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Abstract 

We prove that for positive k, n and m, the set { 1,3, . ,2n - 1) of odd integers contains k disjoint 

subsets having a constant odd sum m if and only if 9(k-1)Cm <2n-1, or 9k<m<n2/k and 

n2-mk#2. 

1. Introduction 

Ando et al. Cl], proved that for positive integers n, m and k, the set { 1,2, . . . , n> of 
integers contains k disjoint subsets having a constant sum m if and only if 
2k- 1 <m dn(n+ 1)/(2k). In the same paper, they posed the following conjecture. 

Conjecture 1.1. Let k, n and m be positive integers. Then the set { 1,3, . . . ,2n - l} of 
odd integers contains k disjoint subsets having a constant sum m if and only if one of 
the following two conditions hold: 

(i) m is even, 4k < m d n2/k, n2 - mk # 2. and either m f4n - 2 or n #4k. 
(ii) m is odd, and either 9(k-l)<mQ2n-1, or 9k<m<n2/k and n2-mk#2. 

They also mention that conjecture (i) has been proved by Enomoto and Kano [2]. 
In this paper, we prove conjecture (ii). 

2. The main result 

For convenience, we will use Al, A2, . . . , Ak to denote k mutually disjoint subsets 
and let A = [aij]txk be the array such that Aj={aij(i=1,2 ,.._, t} j=l,2 ,..., k. 
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Fig. 1. 

Moreover, we write A as [A, ( A2 1.~. 1 Ak]. We note that t = max i $ i<k I Ai 1 and some 
of the cells in A may be empty. The sum of the elements in Ai is denoted by C(Ai). 
Figure 1 is an example of k = 7 and 1 (Ai) = 63, 1 < i < 7. 

The following result is very helpful in our proof. 

Theorem 2.1. (Enomoto and Kano [2]). Let n and k be positive integers and m be 
a positive even integer. Then the following two statements hold: 

(a) {1,3, . . . ,2n- l} contains k disjoint subsets with sum m if and only if (i) 
4k<m<n2/k; (ii) n2-mk#2; and (iii) nf4k or m#16k-2. 

(b) (1, 3,..., 2n- l> contains k + 1 disjoint subsets AI, . . . , Ak and B such that 
C(B)=m/2 and C(Ai)=m for all i, 1 <i$ k if and only if(iv) either mzO(mod4) and 

4k+8<m<2n2/(2k+1) or m=2(mod4) and 4k + 2 G m < 2n2/(2k + 1); 
(v) n2-(2k+l)m/2#2; and (vi) n#4k+3 or m#16k+14. 

With the above theorem, we can obtain the following propositions. 

Proposition 2.2. { 1, 3, . . . ,21- l} contains j disjoint subsets with sum 4k if4j<4k<12 Jj. 

Proof. Since I2 - 4jk # 2 and 4k # 16j-2, by Theorem 2.1 (a), we conclude the 
proof. 0 

Proposition 2.3. { 1,3, . . . ,21- l} contains disjoint subsets Al, AZ, . . . , Aj such that 

C(At)=4k for each i= 1,2, . . . ,j- 1, and C(Aj)=6k, if(i) 4j+4<4k<212/(2j+ 1); and 
(ii) l*-(4j+2)k#2. 

Proof. Since 4k# 16j+ 14, if 4j+8 <4k, then by Theorem 2.1. (b) we conclude the 
proof by letting the sums of subsets be (4k, 4k, . . . , 4k, 2k) (j + 1 - tuple) and combin- 
ing the last two subsets to obtain a set with sum 6k. Finally, if 4j+4=4k, then 
(4j+4)((2j+1)/2)<12, i.e. 1>2j+2. In this case, let Ai={3,4j+l}, 
A2=(5,4j-l},..., Aj-i={2j-1,2j+5} and Aj={4j+3,2j+3}, then we have the 
proof. 0 

Proposition 2.4. { 1,3, . . . ,21- l> contains j+ 1 disjoint subsets A,, A2, . . . , Aj+ 1 such 
that C(At)=4k for each l<i<j and C(Aj+l)=Sk, if (i) k is even. 
(ii) 4j+5<4k<412/(4j+5), and (iii) 12-(4j+S)k#2. 
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Proof. If l<k, then (4j+5)k<12 < k2. Hence 8j+ 12 <2k. By Proposition 2.3, 
{1,3,...,21-1) contains 2j+2 disjoint subsets Al, AZ, . . . , Azj+ I, Azj+Z such that 
C(At)=4.(k/2) f or each 1~ i<2j+ 1, and C(AZj+2)= 6.(k/2). Thus, by combining 

