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Abstract Process capability indices have been widely used by
quality professionals for measuring process performance. Al-
though process yield is the most common criterion used in
the manufacturing industry for measuring process performance,
a more advanced measurement formula Y, called quality yield
index, has been proposed as an alternative measure of process
performance. Quality yield can be viewed as the classical pro-
cess yield minus the truncated expected relative process loss,
within the specifications, which focuses on customer satisfac-
tion. By taking customer loss into consideration, the advantage
of using the quality-yield measure as process performance is that
the formula can be applied to processes with arbitrary distribu-
tions. Unfortunately, statistical properties of the estimated Y, are
mathematically intractable. Therefore, capability testing cannot
be performed. In this paper, a nonparametric but computer inten-
sive method called bootstrap is used to obtain a lower confidence
bound on quality yield for capability testing purposes. Simula-
tion studies are conducted to examine the sampling distribution
of the estimated Y;. An application using the index Y, for the
light emitting diode manufacturing process is presented for illus-
tration purposes.

Keywords Bootstrap methods - Lower confidence bound -
Process capability indices - Quality yield - Simulation

1 Introduction

Process capability indices are convenient and powerful tools for
measuring process performance. In recent years, process capa-
bility indices have received substantial research attention in the
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quality assurance and statistical literature. Those indices quan-
tify process performance by taking into consideration process
location, process variation, and manufacturing specifications,
which reflect process consistency, process accuracy, process
yield, and process loss. The process indices Cp, Cpk, Cpp and
Cpmk [1-3] have become popular as unitless measures, which
combine natural process tolerance, manufacturing specifications,
process centering, and the target value of the process. Those in-
dices convey critical information regarding whether a process is
capable of reproducing items satisfying the customer’s require-
ment. In practice, a minimal capability requirement would be
preset by the customers/engineers. If the prescribed minimum
capability fails to be met, one would conclude that the process is
incapable. Four basic well-known capability indices are:
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Those indices are effective tools for process capability analysis
and quality assurance. Two process characteristics including the
process location in relation to its target value, and the process
spread are used to establish the formula of those capability in-
dices. A rough categorization of those indices is by consideration
of the target value T. The first category includes Cj and Cpy,
which are independent of 7. Process loss incurred by the depar-
ture from the target is, however, neglected. The second category
includes Cp;, and Cpk, which rectify the disadvantage by tak-
ing the target value into account. The limitation on using those
indices defined above is that they require the assumption that the
quality characteristic measurements must be coming from nor-
mal distributions. Process quality yield index Y, is proposed to
remedy this disadvantage.



Traditionally, process yield Y, is defined as the percentage of
the processed product units passing the inspections, which has
for a long time been the most common and standard criteria used
in the manufacturing industries for judging process performance.
According to the manufacturing specifications placed on vari-
ous key product characteristics, units are inspected and sorted
into two categories: accepted (conforming items) and rejected
(defectives). For product units rejected during the inspection,
additional costs would be incurred to the factory for scrapping
or reworking. All passed product units are treated equally and
accepted by the producer. No additional cost to the factory is
required. The definition of Yindex is
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where USL and LSL are the upper and the lower specification
limits, respectively, and F(x) is the cumulative distribution func-
tion of the measured characteristic X. The disadvantage of yield
measure is that it does not distinguish the products that fall in-
side of the specification limits. Customers do notice unit-to-unit
differences in these characteristics, especially if the variance is
large and/or the mean is offset from the target. To rectify this,
a more accurate, complete and customer-oriented measure of
yield, which is referred to as quality yield Y, was proposed [4].
The index distinguishes the products within the specifications by
increasing the penalty as the departure from the target increases.
The quadratic loss function is incorporated with the yield meas-
ure. Johnson [5] developed the relative expected loss L, to pro-
vide comparisons between processes, defined as:
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where o2 is the process variance, w is the process mean, 7T is
the target value and d = (USL — LSL)/2 is the half specification
width. The disadvantage of the L, index is the difficulty in set-
ting a standard for the index since it increases from zero to infinity.
The quality yield index Y, differs from the expected relative worth
index defined by Johnson [5] by truncating the deviation outside
the specifications. With this truncation, the quality yield index will
be between zero and one and thus has better interpretation. To
illustrate basic differences among yield Y, quality yield Y, and
process capability indices Cp, Cpr, Cpp, and Cpypyi, we calculated
their index values for some cases, as presented in Table 1.
Quality yield can be treated as traditional yield minus trun-
cated expected relative process loss within the specifications to
offer an excellent opportunity to quantify how well a process
can meet customer requirements. While yield is the proportion
of conforming products, Q-yield can be interpreted as the pro-
portion of “perfect” products. By relating to the yield measure,
which is familiar to engineers, it is much easier for the engineers
to understand and accept this capability measure. The advantage
of the Y, index over the L, index is that the value of the for-
mer goes from zero to one. Similarly to the yield index, the Y
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Table 1. Comparisons of yield, Q-yield and PCIs

