Disjoint odd integer subsets having a constant odd sum

Hung-Lin Fu* and Wei-Hsin Hu*

Department of Applied Mathematics, National Chiao-Tung University, Hsin Chu, Taiwan, ROC

Received 26 November 1990 Revised 18 May 1992

Abstract

We prove that for positive k, n and m, the set $\{1, 3, ..., 2n-1\}$ of odd integers contains k disjoint subsets having a constant odd sum m if and only if $9(k-1) \le m \le 2n-1$, or $9k \le m \le n^2/k$ and $n^2 - mk \ne 2$.

1. Introduction

Ando et al. [1], proved that for positive integers n, m and k, the set $\{1, 2, ..., n\}$ of integers contains k disjoint subsets having a constant sum m if and only if $2k-1 \le m \le n(n+1)/(2k)$. In the same paper, they posed the following conjecture.

Conjecture 1.1. Let k, n and m be positive integers. Then the set $\{1, 3, ..., 2n-1\}$ of odd integers contains k disjoint subsets having a constant sum m if and only if one of the following two conditions hold:

- (i) m is even, $4k \le m \le n^2/k$, $n^2 mk \ne 2$. and either $m \ne 4n 2$ or $n \ne 4k$.
- (ii) m is odd, and either $9(k-1) \le m \le 2n-1$, or $9k \le m \le n^2/k$ and $n^2 mk \ne 2$.

They also mention that conjecture (i) has been proved by Enomoto and Kano [2]. In this paper, we prove conjecture (ii).

2. The main result

For convenience, we will use $A_1, A_2, ..., A_k$ to denote k mutually disjoint subsets and let $A = [a_{ij}]_{t \times k}$ be the array such that $A_j = \{a_{ij} | i = 1, 2, ..., t\}$ j = 1, 2, ..., k.

Correspondence to: H.-L. Fu, Department of Applied Mathematics, National Chiao Tung University, Hsin Chu. Taiwan.

*Research supported by National Council of the Republic of China (NSC79-0208-M009-33).

0012-365X/94/\$07.00 © 1994—Elsevier Science B.V. All rights reserved SSDI 0012-365X(92)00440-6

Fig. 1.

Moreover, we write A as $[A_1 | A_2 | \cdots | A_k]$. We note that $t = \max_{1 \le i \le k} |A_i|$ and some of the cells in A may be empty. The sum of the elements in A_i is denoted by $\sum (A_i)$. Figure 1 is an example of k=7 and $\sum (A_i)=63$, $1 \le i \le 7$.

The following result is very helpful in our proof.

Theorem 2.1. (Enomoto and Kano [2]). Let n and k be positive integers and m be a positive even integer. Then the following two statements hold:

- (a) $\{1, 3, ..., 2n-1\}$ contains k disjoint subsets with sum m if and only if (i) $4k \le m \le n^2/k$; (ii) $n^2 mk \ne 2$; and (iii) $n \ne 4k$ or $m \ne 16k-2$.
- (b) $\{1, 3, ..., 2n-1\}$ contains k+1 disjoint subsets $A_1, ..., A_k$ and B such that $\sum (B) = m/2$ and $\sum (A_i) = m$ for all $i, 1 \le i \le k$ if and only if (iv) either $m \equiv 0 \pmod{4}$ and $4k+8 \le m \le 2n^2/(2k+1)$ or $m \equiv 2 \pmod{4}$ and $4k+2 \le m \le 2n^2/(2k+1)$; (v) $n^2 (2k+1)m/2 \ne 2$; and (vi) $n \ne 4k+3$ or $m \ne 16k+14$.

With the above theorem, we can obtain the following propositions.

Proposition 2.2. $\{1, 3, ..., 2l-1\}$ contains j disjoint subsets with sum 4k if $4j \le 4k \le l^2/j$.

Proof. Since $l^2-4jk\neq 2$ and $4k\neq 16j-2$, by Theorem 2.1 (a), we conclude the proof. \Box

Proposition 2.3. $\{1, 3, ..., 2l-1\}$ contains disjoint subsets $A_1, A_2, ..., A_j$ such that $\sum (A_i) = 4k$ for each i = 1, 2, ..., j-1, and $\sum (A_j) = 6k$, if (i) $4j + 4 \le 4k \le 2l^2/(2j+1)$; and (ii) $l^2 - (4j+2)k \ne 2$.