A~,Az;A~,A~;...,AZ~+~, A2j+2 we have the proof of this case. If l>2k, then we will 

show that {1,3, . . . ,4k- l> contains desired j+ 1 subsets as 
(2k)’ - (4j + 5)k = (4k - 4j - 5)k 3 3k > 2. Hence we may assume that k < I< 2k. Further- 
more, k= 2 is a trivial case, without loss of generality, let k>4. Now consider the 
following three cases: 

(1) [(2Z-l)-(2k+1)]/2+1<j. Let A,={21-1,4k-21+1}, A2={21-3, 
4k-21+3}, . . . , A,=(2k+1,2k-1}.ThenA,+,,A,+,,...,Ai+,canbeobtainedasin 

the case l<k. 
(2) [(21--l)-(2k+1)]/2+1=j+l. Let A,={21-1,4k-21+1}, A2=(21-3, 

4k-21+3}, . . . . Aj={2k_3,2k+3} and Aj+l= {2k- 1,2k+ l}. By Theorem 2.1 (a) 

(1,3, ... 9 4k-21-l) contain a subset A;+, s.t. C(Al;I)=k Let Aj+1=Aj+lUAy+l 
then we conclude this case. 

(3) [(21-1)-(2k+1)]/2+1>j+1.First,if3k-1~21-1,i.e.4k-21+1~k+1,let 
A,={21-1,4k-21+1), A2={21-3,4k-21+3},...,Aj={21+1-2j,4k-21+2j-l}, 
Aj+ 1 = { 1, k - 1,2k - 1,2k + l}, we have j + 1 disjoint subsets we need. Secondly, if 
3k-1<21-2j+1<21-1, the j+l disjoint subsets will be A,={21-1,4k-2E+l}, 
A,={21-3,4k-21+3},... ,Aj={21-2j+1,4k-21+2j-l}, Aj+t={2k+1,3k-1). 
Finally, if 21- 2j + 1 < 3k - 1~ 21- 1, then there exists an index 1 < i <j in the above 
decomposition such that Ai =(k + 1,3k - l}. By replacing this Ai with (2k - 3,2k + 3}, 
we have the proof of this case. 0 

Proposition 2.5. { 1, 3, . . . ,21- l} contains j+ 1 disjoint subsets with j of them sum to 4k, 
and one sums to 3k if(i) k is euen, (ii) 4j + 7 6 4k < 41’/(4j + 3), and (iii) 1’ - (4j + 3)k # 2. 

Proof. Similar to the proof of Proposition 2.4. q 

Now we are ready to prove the main theorem. First, we consider the necessary 
condition. 

Proposition 2.4. (Necessity) Let n, m and k be positive integers and m is odd. If the odd 
integer set { 1, 3, . . . , 2n- l} contains k disjoint subsets having a constant sum m, then 
(i) either 9(k-l)<m<2n-1 or 9k<m<n2/k and (ii) n2-mk#2. 

Proof. Suppose that { 1,3, . . . ,2n - 1) contains k disjoint subsets AI, AZ, . . . , Ak having 
constant sum m. If m < 2n - 1, since m is odd, only one subset Ai could have one 
element, the other k-l subsets each contains at least 3 elements. Thus 
m(k-l)=Ck= j 1,jziC(Aj)~1+3+...+(6k-7), which implies that ma9k-9. Hence 
9(k-l)<m<2n-1. Or, if m>2n-1, then each Ai, i=l,2,...,k, contains at least 
three elements. Therefore, mk 2 1 + 3 + ... + (6k- 1) =(3k)‘. On the other hand, 
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mk<1+3+...+(2n--l)=n’. Hence 9k<m<n2/k. The result n2-mk#2 is easy to 

see. 0 

The sufficiency of the main theorem is more complicated. For clearness, we will 

consider separate cases in the following three propositions. 

Proposition2.7. Ifmisodd,9k-9<m<2n-1 and n2-mkf2, then {1,3,...,2n-1) 

contains k disjoint subsets having constant sum m. 

