
B.-F. Wu and C.-F. Lin: An Efficient Architecture for JPEG2000 Coprocessor

Contributed Paper
Manuscript received July 29, 2004 0098 3063/04/$20.00 © 2004 IEEE

1183

An Efficient Architecture for JPEG2000 Coprocessor
Bing-Fei Wu and Chung-Fu Lin

Abstract — JPEG2000 is a new international standard for
still image compression. It provides various functions in one
single coding stream and the better compression quality than
the traditional JPEG, especially in the high compression ratio.
However, the heavy computation and large internal memory
requirement still restrict the consumer electronics applications.
In this paper, we propose a QCB (quad code block)-based
DWT method to achieve the higher parallelism than the
traditional DWT approach of JPEG2000 coding process.
Based on the QCB-based DWT engine, three code blocks can
be completely generated after every fixed time slice
recursively. Thus, the DWT and EBCOT processors can
process simultaneously and the high computational EBCOT
then has the higher parallelism of the JPEG2000 encoding
system. By changing the output timing of the DWT process
and parallelizing with EBCOT, the internal tile memory size
can be reduced by a factor of 4. The memory access cycles
between the internal tile memory and the code block memory
also decrease with the smooth encoding flow. 1

Index Terms — JPEG2000, DWT, EBCOT, code block,
quad code block.

I. INTRODUCTION
 JPEG2000 provides higher quality and more functions than
traditional JPEG. Moreover, JPEG2000 takes various
functions (i.e. lossless, lossy, progressive, error resilience, ROI
etc.) in one single coding stream and has an extensive set of
features for diverse imagery systems [1-3]. This superior
compression standard can be applied to many consumer
electronics applications, such as high-quality digital cameras,
surveillance systems, personal mobile devices, and medical
images etc. In general, the main coding stream has to be
performed by DWT, EBCOT, and MQ blocks, which can be
regarded as the core algorithms of JPEG2000 standard. That is,
after the process of these three coding blocks, the main coding
stream can be generated to produce a JPEG2000 file. However,
the complex encoding process requires much execution time.
In the hardware implementation, the issues of high
computation blocks and effective integration demand still
restrict the wide applications of JPEG2000.

Considering these three core blocks individually, the
performance of DWT, EBCOT, and MQ processors are
intensive with its throughput and memory requirement. Many
studies are devoted to the optimization of the specific
component. Generally, DWT needs a tile buffer to perform the
subband transform [4]. Then, EBCOT divides each subband
into several code blocks and performs the bit-plane coding

1 All authors are with the Electrical and Control Engineering Department,

National Chiao Tung University (e-mail: {bwu, cflin}@cssp.cn.nctu.edu.tw).

algorithm [5-7]. The MQ coder is a lossless compression,
followed by EBCOT to generate the main compression data
[8].

Although the dedicated components can be optimized
individually, the overall encoding system may suffer
performance degradations and need more hardware resources
since different components require different I/O bandwidth
and buffers [9,10]. In this paper, we propose a QCB-based
DWT engine to ease the performance degradation of
integration. Based on the changed output timing of the DWT
process, three code blocks are iteratively generated every fixed
execution time slice and the DWT and EBCOT processes can
reach higher parallelism than the traditional DWT method.
Moreover, the overall performance can preserve the high
performance of the individual component and the internal
memory size is also reduced.

The paper is organized as follows. In Section II, the brief
concept and the timing analysis of the basic JPEG2000 blocks
is addressed. In Section III, the proposed QCB-based DWT
method will be discussed and the architecture of the
JPEG2000 coprocessor are emphasized. In Section IV, the
overall performance is evaluated under the different bus
architectures. In Section V, we compare the proposed
architecture design with other related works [9,10]. Finally, a
brief summary is given in Section VI.

