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Abstract

We prove that for positive k, n and m, the set {1,3,...,2n—1} of odd integers contains k disjoint
subsets having a constant odd sum m if and only if 9(k—1)<m <2n—1, or %k<m<n?/k and
n?—mk#2.

1. Introduction

Ando et al. [1], proved that for positive integers n, m and k, the set {1,2,...,n} of
integers contains k disjoint subsets having a constant sum m if and only if
2k—1<m<n(n+1)/(2k). In the same paper, they posed the following conjecture.

Conjecture 1.1. Let k,n and m be positive integers. Then the set {1,3,...,2n—1} of
odd integers contains k disjoint subsets having a constant sum m if and only if one of
the following two conditions hold:

(i) m is even, 4k<m<n?/k, n?—mk+#2. and either m#4n—2 or n#4k.

(ii) m is odd, and either 9(k—1)<m<2n—1, or %k<m<n?/k and n? —mk #2.

They also mention that conjecture (i) has been proved by Enomoto and Kano [2].
In this paper, we prove conjecture (ii).

2. The main result

For convenience, we will use 4,, 4,, ..., A, to denote k mutually disjoint subsets
and let A=[a;;],.x be the array such that A;={a;|i=1,2,...,t} j=1,2,... k.
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4 39 37 35 33 31 29
17 21 25 15 19 23 27
5 3 1 13 11 9 7

Fig. 1.

Moreover, we write A as [A; | 4,]---| Ax]. We note that t=max | .;<x| 4;| and some
of the cells in 4 may be empty. The sum of the elements in A; is denoted by ¥ (4,).
Figure 1 is an example of k=7 and ¥ (4,)=63, 1<i<7.

The following result is very helpful in our proof.

Theorem 2.1. (Enomoto and Kano [2]). Let n and k be positive integers and m be
a positive even integer. Then the following two statements hold:

(@) {1,3,...,2n—1} contains k disjoint subsets with sum m if and only if (i)
dk<m<n?/k; (ii) n®—mk+#2; and (iii) n#4k or m#16k—2.

() {1,3,...,2n—1} contains k+1 disjoint subsets A,,...,A, and B such that
Y(B)y=m/2 and Y (A;)=m for all i, 1 <i<k if and only if (iv) either m=0(mod 4) and
4k +8<m<2n?/2k+1) or m=2(mod4) and 4k +2<m<2n?/2k +1);
(v) n?—(2k+1)m/2#2; and (vi) n#4k+3 or m+# 16k + 14.

With the above theorem, we can obtain the following propositions.
Proposition 2.2. {1, 3,...,21—1} contains j disjoint subsets with sum 4k if 4j <4k < /].

Proof. Since >—4jk#2 and 4k#16j—2, by Theorem 2.1 (a), we conclude the
proof. O

Proposition 2.3. {1,3,...,21—1} contains disjoint subsets Ai, A,,...,A; such that
Y (A;)=4k for each i=1,2,...,j—1, and Y (A;)=6k, if (i) 4j +4 <4k <217 /(2j+1); and
(i) P—(4j+2)k+#2.

Proof. Since 4k 16j+ 14, if 4j+8 <4k, then by Theorem 2.1. (b) we conclude the
proof by letting the sums of subsets be {4k, 4k, ..., 4k, 2k) (j+ 1 —tuple) and combin-
ing the last two subsets to obtain a set with sum 6k. Finally, if 4j+4 =4k, then
@+4H(2j+1)/2)<?, ie. 122+2. In this case, let A,={3,4j+1},
A, ={54i—1},...,4;-,={2j—1,2j+5} and 4;={4j+3,2j+3}, then we have the
proof. O