Case Y % Y, % Cp Cpk Cpm Cpmk
N(T, d) 68.27 4839 0.33 0.33 0.33 0.33
N(T,d/2) 95.45 76.99  0.67 0.67 0.67 0.67
N(T,d/3) 99.73 88.94 1.00 1.00 1.00 1.00
N(T, d/4) 99.99  93.75 1.33 1.33 1.33 1.33
N(T +£d/3,d/2) 90.50 69.13 0.67 0.44 0.55 0.37
N(T £d/3,d/3) 97.72  78.41 1.00 0.67 0.71 0.47
N(T +£d/3,d/4) 99.62  82.70 1.33 0.89 0.80 0.53
N(T +£d/3,d/6) 99.997 86.11 2.00 1.33 0.89 0.60

measure, the ideal value of Y, is one, which provides the user
a clear concept about the standard. Similar to yield Y, the ¥,
index does not rely on the normality assumption. Current prac-
tices of measuring manufacturing capability by only evaluating
the point estimates of capability indices have been severely criti-
cized since it ignores sampling error. The sampling distribution
and sampling errors of the estimated Q-yield have never been
investigated due to their mathematical intractability. A decision
maker, however, may be interested in the lower confidence bound
on the quality yield rather than just the point estimate, which
does not convey reliable information.

In this paper, we apply the bootstrap resampling technique
to obtain the lower confidence bound on I?q for practical pur-
pose. Four types of bootstrap confidence intervals, including the
standard bootstrap confidence interval (SB), the percentile boot-
strap confidence interval (PB), the biased corrected percentile
bootstrap confidence interval (BCPB), and the bootstrap-t (BT)
methods will be conducted. The practitioners can use the results
to perform quality testing and determine the process can repro-
duce product items to meet the specified quality requirement.
The lower confidence bound not only provides us information re-
garding actual process performance, which is tightly related to
both the fractions of defective units and customer quality loss,
but is also useful in making reliable decisions for capability test-
ing and monitoring the performance of process departure for
targets as well.

This paper is organized as follows. We first give a brief intro-
duction on the quality yield index Y, and the sample estimator of
Y,. We then introduce the bootstrap estimation technique and the
definitions of the four bootstrap confidence intervals in Sect. 3.
Subsequently, in Sect. 4, some simulations on four distributions
(normal, student’s ¢, chi-square and lognormal) are conducted
to examine the distribution behavior of the estimated Y,,. For il-
lustrative purpose, a real-world application to the light emitting
diode (LED) manufacturing process is presented in Sect. 5. An
integrated computer program for calculating the bootstrap lower
confidence bounds is given in the Appendix. Some concluding
remarks are made in Sect. 6.

2 Estimation of yield and quality yield

The main idea of the quality yield index Y, is that it penal-
izes yield for the variation of the product characteristics from its
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target. It was suggested by Ng and Tsui [4] by connecting the
proportion-conforming-based index Y and loss-function-based
index L. Unlike the yield index Y, the quality yield Y, focuses
on the ability of the process to cluster around the target by tak-
ing the relative loss within the specifications into consideration.
If the USL and LSL are the upper and lower specification lim-
its, respectively, T is the target value, d is the half specification
width, and F(x) is the cumulative distribution function of the
measured characteristic, then the index Y, is defined as
USL
x—T
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In practical applications, sample data must be collected to es-
timate the index. A sample estimator based on a finite popu-
lation of products was proposed by Ng and Tsui [4]. Suppose
X1, Xa, ..., X, denote the sample measurements of product char-
acteristics. A natural estimator of ¥ and Y, may be expressed as
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In addition to point estimation, however, a decision maker may
be interested in a lower limit on the quality yield from the pro-
cess as well. The sampling distribution of )A’q is then required
but, unfortunately, the derivation of the exact distribution of I?q
is mathematically intractable. Pearn et al. [6] constructed an ap-
proximate lower confidence bound of the estimator )A’q for very
low fraction of defectives under the assumption of normality.
However, the calculation of the approximation is rather messy
and cumbersome to undertake. Further, the accuracy of the ap-
proximation has not been investigated.