II. JPEG2000 BASIC BLOCKS
The basic blocks of JPEG2000 algorithm can be described

in Fig.1. During the coding process, an image is split into
several rectangular tiles. Then each tile can be coded
independently. In general, the entire tile image needs to be
buffered to perform the subband transformation. That is, the 2-
D DWT decomposes a tile image into LL, LH, HL, and HH
subbands. The LL band can be decomposed into next
resolution recursively. After the wavelet transform,
coefficients in each subband are partitioned into several code
blocks and performed independently by the EC (Entropy
Coder) algorithm. The EC process carries out EBCOT and
MQ algorithms. First, the EBCOT processes each code block
bit-plane by bit-plane, and generates the context-based
information. Then, the context data outputs are lossless coded
by MQ coder to generate the main coding stream.

Input Image

Tile
Image0

Tile
Image1

Tile
Image2

Tile
Image3

Tile Image

Wavelet Transform
in Tile Image

Several Code
Blocks in Each

Subband

Subband

HL1

HH1LH1

HL2

HH2LH2

LL2

Entropy Coding
Independently

code
block …

… …

Fig. 1. Block diagram of JPEG2000 coding process.

IEEE Transactions on Consumer Electronics, Vol. 50, No. 4, NOVEMBER 2004 1184

Several studies have been focused on the dedicated
hardware design for the individual components of JPEG2000
[9,10]. However, the different coding flows and memory
requirement are still crucial factors of integrating of overall
JPEG2000 architecture. In this paper, we focus on the overall
performance and memory reduction of JPEG2000 coprocessor
architecture.

To achieve the high throughput of the overall JPEG2000
process, the parallel process between DWT and EBCOT is
needed. Based on the pipelined DWT architecture [4,9,11,12],
the throughput of DWT is dominated by the number of
memory accesses and hardware resources. In the single DWT-
processor design, it needs N2 clock cycles to read row images
for an N x N image to perform row-wise transform, and HL
and HH bands are then generated with additional N2/2 clock
cycles. After extra N2/2 clock cycles, the LH and LL bands are
available and the LL band can be decomposed into next
resolution recursively. The detailed analysis is listed in
TABLE I. Since the dyadic decomposition of DWT, the output
numbers of code blocks in each subband decrease dependent
on the higher DWT resolution.

TABLE I

THE RELATION OF DWT OUTPUT TIMING AND OUTPUT NUMBER OF CODE
BLOCKS (IMAGE SIZE= N X N, CODE BLOCK SIZE= N/8 X N/8, MEMORY
PORT: A READ PORT AND A WRITE PORT, 3 LEVEL DECOMPOSITION).

Clock cycle +
N2

+
N2/2

+
N2/2

+
N2/4

+
N2/8

+
N2/8

+
N2/16

+
N2/32

+
N2/32

DWT
decompositi

on
Resolution 1 Resolution 2 Resolution 3

Number of
code blocks

produced

row-
data

proce
ssing

32 16

Row-
data

proce
ssing

8 4

row-
data

proce
ssing

2 2

To parallelize with the DWT and EBCOT processors,

internal memory and multiple EBCOTs are used to process the
output code blocks. As listed in TABLE I., there should be 32
code-block size memories to buffer the HL and HH subband
coefficients after 3/2N2 clock cycles, but the memory
requirement decreases as the execution time increasing due to
the dyadic property of DWT decomposition, shown in Fig.2.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

5

10

15

20

25

30

35

 time unit (1 unit= N2 clock cycles)

 in
te

rn
al

 m
em

or
y

un
it

(1
 u

ni
t =

 N
/8

 x
 N

/8
 x

 2
 B

yt
e)

Fig. 2. Memory requirements v.s. execution time (i.e. image size= NxN, 3
DWT decomposition).

Moreover, several EBCOT architectures are proposed to
speed up the high computational bit-plane coding algorithm

[5-7]. These speed-up methods can be classified into three
main ways: sample skip, pass parallel, and bit-plane parallel
processes. The architectural models of these methods are listed
in TABLE II. Considering the hardware cost and flexibility,
we choose the pass parallel architecture in the overall
encoding system [6]. Based on the architectural model, it
requires 8 EBCOT processors to carry out 32 code blocks
within N2/2 clock cycles (i.e. assume 8 coding bit-plane,
L=N/8, 3 level decomposition). Thus, the large internal
memory requirement and hardware cost cause EBCOT become
the bottleneck of overall JPEG2000 encoding flow.