Proof. Since $4k \neq 16j+14$, if $4j+8 \leq 4k$, then by Theorem 2.1. (b) we conclude the proof by letting the sums of subsets be $\langle 4k, 4k, \dots, 4k, 2k \rangle$ (j+1-tuple) and combining the last two subsets to obtain a set with sum 6k. Finally, if 4j+4=4k, then $(4j+4)((2j+1)/2) \leq l^2$, i.e. $l \geq 2j+2$. In this case, let $A_1 = \{3, 4j+1\}$, $A_2 = \{5, 4j-1\}, \dots, A_{j-1} = \{2j-1, 2j+5\}$ and $A_j = \{4j+3, 2j+3\}$, then we have the proof. \square

Proposition 2.4. $\{1, 3, ..., 2l-1\}$ contains j+1 disjoint subsets $A_1, A_2, ..., A_{j+1}$ such that $\sum (A_i) = 4k$ for each $1 \le i \le j$ and $\sum (A_{j+1}) = 5k$, if (i) k is even. (ii) $4j+5 \le 4k \le 4l^2/(4j+5)$, and (iii) $l^2-(4j+5)k \ne 2$.

Proof. If $l \le k$, then $(4j+5)k \le l^2 \le k^2$. Hence $8j+12 \le 2k$. By Proposition 2.3, $\{1, 3, \ldots, 2l-1\}$ contains 2j+2 disjoint subsets $A_1, A_2, \ldots, A_{2j+1}, A_{2j+2}$ such that $\sum (A_i) = 4 \cdot (k/2)$ for each $1 \le i \le 2j+1$, and $\sum (A_{2j+2}) = 6 \cdot (k/2)$. Thus, by combining $A_1, A_2; A_3, A_4; \ldots, A_{2j+1}, A_{2j+2}$ we have the proof of this case. If l > 2k, then we will show that $\{1, 3, \ldots, 4k-1\}$ contains desired j+1 subsets as $(2k)^2 - (4j+5)k = (4k-4j-5)k \ge 3k > 2$. Hence we may assume that $k < l \le 2k$. Furthermore, k=2 is a trivial case, without loss of generality, let $k \ge 4$. Now consider the following three cases:

- (1) $[(2l-1)-(2k+1)]/2+1 \le j$. Let $A_1 = \{2l-1, 4k-2l+1\}$, $A_2 = \{2l-3, 4k-2l+3\}$, ..., $A_t = \{2k+1, 2k-1\}$. Then $A_{t+1}, A_{t+2}, \ldots, A_{j+1}$ can be obtained as in the case $l \le k$.
- (2) [(2l-1)-(2k+1)]/2+1=j+1. Let $A_1=\{2l-1,4k-2l+1\}$, $A_2=\{2l-3,4k-2l+3\}$, ..., $A_j=\{2k-3,2k+3\}$ and $A'_{j+1}=\{2k-1,2k+1\}$. By Theorem 2.1 (a) $\{1,3,\ldots,4k-2l-1\}$ contain a subset A''_{j+1} s.t. $\sum (A''_{j+1})=k$ Let $A_{j+1}=A'_{j+1}\cup A''_{j+1}$ then we conclude this case.
- (3) [(2l-1)-(2k+1)]/2+1>j+1. First, if $3k-1\geqslant 2l-1$, i.e. $4k-2l+1\geqslant k+1$, let $A_1=\{2l-1,4k-2l+1\},\ A_2=\{2l-3,4k-2l+3\},\dots,A_j=\{2l+1-2j,4k-2l+2j-1\},\ A_{j+1}=\{1,k-1,2k-1,2k+1\},$ we have j+1 disjoint subsets we need. Secondly, if $3k-1<2l-2j+1\leqslant 2l-1$, the j+1 disjoint subsets will be $A_1=\{2l-1,4k-2l+1\},\ A_2=\{2l-3,4k-2l+3\},\dots,A_j=\{2l-2j+1,4k-2l+2j-1\},\ A_{j+1}=\{2k+1,3k-1\}.$ Finally, if $2l-2j+1\leqslant 3k-1<2l-1$, then there exists an index $1\leqslant i\leqslant j$ in the above decomposition such that $A_i=(k+1,3k-1)$. By replacing this A_i with $\{2k-3,2k+3\}$, we have the proof of this case. \square

Proposition 2.5. $\{1, 3, ..., 2l-1\}$ contains j+1 disjoint subsets with j of them sum to 4k, and one sums to 3k if (i) k is even, (ii) $4j+7 \le 4k \le 4l^2/(4j+3)$, and (iii) $l^2-(4j+3)k \ne 2$.