Normal-based process capability indices such as Cp,, Cy,
Cpm and Cpyi do not measure process fallout for non-normal
process data accurately. In the literature, Somerville and Mont-
gomery [7] presented an extensive study to illustrate how poorly
the normally based capability indices perform as a predictor of
process fallout when the process is non-normally distributed. If
the normally based capability indices are still used to deal with
non-normal process data, the values of the capability indices
are incorrect and might misrepresent the actual product qual-
ity. Although new capability indices have been developed for
non-normal distributions, those indices are harder to compute
and interpret, and are sensitive to data peculiarities such as bi-
modality or truncation. Moreover, those indices do not explicitly
account for the manufacturing cost or customer’s loss. If a pro-
cess is clearly non-normal, there is some question as to whether
any process index is valid or should even be calculated. To illus-
trate the relationship between the squared loss function and some
probability distributions, we plot four process distributions: nor-
mal distribution, lognormal distribution, student’s ¢ distribution
and chi-square distribution, respectively, with the loss function
and under the true value of Y, = 0.6 (see Figs. 1-4).

=

0 i

Fig. 1. Distribution plots of normal distribution with the loss function under
true ¥, = 0.6

Fig. 2. Distribution plots of lognormal distribution with the loss function
under true ¥, = 0.6

-
Rl .

Fig. 3. Distribution plots of ¢ distribution with the loss function under true
Y, =0.6

Note that most existing capability indices require the nor-
mality assumption and they are generally defined based on the
specification limits rather than the customer’s satisfactions. The
advantage of using the Q-yield as process performance meas-



Fig. 4. Distribution plots of chi-square distribution with the loss function
under true ¥, =0.6

ure is that it does not rely on the normal distribution assumption.
High values of Q-yield are desirable, which can be viewed as im-
proving product quality from the customer’s viewpoint. Further-
more, Q-yield is more flexible because it compares the quality
of different characteristics of a product on a single percentage
scale, and indicates how close a product comes to meeting 100%
customer satisfaction.

3 The bootstrap methodology

Traditionally, statistical research work has relied on the central
limit theorem and normal approximations to obtain standard er-
rors and confidence intervals. These techniques are valid only
when the statistic, or some known transformation of the statis-
tic, is asymptotically normally distributed. Unfortunately, many
real world processes are not normally distributed and this de-
parture from normality could potentially affect these estimates.
A major motivation for the traditional reliance on normal-theory
methods has been computational tractability. Access to power-
ful computation enables the use of statistics in new and varied
ways. Idealized models and assumptions can now be replaced
with more realistic modeling or by virtually model-free analyses.
Much statistical work and data analysis is undertaken today by
computers in ways that are too complicated for practical analyti-
cal treatment. The new effects of these computational advances
are probably best reflected in the recent enormous success of
bootstrap methodology, which shows that many problems, previ-
ously difficult to solve, can be conquered. For either normal or
non-normal distributions, the bootstrap method could be applied
to return valid inferential results required.

The essence of bootstrapping is the idea that in the absence
of any other knowledge about a population, the distribution of
values found in a random sample of size n from the popula-
tion is the best guide to the distribution in the population. By
resampling observations from the observed data, the process of
sampling observations from the population is mimicked. Instead
of using a sample statistic to estimate a population parameter, as
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is done within the framework of conventional parametric statis-
tical tests, the bootstrap uses multiple samples derived from the
original data to provide what in some instances may be a more
accurate measure of the population parameter. Therefore, to ap-
proximate what would happen if the population was resampled,
it is sensible to resample the sample. In other words, the infi-
nite population that consist of the n observed sample values, each
with probability 1/n, is used to model the unknown real pop-
ulation. The sampling is with replacement, which is the only
difference in practice between bootstrapping and randomization
in many applications.