Proposition 2.4. {1,3,...,21—1} contains j+1 disjoint subsets Ay, As,...,Aj4, such
that Y(A;)=4k for each 1<i<j and Y(Aj+1)=5k, if () k is even.
(i) 4j+5<4k<4I?/(4j+5), and (i) 1> —(4j+5)k+#2.
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Proof. If I<k, then (4j+5)k<I?<k® Hence 8j+12<2k. By Proposition 2.3,
{1,3,...,21—1} contains 2j+2 disjoint subsets A;, A,,...,Azj41, Azj+, such that
Y(A4;)=4-(k/2) for each 1<i<2j+1, and ¥(A;;+,)=6"(k/2). Thus, by combining
Ay, Ay; Ay, Ay ..., Asgjit, Azji 2 We have the proof of this case. If I> 2k, then we will
show that {1,3,...,4k—1} contains desired j+1 subsets as
(2k)*> —(4j + 5)k =(4k — 4j — 5)k = 3k > 2. Hence we may assume that k <!< 2k. Further-
more, k=2 is a trivial case, without loss of generality, let k>4. Now consider the
following three cases:

M) [RI-1)—Q2k+1)]/2+1<j. Let A,={21—1,4k-2I+1}, A,={21-3,
4k —21+3},...,4,={2k+1,2k—1}. Then A+, A;+3, ..., Aj+; can be obtained as in
the case I<k.

2 [RI-1)—Q2k+1)]/2+1=j+1. Let A,;={21—1,4k—-21+1}, A,={21-3,
4k—21+43},...,A;={2k—3,2k+3} and A}, ={2k—1,2k+1}. By Theorem 2.1 (a)
{1,3,...,4k—21—1} contain a subset A, s.t. Y(4],;)=k Let 4;,,=A},1 VA,
then we conclude this case.

3 [RI=1)—Q2k+1)}/2+1>j+ 1. First,if 3k—1>=2]l—~1,ie. 4k—2l+12k+1, let
Ay ={21—1,4k—21+1}, A,={21—-3,4k—21+3},..., A;={21+1-2j, 4k—21+2j—1},
Ajr={1,k—1,2k—1,2k+1}, we have j+1 disjoint subsets we need. Secondly, if
3k—1<21—-2j+1<2i—1, the j+1 disjoint subsets will be 4, ={21—1,4k—2I+1},
A, ={21-3,4k—-21+3}, ..., 4;={21-2j+1,4k—21+2j—1}, A;+,={2k+1,3k—1}.
Finally, if 21—2j+1<3k—1<2l—1, then there exists an index 1<i<j in the above
decomposition such that A;=(k+ 1, 3k— 1}. By replacing this A; with {2k —3, 2k + 3},
we have the proof of this case. [

Proposition 2.5. {1, 3, ...,2]—1} contains j+ 1 disjoint subsets with j of them sum to 4k,
and one sums to 3k if (i) kis even, (ii) 4j+7 <4k <4?/(4j+3), and (iii) > —(4j+3)k#2.

Proof. Similar to the proof of Proposition 2.4. [

Now we are ready to prove the main theorem. First, we consider the necessary
condition.

Proposition 2.6. (Necessity) Let n, m and k be positive integers and m is odd. If the odd
integer set {1,3,...,2n—1} contains k disjoint subsets having a constant sum m, then
(i) either 9(k—1)<m<2n—1 or 9k<m<n?/k and (i) n> —mk+#2.

Proof. Suppose that {1, 3,...,2n— 1} contains k disjoint subsets A, 4,, ..., 4; having
constant sum m. If m<2n—1, since m is odd, only one subset A4; could have one
element, the other k—1 subsets each contains at least 3 elements. Thus
mk—1)=Y'_, ;i Y(4;)= 143+ +(6k—7), which implies that m>9k—9. Hence
9k—1)<m<2n—1. Or, if m>2n—1, then each A;, i=1,2,...,k, contains at least
three elements. Therefore, mk>1+3+--- +(6k—1)=(3k)>. On the other hand,
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mk<1+3+---+(2n—1)=n> Hence 9%k <m<n?/k. The result n> —mk#2 is easy to
see. [

The sufficiency of the main theorem is more complicated. For clearness, we will
consider separate cases in the following three propositions.

Proposition 2.7. If m is odd, 9k —9<m<2n—1 and n* —mk #2, then {1,3,...,2n—1}
contains k disjoint subsets having constant sum m.

