left/right degree of an edge is the
information node degree or check node degree of the edge.
Given the degree distribution of information/check nodes,
Ω(x)/Λ(x), degree distributions of edges can be denoted as
ω(x) = Ω

′(x)
Ω′(1) and λ(x) = Λ

′(x)
Λ′(1) , which respectively represent

the distribution of information node degree and check node
degree of edges. According to the edge degree distributions,
And-Or tree analysis yields the iterative equation as

yl+1 = λ(1 − ω(1 − yl)), (6)

where yl denotes the ratio of unpacked edges at the l-th it-
eration, and the boundary condition is y0 = 1. Let y =
liml→∞ yl, we expect that the result of y will converge to 0
after iterative decoding. To achieve it, the iterative equation
must satisfy the critical condition, yl+1 < yl for yl ∈ (0, 1].

The condition indicates a criterion to examine the abil-
ity of error correction codes which employ an iterative de-
coding algorithm, including CC codes. When the degree
distribution of output symbols Λ(x) and a constant of recep-
tion overhead ε are decided, the total number of edges is
N = k · ε · Λ′(1). By the procedure given in Sect. 4.1, the
degree distribution of input symbols Ω(x) can be estimated
with the given tournament size T and erasure rate p. Finally,
we can build the iterative function for any particular degree
distribution of output symbols and observe the influence of
parameter T and p. Figure 5 gives the And-Or tree analysis
result of the normalized function that f (yl) = yl+1/yl. The
dotted line, yl+1/yl = 1, presents the fundamental criterion

Fig. 5 The influence of different erasure rates is investigated for CC
codes.

for a successful decoding. It is obvious in the figure that
RSD exceeds the based line and cannot finish the decoding
when the reception overhead is only 10%. Both BDD and
SISD show reasonable curves for successful recovery. We
can find that the effect of tournament selection may be off-
set as the increase of erasure rate. It seems that CC codes
with SISD only works with little erasure and more reliable
degree distributions for CC codes are in need.

5. Customization

Since theoretical analysis on CC codes is difficult, a general
form of degree distributions cannot be derived for the time
being. In this study, we employ techniques from heuris-
tic optimization and present the obtained distribution in-
stances to confirm the applicability of CC codes. In the lit-
erature[12], the source of BDD, an evolutionary algorithm
was introduced to optimize sparse degree distributions for
LT codes. The optimization framework can also be used
for CC codes to search for good degree distributions. By
the estimation given in the ball-bin model, tournament se-
lection brings the advantage to make different degree distri-
butions of input symbol possible, but degree distributions
will be affected by channel erasure. CC codes trade the
universal property for better performance and can be cus-
tomized/optimized in certain range of erasure rates. There
is a trade-off between the minimum reception overhead and
practical range of the erasure rate. To demonstrate the trade-
off, three customized degree distributions named CDD1,
CDD2, and CDD3 are given in Table 1 and different charac-
teristics of them are shown in the Fig. 6. The figure plots the
performance variance for different erasure rates. The results
of instances without tournament selection (T = 1) are two
horizontal lines which indicate the universal property that
performance is independent of the erasure rate. In contrast,
the other instances seek chances to further reduce the recep-
tion overhead within a range of erasure rates. To compare
with SISD, the performance of CCD’s is less sensitive and
the same result can be obtained by And-Or tree analysis.
Figure 7 presents the And-Or tree analysis with reception
overhead ε = 0.05 for BDD and CDD1. The performance
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Fig. 6 The performance variance for different erasure rates.

Fig. 7 The influence of different erasure rates for CDD1.

of CCD1 is still comparable when the erasure rate increases
up to 0.3.

6. Conclusions

The main contribution of this study is the proposal of CC
codes, which are more general than LT codes within the
realm of rateless codes. The parameter T creates a new di-
mension for controlling the coding behavior. Figure 8 shows
some well-known coding methods as instances of CC codes
on a two-dimensional plane formed by the average degree
of the adopted degree distribution and the randomness of
connections. Average degree equal to one means that no en-
coding operation is executed and tournament size affects the
randomness of output symbol generation from fully random
to sequential. LT codes represent the class with the maxi-
mum randomness. Linear random fountain codes [14] are a
simple implementation of rateless codes in which each input
symbol has a probability of 0.5 to be chosen for encoding.
The figure shows that all these codes may be considered as
instances of CC codes with different combinations of aver-
age degree and tournament size.

The simulation results are presented to illustrate the
performance of CC codes with a preliminary design of de-
gree distribution. Even though tournament selection makes
CC codes lose the universal property when tournament size
is greater than one, heuristic algorithms proposed in the lit-
erature were employed to search for good distribution in-

Fig. 8 The relation between CC codes and well-known coding methods.

stances to work with CC codes. Three customized degree
distributions were presented to demonstrate the potentiality
of CC codes that the better performance than LT codes could
be achieved within certain range of erasure rates. As a result
of our observation, it is a trade-off, seeking better perfor-
mance or fault tolerance, presented to the system designer
by CC codes. If the knowledge of the communication chan-
nel is available or the service provider can estimate the dis-
tribution of end users’ erasure rates, CC codes can be used
to aim at a particular range of erasure rates and the adopted
degree distribution may be optimized for most users. Al-
though some block codes can be optimized for a given era-
sure rate, CC codes can provide good performance over a
range of erasure rates, instead of one given value, as well
as all the advantages of rateless codes and digital fountain
codes. Moreover, the flexibility of CC codes allow the pos-
sibility of a better inner codes. CC codes could also be cus-
tomized to serve as a new component and to cooperate with
the pre-coder in Raptor codes or with even more recent, ad-
vanced pre-coders [15]. The improvement of the inner codes
would benefit these state-of-the-art coding schemes.
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