The bootstrap, a data-based simulation technique for statisti-
cal inference which introduced by Efron [8, 9] is a nonparamet-
ric, computationally intensive but effective estimation method.
The most common application of the bootstrap involves esti-
mating a population standard error and/or confidence interval.
In particular, one can use the sampling distribution of a statis-
tic, while assuming that the sample is only representative of the
population from which it is drawn, and that the observations are
independent and identically distributed. The main merit of the
nonparametric bootstrap is that it does not rely on any distribu-
tional assumptions about the underlying population. The more
ambiguous the information is to the researcher regarding the un-
derlying population distribution, the more likely it is that the
bootstrap may prove useful. Rather than using distribution fre-
quency tables to compute approximate p probability values, the
bootstrap method generates a unique sampling distribution based
on the actual sample rather than the analytic methods. The for-
mulation detail follows.

In this method, B new samples, each of the same size as the
observed data, are drawn with replacement from the available
sample. The statistic of interest is then calculated for each new
set of resampled data, in our case say 1?;1, ?;2, e }A’;B, yield-
ing a bootstrap distribution for the statistic, say Y,. Four types
of bootstrap confidence intervals, including the standard boot-
strap confidence interval (SB), the percentile bootstrap confi-
dence interval (PB), the biased corrected percentile bootstrap
confidence interval (BCPB), and the bootstrap-¢ (BT) method in-
troduced by Efron [10] and Efron and Tibshiraniwill [11] will be
conducted in this paper. Assume the observations xi, x2, ... , X,
to be a random sample of size n taken from a process. A boot-
strap sample, denoted by xj,x;, ..., x;, is a sample of size n
drawn with replacement from the original sample. There are pos-
sibly a total of n" such resamples. Each such sample is called
a “bootstrap sample.” In our case, these resamples would then
be used to calculate n” values of ¥*. Each of these would be
an estimate of Y, and the entire collection would constitute the
(complete) bootstrap distribution for I?q. Bootstrap sampling is
equivalent to sampling (with replacement) from the empirical
probability distribution function. Thus, the bootstrap distribution
of Y, is estimator of the distribution of Y;.

Due to the overwhelming computation time, it is not of prac-
tical interest to choose n" such samples. Usually, in practice,
only a random sample of n" possible resamples is drawn, the
statistic is calculated for each of these, and the resulting empir-
ical distribution is referred to as the bootstrap distribution of the
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statistic. Empirical work [11] indicated that only rough minimum
of 1000 bootstrap resamples are required for the procedure to be
useful to calculate valid confidence limits for population param-
eters. Throughout our discussion, it is assumed that B = 10000
bootstrap resamples (each of the same size as the available data)
are taken and B = 10000 bootstrap estimate of ¥, are calculated
and ordered from smallest to largest. The generic notations Y
and Y*(l) will be used to denote the estimator of a Q-yield 1ndex
and the associated ordered bootstrap estimate. Construction of
a two-sided (1 —2a) 100% confidence limit will be described. We
note that a lower (1 —«a)100% confidence limit can be obtained
by using only the lower limit. If the calculated bootstrap lower
confidence limit is found to be smaller than the predetermined in-
dex value, we would judge that the process is incapable. Quality
improvement activities will be initiated. Otherwise, the process
is considered to be capable. Four kinds of confidence intervals
can be derived.

3.1 Standard bootstrap (SB)

From the B bootstrap estimates Y; (i), the sample average and
the sample standard deviation can be obtained as

B
chzéZY;(i), (10)
i=1
B
= %Z[Y;(i)—ﬁj]z. 11

where Y*(l) is the ith bootstrap estimate. Actually the quantity
S; is an estlmator of the standard deviation of Y if the distribu-
tion of Y is approximately normal. Thus, the (1 —2a)100% SB
conﬁdence interval for Y, can be constructed as

[V —2aS5, V42457, | (12)
where Yq is the estimated Y, for the original sample, and z,, is the
upper « quantile of the standard normal distribution.