Proof. By direct construction. Arrays A, and A, are for k is odd and even, respect-
ively.

A1 Az Ak—1/2 Ak+1/2 Ak-+-3/2 Ak—l Ak
4= m—3k+3, m-3k+1,..., m—4k+6, m—4k+2, m—4ak,..., m—5k+5 m
° 2k—1 2k+3, ..., 4k—7, 2k+1,  2k+5,..., 4k—35,
k=2, k—4,..., 1, 2k—3,  2k-—5,..., k,
. -
Al AZ Ak/2—1 Ak/2 Ak/2+1 Ak—l Ak
A m—3k+2, m-3k,..., m—4k+6, m—4k+4, m—4k+2,..., m—5k+6, m
¢ 2k+1  2k+5,..., 4k—1, 2k—1, 2k+3,..., 4k—35,
k-3, k=5,..., 1, 2k—3, 2k—5,..., k—1,

Note that we often use the same constructions A, — 4, and 4, — A4, in the proofs of
Propositions 2.8 and 2.9, respectively.

Proposition 2.8. If m and k are odd positive integers, Sk <m<n?/k, and n* —mk #2,
then {1,3,...,2n—1} contains k disjoint subsets having a constant sum m.

Proof. First, consider m>25k+4; let | be the positive integer such that
(5k+1—1)? <mk <(5k+1)2. If (Sk+1)> —mk #2, we assume n=>5k+I; otherwise, let
n=>5k+1+1.Inany case, let 4;,,2{2(n—2k)+2j+1,2n—2j—1},j=0,1,2,... ,k—1;
then we reduce the case m>25k+4ton'=3k+lorn'=3k+I1+1andm =m—16k—4l
or m'=m— 16k —41—4, which satisfy 9k <m’' <n'?/k and n'? —m’k #2 (by direct check-
ing) and the odd integer set will be {1, 3, ...,2n' —1}. As to the m, 25k <m <25k + 3, we
will give a direct construction which can be found in Fig. 5. Thus if we can prove the
case when 9k <m <25k, we have the proof of this proposition.

(1) 9k <m<6n—9k. Since 0<m—9k < 6(n— 3k), there exist three integers x, y and
z such that 2(x + y+2z)=m—9k and 0<z<y<x<n—3k. Thus by the array shown in
Fig. 2, we have the proof of this case.
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2x+6k—1,2x+6k—3,..., 2x+5k+2,2x+5k,..., 2x+4k+1
2y+2k+3,2y+2k—7,..., 2y+4k—3,2y+2k+1,..., 2y+4k—1
2z+k—2,2z+k—4,..., 2z4+1,2z+2k—1,..., 2z+k
Fig. 2.
2n—1,2n-3,..., 2n—k+2,2n—k,2n—k—2,..., 2n—2k+1
2n—4k+3,2n—4k+7,..., 2n—2k—3,2n—4k+1,2n—4k+5,..., 2n—2k—1
2n—5k,2n—5k—2, ..., 2n—6k+3,2n—6k+1,2n—4k-1,..., 2n—5k+2

[2x ]

Fig. 3.

(2) 6n—9%k <m<25k. If m=6n—9k+2, then (6n—9k+2)k<n?, ie. 2k<(n—3k)?
and (n—3k)*—2k#2, so by Theorem 2.1(a) {1, 3,...,2n—6k—1} contain a subset
having a constant sum 2k. By Fig. 3 we have proved the case.

There are two other situations to consider.