Proof. Similar to the proof of Proposition 2.4. \Box

Now we are ready to prove the main theorem. First, we consider the necessary condition.

Proposition 2.6. (Necessity) Let n, m and k be positive integers and m is odd. If the odd integer set $\{1, 3, ..., 2n-1\}$ contains k disjoint subsets having a constant sum m, then (i) either $9(k-1) \le m \le 2n-1$ or $9k \le m \le n^2/k$ and (ii) $n^2 - mk \ne 2$.

Proof. Suppose that $\{1, 3, ..., 2n-1\}$ contains k disjoint subsets $A_1, A_2, ..., A_k$ having constant sum m. If $m \le 2n-1$, since m is odd, only one subset A_i could have one element, the other k-1 subsets each contains at least 3 elements. Thus $m(k-1) = \sum_{j=1, j \ne i}^{k} \sum (A_j) \ge 1 + 3 + \cdots + (6k-7)$, which implies that $m \ge 9k-9$. Hence $9(k-1) \le m \le 2n-1$. Or, if m > 2n-1, then each A_i , i=1, 2, ..., k, contains at least three elements. Therefore, $mk \ge 1 + 3 + \cdots + (6k-1) = (3k)^2$. On the other hand,

 $mk \le 1 + 3 + \dots + (2n - 1) = n^2$. Hence $9k \le m \le n^2/k$. The result $n^2 - mk \ne 2$ is easy to see. \square

The sufficiency of the main theorem is more complicated. For clearness, we will consider separate cases in the following three propositions.

Proposition 2.7. If m is odd, $9k-9 \le m \le 2n-1$ and $n^2-mk \ne 2$, then $\{1, 3, ..., 2n-1\}$ contains k disjoint subsets having constant sum m.

Proof. By direct construction. Arrays A_0 and A_e are for k is odd and even, respectively.

$$A_{o} = \begin{bmatrix} A_{1} & A_{2} & A_{k-1/2} & A_{k+1/2} & A_{k+3/2} & A_{k-1} & A_{k} \\ m-3k+3, & m-3k+1, \dots, & m-4k+6, & m-4k+2, & m-4k, \dots, & m-5k+5, & m \\ 2k-1 & 2k+3, \dots, & 4k-7, & 2k+1, & 2k+5, \dots, & 4k-5, \\ k-2, & k-4, \dots, & 1, & 2k-3, & 2k-5, \dots, & k, \end{bmatrix}$$

$$A_{e} = \begin{bmatrix} A_{1} & A_{2} & A_{k/2-1} & A_{k/2} & A_{k/2+1} & A_{k-1} & A_{k} \\ m-3k+2, & m-3k, \dots, & m-4k+6, & m-4k+4, & m-4k+2, \dots, & m-5k+6, & m \\ 2k+1 & 2k+5, \dots, & 4k-7, & 2k-1, & 2k+3, \dots, & 4k-5, \\ k-3, & k-5, \dots, & 1, & 2k-3, & 2k-5, \dots, & k-1, \end{bmatrix}$$

Note that we often use the same constructions $A_0 - A_k$ and $A_e - A_k$ in the proofs of Propositions 2.8 and 2.9, respectively.

Proposition 2.8. If m and k are odd positive integers, $9k \le m \le n^2/k$, and $n^2 - mk \ne 2$, then $\{1, 3, ..., 2n-1\}$ contains k disjoint subsets having a constant sum m.

Proof. First, consider $m \ge 25k + 4$; let l be the positive integer such that $(5k+l-1)^2 < mk \le (5k+l)^2$. If $(5k+l)^2 - mk \ne 2$, we assume n = 5k+l; otherwise, let n = 5k+l+1. In any case, let $A_{j+1} \supseteq \{2(n-2k)+2j+1, 2n-2j-1\}, j=0, 1, 2, ..., k-1$; then we reduce the case $m \ge 25k+4$ to n' = 3k+l or n' = 3k+l+1 and m' = m-16k-4l or m' = m-16k-4l-4, which satisfy $9k \le m' \le n'^2/k$ and $n'^2 - m'k \ne 2$ (by direct checking) and the odd integer set will be $\{1, 3, ..., 2n'-1\}$. As to the $m, 25k \le m \le 25k+3$, we will give a direct construction which can be found in Fig. 5. Thus if we can prove the case when $9k \le m \le 25k$, we have the proof of this proposition.