TABLE II
THE ARCHITECTURAL MODEL OF DIFFERENT METHODS

(L: THE WIDTH OF CODE BLOCK).
Number of Processors

Architecture Average
Processing Time EBCOT

processor
MQ

processor
Sample Skip [5] 1.3 x n x L2 1 1
Pass parallel [6] n x L2 1 3

Bit-plane parallel [7] (1+δ) x L2 10 5

III. PROPOSED JPEG2000 ARCHITECTURE

A. QCB-based Architecture for JPEG2000 Coprocessor
To reduce the memory size and hardware cost, we propose a

novel method for DWT process --- QCB (quad code block)-
based DWT. The basic idea of the QCB- based DWT is to
produce complete code blocks as soon as possible and
performed by the EBCOT processor directly.

Based on the approach, a tile image is divided into several
QCB blocks in advance of the DWT procedure, as shown in
Fig.3. The QCB block0 then carries out the QCB-DWT
process and generates four code blocks --- three for EBCOT
encoding, and one for the next DWT decomposition,
recursively. Based on the pipelined DWT architecture, the
QCB-DWT throughput is approximately N2/8, dominated by
the number of memory accesses (i.e. 2 x N /4 x N /4, twice
memory access for row and column processing). Thus, the
QCB-DWT can recursively generate three complete code
blocks for EBCOT processors every N2/8 clock cycles.

LL band

QCB block0
DWT transform

3 code blocks in HL, LH, HH subband
and 1 code block in LL subband

HL band

LH band HH band

Contributed from
QCB block0

QCB
block1

QCB
block2

QCB
block3

QCB
block4

QCB
block5

QCB
block6

QCB
block7

QCB
block8

QCB
block9

QCB
block10

QCB
block11

QCB
block12

QCB
block13

QCB
block14

QCB
block15

QCB
block0

Tile Image

N

4
N

8
N

…

… …

…

… …

…

… …

…

… …

Fig. 3. The QCB-DWT process in a tile image (Assume tile size= NxN,
code block size= N/8 x N/8).

Under the same assumptions of 8 coding bit-planes and
pass-parallel architecture of EBCOT, we only need three

B.-F. Wu and C.-F. Lin: An Efficient Architecture for JPEG2000 Coprocessor

EBCOT processors to encode these three code blocks
independently within N2/8 clock cycles, and achieve the same
throughput of DWT. Also, the code block of LL band can be
decomposed into next resolution. Based on the parallel
processing, the ping-pong buffer CBM is required for DWT
and EBCOT switching. The overall JPEG2000 coprocessor
architecture is shown in Fig.4 and the memory requirements
are listed in TABLE III. Based on the QCB-based DWT
engine, the DWT and EBCOT processes can achieve higher
parallelism. Thus, the internal tile memory size can be reduced
by a factor of 4, i.e. only LL1 subband is needed to buffer. The
hardware cost of EC is also decreased.

CBM0
-- ping pong

buffer

CBM1
-- ping pong

buffer

CBM2
-- ping pong

buffer

QCB-DWT

Controller

Main
coding
stream
buffer

LL
LH

HL

HH

Tile
image

Rate-
Distortion
controller

File
formatting

EBCOT0MQ0

EBCOT1MQ1

EBCOT2MQ2

EC2

EC1

EC0

Fig. 4. Architecture of JPEG2000 Coprocessor.

TABLE III

THE MEMORY REQUIREMENT OF THE PROPOSED ARCHITECTURE.
Assume: tile size= 256x256, code block size= 32x32

Memory Type Memory Requirement
(K Bytes)

Tile Memory
(QCB-DWT) 1/4 x (256x256x16) = 32

Code block Memory
(CBM0 ~ CBM3)

2x3x32x32x16 = 12

B. QCB-based DWT Method
The basic idea of QCB-DWT is to divide a tile image into

several QCB size images to perform the DWT process. Thus, the
EBCOT can execute the bit-plane coding immediately after three
code blocks are produced. Since the code block size is
determined by the user or system demand (i.e. 32x32 or 64x64
in general), it is reasonable to define the QCB block size before
actually performing the QCB-DWT procedure. That is, the QCB
block size is double width and height of one code block size.