Proof. By direct construction. Arrays A, and A, are for k is odd and even, respect- 

ively. 

A,= 

A,= 

m-3k+3, m-3k+l,..., m-4k+6, m-4k+2, m-4k ,..., m-Sk+5, m 

2k-1 2k+3,..., 4k-I, 2k+l, 2k + 5, 

. . , 

4k-5, 
k-2, k-4,..., 1, 2k-3, 2k-5, . . . , k 

I 

A, A2 4,~ - I A k/2 A k/2+ 1 A,-, Ak 

m-3k+2, m-3k,..., m-4k+6, m-4k+4, m-4k+2 ,..., m-5k+6, m 

2k+l 2k+5,..., 4k-I, 2k-1, 2k+3,..., 4k-5, 

k-3, k-5,..., 1, 2k-3, 2k-5,..., k-l, 

Note that we often use the same constructions A,--& and A, -A, in the proofs of 

Propositions 2.8 and 2.9, respectively. 

Proposition 2.8. If m and k are odd positive integers, 9k < m < n2/k, and n2 - mk # 2, 

then { 1,3, . . . ,2n - l} contains k disjoint subsets having a constant sum m. 

Proof. First, consider ma 25k +4; let 1 be the positive integer such that 

(5k+ I- 1)2 <mk<(5k+ 1)2. If (5k+ 1)2 -mk#2, we assume n= 5k+ I; otherwise, let 

n=5k+I+1.Inanycase,letAj+~~{2(n-2k)+2j+1,2n-2j-l},j=0, 1,2,...,k-1; 

thenwereducethecasem~25k+4ton’=3k+1orn’=3k+1+1andm’=m-16k-41 

or m’ = m - 16k - 41- 4, which satisfy 9k < m’ < n12/ k and nr2 - m’k # 2 (by direct check- 

ing) and the odd integer set will be (1, 3, . . . ,2n’-l).Astothem,25k<m<25k+3,we 

will give a direct construction which can be found in Fig. 5. Thus if we can prove the 

case when 9k < m < 25k, we have the proof of this proposition. 

(1) 9k < m < 6n - 9k. Since 0 <m- 9k < 6(n - 3k), there exist three integers x, y and 

z such that 2(x+y+z)=m-9k and O<zdy<xbn-3k. Thus by the array shown in 

Fig. 2, we have the proof of this case. 
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! 2x+6k-1,2xf6k-3,..., 2z+k-2,2zfk-4, . . . . 

2y+2k-+3,2y+2k-7 ,..., 2y+4k_3,2y+2k+l,..., 2y+4k-1 

2x+5kf2,2x+5k, 2z+1,2z+2k-l,..., . . . . 2x+4k+ 2z+k 1 I 

Fig. 2. 

2n-1,2n-3,..., 2n-k+2,2n-k,2n-k-2 ,..., 2n-2k+l 

2n-2k-3,2n-4k+l,2n-4k+5,..., 2n-2k-1 

2n-5k,2n-5k-2,..., 2n-6k+3,2n-6k+1,2n-4k-l,..., 2n-5k+2 

Fig. 3. 

(2) 6n-9k<m<25k. If m=6n-9k+2, then (6n-9k+2)k<nZ, i.e. 2k<(n-3k)2 
and (n-3k)‘-2k#2, so by Theorem 2.1(a) { 1, 3, . . . ,2n-6k- l} contain a subset 

having a constant sum 2k. By Fig. 3 we have proved the case. 

There are two other situations to consider. 

Case 1: m-(6n -9k) =4j, j> 1. If j> k then we can derive a contradiction from 

m< 25k and n2 >,mk. Thus j< k. Consider the array 

2n-l+fj,2n_3+2j,..., 2n-k+2+2j,2n-kf2j,..., 2n-2k+l+2j 

2n--4k+3+2j,2n_4k+7+2j,..., 2n-2k-3+2j,2n-4k+lf2j,..., 2n-2k-1+2j 

2n-5k-2,2n-5k-4,..., 2n-6k+l,2n-4k-l,..., 2n-5k 

As can be seen in B’, 2n-1+2j, 2n_3+2j,...,2n+l are in first row, but 

2n-4k-1+2j, 2n-4k-3+2j, . . . , 2n -4k + 1 are not in any row. Change a part 

of the first row of B’ by letting 2n-1+2j=(4k)+(2n-4k-l+2j), 
2n-3+2j=(4k)+(2n-4k-3+2j),..., 2n + 1=(4k) +(2n-4k + 1). We obtain B” in 

Fig. 4. 