(1) $9k \le m \le 6n - 9k$. Since $0 \le m - 9k \le 6(n - 3k)$, there exist three integers x, y and z such that 2(x + y + z) = m - 9k and $0 \le z \le y \le x \le n - 3k$. Thus by the array shown in Fig. 2, we have the proof of this case.

$$\begin{bmatrix} 2x+6k-1, 2x+6k-3, \dots, & 2x+5k+2, 2x+5k, \dots, & 2x+4k+1 \\ 2y+2k+3, 2y+2k-7, \dots, & 2y+4k-3, 2y+2k+1, \dots, & 2y+4k-1 \\ 2z+k-2, 2z+k-4, \dots, & 2z+1, 2z+2k-1, \dots, & 2z+k \end{bmatrix}$$

Fig. 2

$$\begin{bmatrix} 2n-1, 2n-3, \dots, & 2n-k+2, 2n-k, 2n-k-2, \dots, & 2n-2k+1 \\ 2n-4k+3, 2n-4k+7, \dots, & 2n-2k-3, 2n-4k+1, 2n-4k+5, \dots, & 2n-2k-1 \\ 2n-5k, 2n-5k-2, \dots, & 2n-6k+3, 2n-6k+1, 2n-4k-1, \dots, & 2n-5k+2 \\ \hline 2k \end{bmatrix}$$

Fig. 3

(2) 6n-9k < m < 25k. If m=6n-9k+2, then $(6n-9k+2)k \le n^2$, i.e. $2k \le (n-3k)^2$ and $(n-3k)^2-2k \ne 2$, so by Theorem 2.1(a) $\{1,3,\ldots,2n-6k-1\}$ contain a subset having a constant sum 2k. By Fig. 3 we have proved the case.

There are two other situations to consider.

Case 1: m - (6n - 9k) = 4j, $j \ge 1$. If $j \ge k$ then we can derive a contradiction from m < 25k and $n^2 \ge mk$. Thus j < k. Consider the array

$$B' = \begin{bmatrix} 2n-1+2j, 2n-3+2j, \dots, & 2n-k+2+2j, 2n-k+2j, \dots, & 2n-2k+1+2j \\ 2n-4k+3+2j, 2n-4k+7+2j, \dots, & 2n-2k-3+2j, 2n-4k+1+2j, \dots, & 2n-2k-1+2j \\ 2n-5k-2, 2n-5k-4, \dots, & 2n-6k+1, 2n-4k-1, \dots, & 2n-5k \end{bmatrix}.$$

As can be seen in B', 2n-1+2j, 2n-3+2j,..., 2n+1 are in first row, but 2n-4k-1+2j, 2n-4k-3+2j,..., 2n-4k+1 are not in any row. Change a part of the first row of B' by letting 2n-1+2j=(4k)+(2n-4k-1+2j), 2n-3+2j=(4k)+(2n-4k-3+2j),..., 2n+1=(4k)+(2n-4k+1). We obtain B'' in Fig. 4.

Since $\{1, 3, ..., 2(n-3k)-1\}$ contains j disjoint subsets having a constant sum 4k (by Proposition 2.2), we have the proof of this case.

Case 2:
$$m-(6n-9k)=4j+2, j \ge 1$$
.