3.2 The percentile bootstrap (PB)

From the ordered collection of Y; (i), the o percentage and 1 — «

percentage points are used to obtain the (1 —2¢)100% PB confi-
dence interval for Y,

[Y;(aB), WG —a)B)]. 13)

3.3 Biased-corrected percentile bootstrap (BCPB)

While the percentile confidence interval is intuitively appealing
it is possible that due to sampling errors, the bootstrap distribu-
tion may be biased. In other words, it is possible that bootstrap

distributions obtained only using a sample of the complete boot-
strap distribution may be shifted higher or lower than would be
expected. A three steps procedure is suggested to correct for
the possible bias [9]. First, using the ordered distribution of Y *
calculate the probability pg = P[Y,}k < $4]. Second, we compute
the inverse of the cumulative distribution function of a stan-
dard normal based upon pg as zp = <I>_1(p0), pL = P2z0 —
Za)pu = D(2z0 + z4), wWhere @(-) is the standard normal cu-
mulative distribution function. Finally, executing these steps to
obtain the BCPB confidence interval,

[Pxoum. 75 pu D). a4

3.4 Bootstrap-t (BT)

By using bootstrapping to approxnnate the distribution of
a statistic of the form 7T = (Y -7, )/Sy where Y is an es-
timate of Y, with estimated standard error Sy The bootstrap
approximation in this case is obtained by taking bootstrap sam-
ples from the original data values, calculating the corresponding
estimates Y; and their estimated standard error, and hence find-
ing the bootstrapped T-values T = (Y* Y, )/ S* The hope is
then that the generated distribution Wlll mimic the ‘distribution of
T.The (1 —2)100% BT confidence interval for ¥, may consti-
tute as

[ — 3585, Yy =1, yq] , (15)
where £ and f{_, are the upper o and 1—a quantile of the
bootstrap z-distribution respectively, i.e., by finding the values
that satisfy the two equations P[(Y, P Yq)/ S;q > t*] =« and

[(Y* Y )/S* > tf_,1=1—a, for the generated bootstrap
estlmates
In the literature, Franklin and Wasserman [12] investigated
the lower confidence bounds for the capability indices, C,, Cpy
and Cpy, using the first three bootstrap methods. Some simula-
tions were conducted and a comparison was made among the
three bootstrap methods based on the parametric estimates. The
simulation results indicate that for normal processes the boot-
strap confidence limits perform equally well as results obtained
by Chou, Owen and Borego [13], Bissell [14], and Boyles [15].
And for non-normal processes the bootstrap estimates performed
significantly better than other methods.

4 Distribution plot of the O-yield estimator

In this section, some Monte Carlo simulations are conducted to
study the behavior of the sampling distribution of the estimated
Y,, for several cases where the underlying process distributions
are normal, skewed, or heavy tailed. We consider two levels of
Y,, say, Y, =0.9, Y, = 0.6, with underlying process distributions
set to



1. Normal distribution with probability density function

(x—u)z}
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with mean p and variance o2, for —0o < x < 00.
2. Lognormal distribution with probability density function of

_Mx—WT

202 a7
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with mean g = e®+#/2 and variance o2 = 2246 (ef* — 1),
for x > 0.

3. Student’s ¢ distribution with degree of freedom k, where the
probability density function # is,

F((k+1)/2)i| 1 <l+£>—(k+1)/2 )
I(k/2) vk '

k
with mean p =0, for k > 1 and variance o2 = k/(k—2), for
k>2,—00 < x < 00.
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Fig. 5. Distribution plots of )7,/ for normal distribution with n = 25, 50, 100,
300, 500 (bottom to top) under true Y, = 0.9
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Fig. 6. Distribution plots of ?q for normal distribution with n = 25, 50, 100,
300, 500 (bottom to top) under true Y, = 0.6
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4. Chi-square distribution with degree of freedom k, where the
probability density function of X/? is

flx) = ; (l)k/z Xk/Z—le—x/z (19)
Ik/2) 2 ’

with mean @ = k and variance 02 =2k k=1,2,....

For each distribution, we randomly generate N = 20000
samples of sizes n = 25, 50, 100, 300, 500, then calculate the es-
timated capability index Y. Figures 5-12 plot the distribution of
)A’q for the two levels of Y, Y, = 0.9, and Y, = 0.6, with four pro-
cess distributions, normal distribution, lognormal distribution,
student’s ¢ distribution and chi-square distribution, respectively.
For moderate and large sample size n, the distributions of the
estimated Q-yield index all appear to be normal. Therefore, for
processes where large sample data may be collected (product
items may be inspected by automatic inspection machines) and
normal approximations may be used for capability testing. Oth-
erwise, the proposed bootstrap methodology seems to be more
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Fig. 7. Distribution plots of )7,/ for lognormal distribution with n = 25, 50,
100, 300, 500 (bottom to top) under true ¥, = 0.9
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Fig. 8. Distribution plots of ?q for lognormal distribution with n = 25, 50,
100, 300, 500 (bottom to top) under true Y, = 0.6
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Fig. 9. Distribution plots of l?q for ¢ distribution and n = 25, 50, 100, 300,
500 (bottom to top) under true ¥, = 0.9
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Fig. 10. Distribution plots of }7(, for ¢ distribution and n = 25, 50, 100, 300,
500 (bottom to top) under true ¥, = 0.6

reliable to make statistical inference on the estimated Y, when
one has no idea what the underlying distribution really is. The
bootstrap method especially is superior to other methods when
the process distribution significantly deviates from normality and
the size of sample data is small.