Since {1,3, . . . ,2(n - 3k) - l} contains j disjoint subsets having a constant sum 4k (by 

Proposition 2.2), we have the proof of this case. 

Case 2: m-(6n-9k)=4j+2, j>l. 

The array A’ is obtained from B’ by adding two to each cell of the third row of B’, 

and the A” can be obtained similar to Fig. 4 except a part of the first row will be 

B”= 

4k 4k ... 4k 
1 

2n-4k-lf2j 2n-4k-3+2j 2n-4k+ 1 2n-l,..., 2n-2k+l 

2n--4kf3f2j .‘. 

2n-5k-2 

2n-2k-1+2j 

. 2n-5k 

Fig. 4. 



148 H.-L. Fu, W.-H. Hu 

lOk-1, lOk-3, . . , 

6kf1, 6k+3,..., 

B1= 6k-1, 6k-3,..., 

2k+3, 2k+l,..., 

i k-2, k-4,..., 

9k+2,9k, 9k-2, . . . , 8k+l 

lk-2, lk,?k+2 ,..., 8k- 1 

5k+2, 5k, 5k-2, . . . . 4k+l 

4k-3,2k+l,2k+5 ,..., 4k-1 

1, 2k-1,2k-3 ,..., k 

lOk+l, lOk-l,..., 9k+4, 9k+2,9k, . . . , 8k+3 

6k+l, 6k+3,..., lk-2, 7k, lk+2 ,..., 8k-1 

BZ= 6k-1, 6k-3,..., 5k+2, 5k, 5k-2, . . . . 4k+l 

2k+3, 2k+l,..., 4k-3,2k+l,2k+5 ,..., 4k-1 

k-2, k-4, , 1,2k-1,2k-3 ,..., k 

Fig. 5. 

(4k, 4k, . . . , 4k, 6k)(j-tuple) and this can be obtained by Proposition 2.3. Thus we 
conclude the proof of this proposition by the given direct constructions B1, and 
Bz (Fig. 5) for m=25k and 25k+2, respectively. 0. 

Finally, we consider the case when k is even. 

Proposition 2.9. Let n, m and k be a positive integer, a positive odd integer and a positive 
even integer, respectively. Then the odd integer set { 1,3, . . . ,2n - l} contains k disjoint 

subsets having a constant sum m, if 9k+ 1 <m<n2/k and n2 - mk#2. 

Proof. Similar to the proof of the Proposition 2.8, we consider m<25k+ 3, and the 
case m= 25k- 1,25k + 1,25k+ 3 will be obtained by direct constructions (Fig. 7). 
Hence let m < 25k- 1. 

First, if m < 6n - 9k + 5, let Cr , C2 and C3 be three arrays where the column sums of 
these arrays are 9k + 1, 9k + 3 and 9k + 5, respectively. 

6k+l, 6k-l,..., 5k+3, 5k-1, 5k-3 ,.,., 4k+l 

C,: 2k+l, 2k+5,..., 4k-3, 2k+3, 2k+7 ,..., 4k-1 

k- 1, k-3, . . . . 1, 2k-1, 2k-3,..., k+l 

6k+l, 6k-3,..., 4k+5, 6k-1, 6k-5, . . . . 4k+3 

c2: 2k+l, 2k+3,..., 3k-1, 3k+3, 3k+5 ,..., 4k+l 

k+l, k+3 ,..., 2k-1, 1, 3 , . . . . k-l 

6k+l, 6k-l,..., 5k+3, 5k+l, 5k-l,..., 4k+3 

C3: 2k+5, 2k+9, . . . . 4k+l, 2k+3, 2k+7 ,..., 4k-1 

k- 1, k-3, . . . . 1, 2k+l, 2k-l,..., k+3 

Similar to the idea of Proposition 2.8 (l), if m-(9k+2i- 1) is a multiple of 6, then 
Ci will be the array to use, i= 1,2,3. Thus we have the proof of this situation. Now 
consider 6n - 9k + 5 < m < 25k - 3. 
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Case 1: m-(6n-9k+5)=4j. 
Consider the array D. 