The array A' is obtained from B' by adding two to each cell of the third row of B', and the A'' can be obtained similar to Fig. 4 except a part of the first row will be

$$B'' = \begin{bmatrix} 4k & 4k & \cdots & 4k \\ 2n-4k-1+2j & 2n-4k-3+2j & 2n-4k+1 & 2n-1, \dots, & 2n-2k+1 \\ 2n-4k+3+2j & \cdots & \cdots & 2n-2k-1+2j \\ 2n-5k-2 & \cdots & B' & \cdots & 2n-5k \end{bmatrix}$$

Fig. 4.

$$B_1 = \begin{bmatrix} 10k-1, 10k-3, \dots, & 9k+2, 9k, 9k-2, \dots, & 8k+1 \\ 6k+1, 6k+3, \dots, & 7k-2, 7k, 7k+2, \dots, & 8k-1 \\ 6k-1, 6k-3, \dots, & 5k+2, 5k, 5k-2, \dots, & 4k+1 \\ 2k+3, 2k+7, \dots, & 4k-3, 2k+1, 2k+5, \dots, & 4k-1 \\ k-2, k-4, \dots, & 1, 2k-1, 2k-3, \dots, & k \end{bmatrix}$$

$$B_2 = \begin{bmatrix} 10k+1, 10k-1, \dots, & 9k+4, 9k+2, 9k, \dots, & 8k+3 \\ 6k+1, 6k+3, \dots, & 7k-2, 7k, 7k+2, \dots, & 8k-1 \\ 6k-1, 6k-3, \dots, & 5k+2, 5k, 5k-2, \dots, & 4k+1 \\ 2k+3, 2k+7, \dots, & 4k-3, 2k+1, 2k+5, \dots, & 4k-1 \\ k-2, k-4, \dots, & 1, 2k-1, 2k-3, \dots, & k \end{bmatrix}$$

Fig. 5

 $\langle 4k, 4k, \dots, 4k, 6k \rangle$ (j-tuple) and this can be obtained by Proposition 2.3. Thus we conclude the proof of this proposition by the given direct constructions B_1 , and B_2 (Fig. 5) for m = 25k and 25k + 2, respectively. \square .

Finally, we consider the case when k is even.

Proposition 2.9. Let n, m and k be a positive integer, a positive odd integer and a positive even integer, respectively. Then the odd integer set $\{1, 3, ..., 2n-1\}$ contains k disjoint subsets having a constant sum m, if $9k+1 \le m \le n^2/k$ and $n^2-mk \ne 2$.

Proof. Similar to the proof of the Proposition 2.8, we consider $m \le 25k+3$, and the case m=25k-1, 25k+1, 25k+3 will be obtained by direct constructions (Fig. 7). Hence let m < 25k-1.

First, if $m \le 6n - 9k + 5$, let C_1 , C_2 and C_3 be three arrays where the column sums of these arrays are 9k + 1, 9k + 3 and 9k + 5, respectively.

$$C_{1}:\begin{bmatrix} 6k+1, & 6k-1, \dots, & 5k+3, & 5k-1, & 5k-3, \dots, & 4k+1 \\ 2k+1, & 2k+5, \dots, & 4k-3, & 2k+3, & 2k+7, \dots, & 4k-1 \\ k-1, & k-3, \dots, & 1, & 2k-1, & 2k-3, \dots, & k+1 \end{bmatrix}$$

$$C_{2}:\begin{bmatrix} 6k+1, & 6k-3, \dots, & 4k+5, & 6k-1, & 6k-5, \dots, & 4k+3 \\ 2k+1, & 2k+3, \dots, & 3k-1, & 3k+3, & 3k+5, \dots, & 4k+1 \\ k+1, & k+3, \dots, & 2k-1, & 1, & 3, \dots, & k-1 \end{bmatrix}$$

$$C_{3}:\begin{bmatrix} 6k+1, & 6k-1, \dots, & 5k+3, & 5k+1, & 5k-1, \dots, & 4k+3 \\ 2k+5, & 2k+9, \dots, & 4k+1, & 2k+3, & 2k+7, \dots, & 4k-1 \\ k-1, & k-3, \dots, & 1, & 2k+1, & 2k-1, \dots, & k+3 \end{bmatrix}$$

Similar to the idea of Proposition 2.8 (1), if m-(9k+2i-1) is a multiple of 6, then C_i will be the array to use, i=1, 2, 3. Thus we have the proof of this situation. Now consider $6n-9k+5 < m \le 25k-3$.

Case 1: m-(6n-9k+5)=4j. Consider the array D.