5 An application for LEDs

We present a case study on the light emitting diode (LED) manu-
facturing process to illustrate the usage of the bootstrap lower
confidence bound on Y,. The case we investigated was taken
from a manufacturing factory located in the Science-Based In-
dustrial Park, Taiwan, making LEDs. The application of LEDs is
expanding rapidly since high intensity LEDs with a wide range
of colors have been recently developed and become available,
which enabled application of LEDs in a wide variety of areas in-
cluding color displays, traffic signals, roadway signs (barricade
lights), airport signaling and lighting. Two typical LED applica-
tions including font display and white LED lamps are shown in
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Fig. 11. Distribution plots of fq for chi-square distribution and n = 25, 50,
100, 300, 500 (bottom to top) under true ¥, = 0.9
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Fig. 12. Distribution plots of )7,/ for chi-square distribution and n = 25, 50,
100, 300, 500 (bottom to top) under true Y, = 0.6

Fig. 13 and Fig. 14. As various LED applications are developed,
accurate specifications of LED characteristics become increas-
ingly important. However, serious discrepancy in measurement
is gathered from different LED manufacturers and users. LEDs
are unique light sources that are very different from lamps in

Fig. 13. LED application on font
display




Fig.14. LED application on
white lamps

-

-

terms of physical size, flux level, spectrum, and spatial intensity
distribution. A transfer of photometric scales from traditional Iu-
minous intensity standard lamps to LEDs is not a trivial task,
and large uncertainties are involved. The temperature-dependent
characteristics and a large variety of optical designs of LEDs
make it even more difficult to reproduce measurements.

In order to solve this problem, the factory was requested to
provide calibrated standard LEDs for luminous intensity and lu-
minous flux, which should dramatically improve the accuracy
of measurement at industry level. Thus, the factory develops the
measurement technology and standards for LED luminous inten-
sity and luminous flux measurements, and to establish calibration
services for LEDs, thereby improving the accuracy and unifor-
mity of LED measurements among optoelectronics and other
industry. A photometric technique has been developed to de-
termine the effective reference plane of a photometer with an
uncertainty of 0.2 mm, using a photometric bench and a stable
integrating sphere source instead of a tungsten filament lamp.
With this method, any photometer head with unknown reference
plane position can be calibrated for LED measurements at any
distances longer than 10 cm within an uncertainty of less than
1%. The alignment of LEDs is still a major uncertainty compon-
ent for luminous intensity. As described above, LEDs generally
do not follow the inverse-square law, so setting the distances ac-
curately is critical to achieve reproducible results. One method
of setting the alignment is permanently mounting an LED in
a mount that has a reference surface. The distance from the tip
of the LED to the reference surface can be measured accurately.
The angular alignment will not change because the reference sur-
face will align the LED with the apparatus.

Typically, LEDs are not mounted in a permanent fixture, they
are just bare LEDs. The widely accepted method of aligning the
bare LEDs is along their mechanical axis, mainly because it can
be done quickly. The factory tried two different methods of align-
ing bare LEDs, one using a mount that physically holds the LED
by the sides and another using an optical aligning procedure.
A mount that physically holds the sides has the advantages of
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the permanent mount once the LED is in the fixture. The fix-
ture can be reproducibly placed in and out of a holder such that
the distances are well known. The LED is easily centered along
the detector axis and switching from the test LED to a standard
LED can be done very quickly. However, we found reproducibly
mounting the bare LED in the fixture was difficult. The fixture re-
lied on placing pressure on the sides of the LED, which caused
the sides of the LEDs to become scratched and damaged. In add-
ition, a new fixture had to be fabricated for each different style or
size of LED.