D= 

I 

2n+1+2j,2n-1+2j,..., 2n-k+3+2j,2n-k+l+2j,2n-k-l+2j,..., 2n-2k+3+2j 

2n-4k+5+2j,2n-4k+9+2j,..., 2n-2k+1+2j,2n-4k+3+2j,2n-4k+7+2j,..., 2n-2k-lf2j 

I 2n-5k-1,2n-5k-3,..., 2n-6k+1,2n-4k+1,2n-4k-l,..., 2n-5k+3 

Itiseasytoseethat2n+1+2j,2n-l+2j,..., 2n+lappearinDbut2n_4k+1+2j, 

2n-4k-1+2j,..., 2n -4k + 3,2n - 5k + 1 do not appear in D. By a similar technique 
as in the case 1 and 2 of Proposition 2.8, we replace a part of the first row in D and 
obtain D’ in Fig. 6. 

4k 4k . 4k 5k 

2n--4k+1+2j 2n-4k-1+2j 2n-4k+3 2n-5kfl 2n-l,..., 2n-2k+3+2j 

2n-4k+5+2j 2n--4k+9+2j ... . . . 2n-2k-l?-2j 

2n-5k-1 2n-5k-3 ‘.’ D 2n-5k+3 _ 

Fig. 6. 

m=25k-1: 

lOk-1, lOk-3, lOk-5 ,..., 9k+1,9k-3,9k-5 ,..., 8k+1,8k-1 

6k+1,6k+3,6k+5 ,..., 7k-1,7k+1,7k+3 ,..., 8k-3,6k-1 

9k-1, 6k-3, 6k-5, , 4k+1,5k-1,5k-3 ,..., 4k+3,5k+l 

2k+5,2k+9,..., 4k-3,2k+3,2k+7 ,..., 4k-5,4k-1 

k-3, k-5,... 3, k+l,2k-1,2k-3 ,..., k+3,2k+l 

m=25k+l: 

lOk+l,lOk-l,..., 9k+3, 9k-1,9k-3 ,..., 8k+3,8k+l 

6k+1,6k+3 ,..., 7k-1, 7k+1,7k+3 ,..., Sk-3,8k-1 

6k-1,6k-3 ,..., 5k+l, 5k-l,Sk-3 ,..., 4k+3,4k+l 

2k+1,2k+5 ,..., 4k-3, 2kf3,2k+7 ,..., 4k-5,4k-1 

k-l,k-3,...,1 2k-1,2k-3,..., kf3, k+l 

B,(9k- 1) &(9k+ 1) 

m=25k+3: 

lOk+l, 10-l ,..., 9kf3, 9k+1,9k-l,..., 8k+5,8k+3 

6k+l,6k+3 ,..., 7k-1, 7k+3,7k+5 ,..., 8k-l,Sk+l 

B,(9k + 1) B,(9k- 1) 1 
Fig. 7. 
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Since, by Proposition 2.4, { 1, 3, . . . ,2(n - 3) - l} contains j + 1 disjoint subsets with 
j of them sum up to 4k and one to 5k, we conclude the proof of this case. 

Case 2: m-(6n-9k+5)=4j-2. 
The proof is similar to case 1, except that we will use array E and apply Proposition 

2.5 instead of Proposition 2.4. 

I 

2n+1+2j,2n_3+2j,..., 2n-2kf5f2j,2n-l+2j,2n-5+2j,..., 2n-2k+3+2j 

E: 2n+1-4k+2j,2n-4k+3+2j,..., 2n-3k-1+2j,2n-3k+3+2j,2n-3k+5+2j,..., 2n-2k+1+2j 

2n-5k+1,2n-5k+3,..., 2n-4k-1,2n-6k+1,2n-6k+3 ,..., 2n-5k-1 J 

For the case m = 25k - 1,25k + 1,25k + 3, we will use a direct construction for each 
m (Fig. 7). Thus we conclude the proof of this proposition. 0 

By Propositions 2.6-2.9 we have proved the following theorem. 

Theorem 2.10. Let k,n and m be positive integers and m is odd. Then the set 

{I, 3, ... 3 2n- l} contains k disjoint subsets having a constant sum m if and only if 
9(k-l)<m<2n-1, or 9kbm<n2/k and n2-mk#2. 
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