However, the QCB-DWT breaks the data path of each row and
column image, some modifications should be applied to preserve
the primitive algorithms. The lifting-based DWT algorithm is
suitable for pipeline design method [4,11,12]. Since the data
path is broken due to the boundary between two neighbor QCB
blocks, it is necessary to store the pipeline registers for each
QCB block boundaries to preserve the original data path by
using internal or external memories.

Considering the fast pipeline data path proposed in [12], there
are 2 additional cycles--- “read” and “store” cycles which are
needed to preserve the original data path in 5/3 filters, as shown
in Fig.5. A quantitative analysis of additional memory access
cycles are formulated in Eq(1)- Eq(3). The penalty of memory

accesses in 5/3 filters and 9/7 filters are 2 and 5, since there are
only one lifting step in 5/3 case but two steps in 9/7 filters. The
detailed analyses of memory access increasing rate are listed in
TABLE IV. With a little increasing of memory accesses than
traditional DWT, QCB-DWT provides higher parallelism with
EBCOT and less memory requirement in the overall JPEG2000
encoding system.

read
1 cycle

0
is

0
id

0
1+is

0
1+id

0
2+is

1
is

1
idβ

1
1+is

1
1+idβ

0
2+is

0
2+id

0
3+is

0
3+id

1
2+is

1
2+idβ

1
3+is

1
3+idβ

store
1 cycle

the same data path
in QCB blocki

the same data path
in QCB blocki+1

……

……

adder

CSD multiplier1

CSD multiplier2

is

id
Even input

Odd input

……

……

Fig. 5. Additional cycles to preserve the same data path between
different QCB blocks.

Assume image size= NxN,

accessmemory original ofNumber
cycles Additional rate increasing accessMemory =

 (1)

∑
=

×=
J

i 1
* registers) pipeline restoringfor {(penalty 2cycles Additional

)} resolution inboundary of(number *) resolution of(height ii

 (2)

∑
=

−×=
J

i
i N

1

2
14

12accessmemory original ofNumber

 (3)

TABLE IV
THE INCREASING RATE OF MEMORY ACCESS FOR

DIFFERENT DWT DECOMPOSITION LEVELS.
Memory access increasing rate

(Tile size= 256x256, code block size= 32x32) Filters
1 level 2 level 3 level 4 level 5 level

5/3 2.3 % 2.1 % 2.2 % 2.3 % 2.3 %
9/7 5.9 % 5.5 % 5.6 % 5.7 % 5.8 %

1185

IEEE Transactions on Consumer Electronics, Vol. 50, No. 4, NOVEMBER 2004 1186

C. JPEG2000 Coprocessor Design
Considering the hardware implementation of JPEG2000

coprocessor shown in Fig.4, one needs to define the basic
handshaking for each component to control the DWT, CBM
and EC components correctly. Since a tile image is divided
into several QCB images, we use “Tile_INIT” and
“TILE_INIT_ACK” signals to complete the tile initialization
and use the “QCB_INIT” and “QCB_INIT_ACK” signals to
achieve the QCB initialization. As shown in Fig.6, each
component can be initialized via the proper configuration data.
In general cases, several QCB processes are carried out in a
tile procedure. The “QCB_Done” and “QCB_Done_ACK”
signals indicate the end of each QCB process and can be used
to synchronize the QCB process.

Tile_En (I)

Tile_INIT (I)

Tile_INIT_DATA (I)

Tile_INIT_ACK (O)

QCB_INIT_DATA (I)

QCB_INIT (I)

QCB_INIT_ACK (O)

QCB_Done (O)

QCB_Done_ACK (I)

Repeat this process

Processing ...