Case 1: m—(6n—9k)=4j, j=1. If j=k then we can derive a contradiction from
m<25k and n? 2 mk. Thus j<k. Consider the array

m—1+2j,2n—=3+2j, ..., In—k+2+2j, 2m—k+2j,..., In—2k+1+2
B =|2m—4k+342,2n—a4k+T7+2, ..., 2n—2k=3+2j, 2n—4k+1+2j,..., 2m—2k—1+2j
2n—5k—2,2n—5k—4,..., In—6k+1,2n—ak—1,..., 2n—5k

As can be seen in B, 2n—1+2j, 2n—3+2j,...,2n+1 are in first row, but
2n—4k—1+2j, 2n—4k—3+2j,..., 2n—4k+1 are not in any row. Change a part
of the first row of B by letting 2n—1+42j=(4k)+(2n—4k—1+2j),
2n—3+2j=(4k)+(2n—4k—3+2j),...,2n+1=(4k)+(2n—4k+1). We obtain B” in
Fig. 4.
Since {1, 3,...,2(n—3k)—1} contains j disjoint subsets having a constant sum 4k (by
Proposition 2.2), we have the proof of this case.

Case 2: m—(6n—9k)=4j+2,j=1.

The array A’ is obtained from B’ by adding two to each cell of the third row of B,
and the A” can be obtained similar to Fig. 4 except a part of the first row will be

4k 4k 4k
g | k1 HY s34 m—4k+1  2n—1,..., 2n—2k+1
2n—dk+3+2f 2n—2k—1+2j
n—5k—2 B 2n—S5k

Fig. 4.
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10k—1,10k—3,...,  9k+2,9k,9%—2,..., 8k+1|
6k+1, 6k+3,..., Tk—2, 7k, Tk+2,..., 8k—1
B;=| 6k—1, 6k—3,..., Sk+2,5k 5k—2,..., 4k+1
2k+3, 2k+7,..., 4k—3,2k+1,2k+5,..., 4k—1
k-2, k—4,..., 1, 2k—1,2k-3,..., k|
10k+1,10k—1,...,  9k+4,9%+2,9,..., 8k+3]
6k+1, 6k+3,..., Tk—2,7k, Tk+2,..., 8k—1
B,=| 6k—1, 6k—3,..., Sk+2,5k Sk—2,..., 4k+1
2k+3, 2k+7,..., 4k—3,2k+1,2k+5,..., 4k—1
k-2, k—4,..., 1,2k—1,2k—-3,..., k]
Fig. 5.

{4k, 4k, ..., 4k, 6k>(j-tuple) and this can be obtained by Proposition 2.3. Thus we
conclude the proof of this proposition by the given direct constructions B, and
B, (Fig. 5) for m=25k and 25k + 2, respectively. .

Finally, we consider the case when k is even.

Proposition 2.9. Let n, m and k be a positive integer, a positive odd integer and a positive
even integer, respectively. Then the odd integer set {1, 3, ...,2n—1} contains k disjoint
subsets having a constant sum m, if 9k+1<m<n?/k and n®> —mk #2.

Proof. Similar to the proof of the Proposition 2.8, we consider m <25k +3, and the
case m=25k—1,25k+1,25k+3 will be obtained by direct constructions (Fig. 7).
Hence let m<25k—1.

First, if m<6n—9k+5,let C,, C, and C;, be three arrays where the column sums of
these arrays are 9k+ 1, 9k+ 3 and 9k + 5, respectively.
6k+1, 6k—1,..., Sk+3, Sk—1, 5k-3,..., 4k+1
Cy: [2k+1, 2k+5,..., 4k—3, 2k+3, 2k+7,..., 4k—1
k—1, k-3,..., 1, 2k—1, 2k-3,..., k+1

(6k+1, 6k—3,..., 4k+5, 6k—1, 6k—S5,..., dk+3
Cy: |2k+1, 2k+3,..., 3k—1, 3k+3, 3k+5,..., 4k+1
k+1, k+3,..., 2k—1, 1, 3 ..., k—1
[6k+1, 6k—1,..., 5k+3, 5k+1, Sk—1,..., 4k+3]

Cs: |2k+5, 2k+9,..., 4k+1, 2k+3, 2k+7,..., 4k—1|
k-1, k-3,.., 1, 2k+1, 2k—1,..., k+3

Similar to the idea of Proposition 2.8 (1), if m—(9k +2i— 1) is a multiple of 6, then
C; will be the array to use, i=1, 2, 3. Thus we have the proof of this situation. Now
consider 6n—9k +5<m<25k-3.
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Case 1: m—(6n—9k+5)=4j.
Consider the array D.