A better method is aligning the bare LEDs optically. Using
a fixed telescope, a point in space is defined along the detector
axis. The detector is on a translational stage with an optical en-
coder. The reference plane of the detector is moved to the point
in space and then translated 100 mm or 316 mm away depend-
ing on the condition. The bare LED is mounted by its contacts
on a stage that has five degrees of freedom. The stage can rotate,
translate in the X, Y, and Z directions and tip and tilt about the
point in space defined by the fixed telescope. By examining the
LED from the side, the tip of the LED is translated to the point
in space, set parallel to the detector axis and adjusted vertically.
An LED application on LCD backlighting package dimension
are depicted in Figs. 15 and 16.

We have established a capability for calibrating the lumi-
nous intensity of LEDs using the detector-based method. We
have built a tentative measurement set up for LED measure-
ments in the photometric bench and made the calibration service
available for submitted LEDs. The measurement of LED lu-
minous intensity currently has an overall uncertainty of 1.5%
for LEDs with a special fixture, and 3% for normal bare LEDs
with no alignment aids. A dedicated small photometric bench
for LED measurements is to be built. Long-term stability and
temperature dependence of these LEDs will be studied and stan-
dard LEDs for luminous intensity are to be developed. LEDs
are unique light sources and are very different from traditional
lamps in terms of physical size, flux level, spectrum and spa-
tial distribution. The transfer of photometric scales from lumi-
nous intensity standard lamps to LEDs has not been trivial and
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Fig. 15. The package dimensions drawing (top and side) of an LCD back-
lighting application
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Fig. 16. The package dimensions drawing (bottom and polarity) of an LCD
backlighting application

large discrepancies among companies have been measured. The
factory has established two measurement conditions for single
element LEDs with diameters less than 10 mm. These two meas-
urement techniques compare LED luminous intensities without
strictly using point source conditions. The factory has started re-
search programs to establish appropriate measurement methods
and calibration standards for all photometric quantities of LEDs.
In particular, the measurement of luminous intensity of LED
sources will be focused in our study. We investigated a particular
model of the LED product with the upper and the lower speci-
fication limits of luminous intensity are set to USL = 90 mcd,
LSL =40 mcd, and the target value is set to 7 = 65 mcd. If the
characteristic data does not fall within the tolerance (LSL, USL),
the LED is said to be defective.

For the purpose of making use of the methodology more con-
venient and accelerate the computation, an integrated S-PLUS
computer program is developed (see Appendix) to calculate the
bootstrap lower confidence bounds. The practitioners only need
to input the manufacturing specification limits, USL, LSL, tar-
get value 7', and the collected sample data of size n. Then the
estimated values )A’, fq and the four bootstrap lower confidence
bounds (SB, PB, BCPB, BT) of )A’q may be obtained. Thus,
whether or not the process is capable may be determined.

A total of 100 observations were collected from a stable
process in the factory and are displayed in Table 2. Figure 17 dis-
plays the histogram, and Fig. 18 displays the normal probability

Table 2. A total of 100 observations
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Fig. 17. Histogram plot of the sample data of size n = 100
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Fig. 18. Normal probability plot of the sample data of size n = 100

plot of these sample data. From Figs. 17 and 18, it is evident
to conclude the data collected from the factory are not normal
distributed. The data analysis results justify that the process is
significantly away from the normal distribution. Proceeding with
the calculations by running the integrated S-PLUS program with
95% confidence, we obtain the values of the sample estimators
)A’q =(0.7477 and the corresponding bootstrap lower confidence
bound (LCB) as Table 3.

We note that the estimated index values for all the four exten-
sions are greater than 0.7. In fact, all 100 observations fall within
the specification interval (LSL, USL) resulting that sample es-
timators of yield Y = 1. From the producer’s point of view, the



Table 3. Summary of the four bootstrap lower confidence bounds

Type SB PB BCPB BT

LCB 0.7010 0.7005 0.7027 0.7015

proportion of conforming products is 100%. However, to quan-
tify how well a process can meet customer requirements, the
lower confidence bound of I?q is approximately 0.7 and can be in-
terpreted as the proportion of “perfect” products being approxi-
mately 70%. From the corresponding lower confidence bounds
on Y, based on four bootstrap methods, 0.7010, 0.7005, 0.7027,
and 0.7015, an example of capability testing is that if the Q-yield
requirement preprint on the contract Y, is set to 0.7, we may
only conclude that the process is marginally capable, with 95%
of confidence.