Reset (I)

Data

Data

Fig. 6. The basic handshaking of each component.

Based on the basic handshaking, the main controller is

designed to control the overall data flow. As shown in Fig.7,
the “Tile_setteing” and “QCB_setting” states can be
synchronized by checking the “Tile_INIT_ACK” and
“QCB_INIT_ACK” signals from each component. Similarly,
the “QCB_process” state can be synchronized through the
inspection of each “QCB_Done” signals. The detailed
descriptions of each state are depicted in TABLE V.

idle Done

RSTn = 0

QCB_finished

INIT_controller

Tile_setting

QCB_process

QCB_setting

All image
finished?

Reset_components

Until all component
Tile_INIT_ACK = ‘ 1’

Until all component
QCB_Done =‘ 1’

Several QCB-processes in a tile

Next QCB
block

Next tile
image

Until all component
QCB_INIT_ACK = ‘ 1’

Fig. 7. Finite state machine of the main controller.

TABLE V

DESCRIPTION OF THE MAIN FINITE STATE MACHINE.
State Description
Idle Coprocessor in the idle state

Reset_components Reset all components (contained: DWT, CBM, EC)
INIT_controller Calculate the initial data of each component

Tile_setting Initialization for tile process
QCB_setting Initialization for QCB process
QCB_process DWT, CBM, EC process the data concurrently
QCB_finished Go to the next QCB process, or process the new tile

image, or finish the overall coding process
Done Coprocessor done

Finally, since the input image size is different, the initial

data for each component have to be calculated for the various
image size. TABLE VI describes the algorithm to calculate the
initial data of each component. Since the tile memory size may
be restricted by the hardware cost, the “Tile_sizeY” and
“Tile_sizeX” are set to programmable variables. The output
parameters are then used to initialize the DWT, CBM, and EC
components. The algorithm can be realized by the software or
hardware optimized through the look-up table under the
specific parameters.

TABLE VI
THE QCB INITIALIZATION ALGORITHM.

/* Controller initialization */
/* Calculate the number of tiles in the input image */
Input:
//input image size

Image_sizeY, Image_sizeX,
//user-defined tile size (i.e.128x128 or 256x256)

Tile_sizeY, Tile_sizeX,
Output:
//number of tiles in an image

Tile_numberY, Tile_number_X,

/* Declare */
Tile_numY =0;
Tile_numX =0;
Ts_X=0;
Ts_Y=0;

/* Calculate */
//Calculate the X-axis tile number in an image
while (Ts_X=< Image_sizeX){
 Ts_X=Ts_X + Tile_sizeX;
 Tile_numX ++;
}
//Calculate the Y-axis tile number in an image
while (Ts_Y=< Image_sizeY){
 Ts_Y=Ts_Y + Tile_sizeY;
 Tile_numY ++;
}

/* output */
Tile_numberX= Tile_numX;
Tile_numberY= Tile_numY;

B.-F. Wu and C.-F. Lin: An Efficient Architecture for JPEG2000 Coprocessor

TABLE VI
THE QCB INITIALIZATION ALGORITHM (CONT’D).

/* Controller initialization */
/* Calculate the QCB initialization data for each
component */
Input:

Image_sizeY, Image_sizeX, // input image size
 Tile_sizeY, Tile_sizeX, // user-defined tile size

Tile_index_Y,Tile_index_X, // input the tile index number
//of an image

Output:
CB_sizeY, CB_sizeX, QCB_sizeY, QCB_sizeX, Dwt_level

/* Declare */
Dwt_num=0;
CBS=32; //code block size is 32x32
ist_Y=Tile_sizeY; //default size: tile size
ist_X=Tile_sizeX; //default size: tile size

/* Calculate */
//calculate the corner size in the tile image
if (Image_sizeY < Tile_sizeY*Tile_index_Y)
 ist_Y= Image_sizeY – Tile_sizeY*(Tile_index_Y-1);
if (Image_sizeX < Tile_sizeX*Tile_index_X)
 ist_X= Image_sizeX - Tile_sizeX*(Tile_index_X-1);