D =

$$\begin{bmatrix} 2n+1+2j, 2n-1+2j, \dots, & 2n-k+3+2j, 2n-k+1+2j, 2n-k-1+2j, \dots, & 2n-2k+3+2j \\ 2n-4k+5+2j, 2n-4k+9+2j, \dots, & 2n-2k+1+2j, 2n-4k+3+2j, 2n-4k+7+2j, \dots, & 2n-2k-1+2j \\ 2n-5k-1, 2n-5k-3, \dots, & 2n-6k+1, 2n-4k+1, 2n-4k-1, \dots, & 2n-5k+3 \end{bmatrix}.$$

It is easy to see that 2n+1+2j, 2n-1+2j, ..., 2n+1 appear in D but 2n-4k+1+2j, 2n-4k-1+2j, ..., 2n-4k+3, 2n-5k+1 do not appear in D. By a similar technique as in the case 1 and 2 of Proposition 2.8, we replace a part of the first row in D and obtain D' in Fig. 6.

$$\begin{bmatrix} 4k & 4k & \cdots & 4k & 5k \\ 2n-4k+1+2j & 2n-4k-1+2j & 2n-4k+3 & 2n-5k+1 & 2n-1, \dots, & 2n-2k+3+2j \\ 2n-4k+5+2j & 2n-4k+9+2j & \cdots & \cdots & 2n-2k-1+2j \\ 2n-5k-1 & 2n-5k-3 & \cdots & D & \cdots & 2n-5k+3 \end{bmatrix}$$

Fig. 6.

m = 25k - 1:

m = 25k + 1:

$$\begin{bmatrix} 10k+1, 10k-1, \dots, 9k+3, & 9k-1, 9k-3, \dots, & 8k+3, 8k+1 \\ 6k+1, 6k+3, \dots, 7k-1, & 7k+1, 7k+3, \dots, & 8k-3, 8k-1 \\ 6k-1, 6k-3, \dots, 5k+1, & 5k-1, 5k-3, \dots, & 4k+3, 4k+1 \\ 2k+1, 2k+5, \dots, 4k-3, & 2k+3, 2k+7, \dots, & 4k-5, 4k-1 \\ k-1, k-3, \dots, 1 & 2k-1, 2k-3, \dots, & k+3, k+1 \end{bmatrix}$$

$$B_1(9k-1)$$

$$B_2(9k+1)$$

m = 25k + 3:

$$\begin{bmatrix} 10k+1, 10-1, \dots, 9k+3, & 9k+1, 9k-1, \dots, 8k+5, 8k+3 \\ 6k+1, 6k+3, \dots, 7k-1, & 7k+3, 7k+5, \dots, 8k-1, 8k+1 \\ B_2(9k+1) & B_1(9k-1) \end{bmatrix}$$

Fig. 7.

Since, by Proposition 2.4, $\{1, 3, ..., 2(n-3)-1\}$ contains j+1 disjoint subsets with j of them sum up to 4k and one to 5k, we conclude the proof of this case.

Case 2:
$$m-(6n-9k+5)=4i-2$$
.

The proof is similar to case 1, except that we will use array E and apply Proposition 2.5 instead of Proposition 2.4.

$$E: \begin{bmatrix} 2n+1+2j, 2n-3+2j, \dots, & 2n-2k+5+2j, 2n-1+2j, 2n-5+2j, \dots, & 2n-2k+3+2j \\ 2n+1-4k+2j, 2n-4k+3+2j, \dots, & 2n-3k-1+2j, 2n-3k+3+2j, 2n-3k+5+2j, \dots, & 2n-2k+1+2j \\ 2n-5k+1, 2n-5k+3, \dots, & 2n-4k-1, 2n-6k+1, 2n-6k+3, \dots, & 2n-5k-1 \end{bmatrix}$$

For the case m = 25k - 1, 25k + 1, 25k + 3, we will use a direct construction for each m (Fig. 7). Thus we conclude the proof of this proposition. \Box

By Propositions 2.6-2.9 we have proved the following theorem.

Theorem 2.10. Let k, n and m be positive integers and m is odd. Then the set $\{1, 3, ..., 2n-1\}$ contains k disjoint subsets having a constant sum m if and only if $9(k-1) \le m \le 2n-1$, or $9k \le m \le n^2/k$ and $n^2 - mk \ne 2$.

Acknowledgment

We would like to thank Dr. Kano and the referees for their helpful comments.

References

- [1] K. Ando, S. Gervacio and M. Kano, Disjoint integer subsets having a constant sum, Discrete Math. 82 (1990) 7-11.
- [2] H. Enomoto and M. Kano, Disjoint odd integer subsets having a constant even sum, preprint.