6 Conclusions

Quality yield is a flexible index because it compares the qual-
ity of different characteristics of a product on a single percentage
scale, and indicates how close a product comes to meeting 100%
customer satisfaction. Furthermore, comparing with the existing
capability indices, these capability indices rely on the underly-
ing assumption of normal distribution. Although new capability
indices have been developed for non-normal distributions, those
indices are harder to compute and interpret, and are sensitive
to data peculiarities such as bimodality or truncation. Second,
these indices do not explicitly account for the manufacturing cost
or customer’s loss. Capability indices are generally defined with
respect to the specification limits rather than the customer’s func-
tional limits. If a process is clearly non-normal, there is some
question as to whether any process index is valid or should even
be calculated. In this paper, the nonparametric is computationally
intensive but an effective estimation bootstrap method is applied
to the Q-yield measure l?q to obtain the lower confidence bounds.
The lower confidence bound provides information regarding ac-
tual process performance for both the fractions of defectives
units and customer quality loss. The proposed approach makes it
feasible for the engineers to perform approximate process quality
testing using the calculated Y.
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Appendix

S-PLUS program for four bootstrap lower confidence bounds

# Input manufacturing specification limits
# USL, LSL and the target value T

# Input the original sample data of size
#n=100collected from the factory

datal_c(

62, 58, 52, 55, 58, 48, 76, 69, 86, 55,
55, 44, 49, 57, 55, 45, 51, 57, 89, 45,
66, 67, 58, 49, 68, 69, 69, 59, 71, 45,
68, 65, 57, 75, 56, 68, 47, 55, 56, 68,
62, 68, 61, 68, 88, 41, 70, 68, 57, 45,
59, 63, 85, 56, 45, 66, 67, 64, 53, 41,
78, 78, 56, 43, 64, 55, 46, 59, 51, 79,
67, 88, 68, 48, 69, 55, 88, 48, 67, 88,
85, 57, 57, 57, 43, 65, 49, 59, 86, 68,
57, 46, 57, 64, 60, 55, 75, 72, 49, 67)

# Function to calculate the estimated Y
# and Yq based on the given data

delta_ (USL-LSL) /2

Q.yield_ function (data) {
N_length (data)
indata_data[data<USL&data>LSL]
m_length (indata)
Y m/N
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Yg Y- (sum( ( (indata-Target) /delta)~2) /N)
return (Y, Yq)

# Calculate the estimate of Yand Y_qg based on
# the original sample data

Y.Estimate_Q.yield(datal)s$Y
Yqg.Estimate_Q.yield(datal)syYg
Y.Estimate

Yg.Estimate

# Generate B= 10000 bootstrap resamples from
# the original sample data

B_10000

Y.B_rep(0,B)

Yg.B_rep (0, B)

for (1in1:B){

dataS_sample (data0l, length(datal) ,replace=T)
Y.B[i]_Q.gield(datasS) {\$}Y
Yg.B[i]_0Q.gield(dataS) {\$}Yqg

# Calculate the four bootstrap lower confidence
# bounds based on resampled data

Yg.SB.bootstrap.95LCB_Yqg.Estimate

-gnorm(0.95) *var (Yg.B)"0.5
Yqg.PB.bootstrap.95LCB_quantile
(Yg.B, probs =0.05)
p0_mean (Yqg.B<=qg.Estimate)
z0_gnorm (1-p0)
pL_pnorm(2*z0-gnorm(0.95))
Yg.BCPB.bootstrap.95LCB_quantile
(Yg.B, probs = floor (pL*B) /B)
gtB095_quantile((Yg.B-Yg.Estimate)
/ (var (Yqg.B)"0.5), probs =0.95)
Yg.BT.bootstrap.95LCB_Yg.Estimate
-gtB095*var (Yg.B)~0.5
Yg.SB.bootstrap.95LCB
Yg.PB.bootstrap.95LCB
Yg.BCPB.bootstrap.95LCB
Yg.BT.bootstrap.95LCB

The output of the S-PLUS program is:

The estimated Y and Y, based on the original sample data:

>Y.Estimate =1
>Yqg.Estimate =0.747744

Four bootstrap lower confidence bounds of Y, based on re-
sampled data:

>Yqg.SB.bootstrap.95LCB =0.7010094
>Yqg.PB.bootstrap.95LCB =0.700512

>Yqg.BCPB.bootstrap.95LCB =0.70272
>Yqg.BT.bootstrap.95LCB =0.7015304