D=
2n+1+425,2n—1+42j,..., 2n—k+3+2, 2n—k+1+2,2n—k—1+2j,..., 2n—2k+3+2j
n—4k+542j, 2n—8k+9+2j,..., 2n—2k+1+2j,2n—4k+3+2j,2n—4k+7+2j,..., 2n—2k—1+2j|.
2n—5k—1,2n—5k—3,..., 2n—6k+1,2n—4k+1,2n—4k-1,..., 2n—5k+3

It is easy to see that 2n+1+2j, 2n—1+2j,...,2n+ 1 appear in D but 2n—4k+1+2j,
2n—4k—142j,...,2n—4k+3, 2n—5k+ 1 do not appear in D. By a similar technique
as in the case 1 and 2 of Proposition 2.8, we replace a part of the first row in D and
obtain D’ in Fig. 6.

4k 4k 4k Sk
2n—4k+1+2j 2n—4k—1+42j 2n—4k+3 2n—5Sk+1 2n—1,..., 2n—2k+3+2j
2n—4k+5+2j 2n—4k+9+2j - 2n—2k—1+2j
2n—5k—1 2n—5k—3 D 2n—5k+3
Fig. 6.
m=25k—1:
10k—1, 10k—3,10k—5,..., 9k+1,9k—-3,9k—5,..., 8k+1,8k—1
6k+1,6k+3,6k+5,..., Tk—1,7k+1,7k+3,..., 8k-3,6k—1
9%k—1,6k—3,6k—5,..., 4k+1,5k—1,5k—-3,..., 4k+3,5k+1
2k+5,2k+9,..., 4k—3,2k+3,2k+7,..., 4k—5,4k—1
k—3,k=5,... 3, k+1,2k—1,2k—3,..., k+3,2k+1
m=25k+1:
10k+1, 10k—1,...,9k +3, 9% —1,9k—3,..., 8k+3,8k+1
6k+1,6k+3,...,7Tk—1, Tk+1,7k+3,..., 8k—3,8k—1
6k—1,6k—3,...,5k+1, Sk—1,5k—3,..., 4k+3,4k+1
2k+1,2k+5,...,4k—3, 2k+3,2k+7,..., 4k—54k—1
k—1,k=-3,..,1 2k—1,2k—3,..., k+3,k+1
B,(9k—1) B,(9k+1)
m=25k+3:

10k+1,10—1,...,9+3, 9k+1,9k—1,...,8k+5,8k+3
6k+1,6k+3,...,Tk—1, Tk+3,7k+5,...,8k—1,8k+1

By (9k+1) B, (9k—1)

Fig. 7.
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Since, by Proposition 2.4, {1, 3,...,2(n—3)—1} contains j+ 1 disjoint subsets with
j of them sum up to 4k and one to 5k, we conclude the proof of this case.

Case 2: m—(6n—9k+5)=4j—2.

The proof is similar to case 1, except that we will use array E and apply Proposition
2.5 instead of Proposition 2.4.

M+1+2,2n—3+2,..., M—2%k+5+2,2n—142,21—5+2,...,  2n—2k+3+2j
E:|2n+1—8k+2j,2n—8k+3+2j,..., 2n—3k—142j,2n—3k+3+2], 2n—3k+5+2j,..., 2n—2k+1+2j
2n—5k+1,2n—5k+3,..., 2n—4dk—1,2n—6k+1,2n—6k+3, ..., 2n—5k—1

For the case m=25k—1, 25k + 1, 25k + 3, we will use a direct construction for each
m (Fig. 7). Thus we conclude the proof of this proposition. [

By Propositions 2.6-2.9 we have proved the following theorem.
Theorem 2.10. Let k,n and m be positive integers and m is odd. Then the set
{1,3,...,2n—1} contains k disjoint subsets having a constant sum m if and only if
9k—1)<m<2n—1, or 9k<m<n?/k and n®> —mk 2.
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