//LL band size must less then code block size
while (ist_X>=CBS or ist_Y>=CBS)
{
 ist_Y=ist_Y>>1;
 ist_X=ist_X>>1;
 Dwt_num++;
}

/* output */
Dwt_level=Dwt_num ; // Number of DWT decomposition
CB_Y=ist_Y; // Code block height
CB_X=ist_X; // Code block width
QCB_Y=ist_Y>>1; // Quad Code block height
QCB_X=ist_X>>1; // Quad Code block width

IV. OVERALL SYSTEM PERFORMANCE
Based on the QCB-based DWT engine, the proposed

JPEG2000 coprocessor achieves higher parallelism and
requires less hardware resources than the traditional DWT
method. However, the overall performance could be still
restricted by the I/O bandwidth. Thus, the overall hardware
cost can be optimized for the different bus architectures. In the
bus issue, we consider the split bus and single bus
architectures. In the split bus, since there are separate I/O ports,
the QCB-DWT and EC can execute concurrently by using
CBM (ping-pong buffer) to execute each QCB process, as
shown in Fig.8. Since every time slice delay is determined by
the QCB-DWT throughput and the coding bit plane number
processed by EBCOT, it is reasonable to design both
components with the same throughput. Based on the pass-
parallel [6] architecture of EBCOT and the single DWT-

processor design, three EBCOT processors can reach to the
QCB-DWT throughput under the 8-coding bit plane
assumption.

In the single bus architecture, the bus timing is shown in
Fig.5. Since the QCB-DWT and EC use the same I/O bus, the
two components can be optimized individually to increase the
overall throughput and CBM can be reduced to the single
buffer. However, since the QCB-DWT and EC cannot process
simultaneously under the single bus condition, the main
advantage of the QCB-based method is the less internal tile
memory requirement.

QCB_DWT QCB_DWT QCB_DWT QCB_DWT QCB_DWT QCB_DWT

EC ECEC EC

Input :

Output :

CBM CBM

(DWT_QCB_Done = ‘‘‘‘ 1’’’’ & EC_QCB_Done = ‘‘‘‘ 1’’’’)

CBMCBMCBM CBM

EC

……

Fig. 8. The I/O timing of the spilt bus architecture.

QCB_DWT QCB_DWT QCB_DWT

EC EC

Input :

Output :

CBM CBM

(DWT_QCB_Done =‘‘‘‘ 1’’’’)

CBMCBM CBM

EC

CBM

(EC_QCB_Done = ‘‘‘‘ 1’’’’)

……

Fig. 9. The I/O timing of the single bus architecture.

Moreover, we evaluate the overall performance of

JPEG2000 coprocessor in the split bus architecture in TABLE
VII. Several 256x256 size images are chosen as the test
benches to assess the performance of the proposed architecture
performing 3-level DWT decomposition and EC process (i.e.
code block size is 32x32). The pipelined QCB-DWT and three
pass-parallel EC architectures are applied to the coprocessor.
TABLE VII lists the detailed clock cycles of each component
and overall performance. Under the real test pattern, the clock
cycle of EBCOT in each QCB process is determined by the
maximal coding bit plane number of the three code blocks.
Since the coding bit plane number is not larger than eight, the
QCB process is restricted by the throughput of QCB-based
DWT (i.e. 66x66x2=8712, (64+2) for the worst case of 5/3
filters). In comparison of the QCB-based and the traditional
DWT based JPEG2000 coprocessor architecture, the proposed
architecture needs less clock cycles to process the same testing
image since it has the higher parallelism between the DWT
and EC processes.

1187

IEEE Transactions on Consumer Electronics, Vol. 50, No. 4, NOVEMBER 2004 1188

TABLE VII
THE PERFORMANCE OF THE QCB-BASED JPEG2000 COPROCESSOR.

Average 64 code block Overall performance
(clock cycle)

Testing
image

QCB process
of 5/3 DWT
(clock cycle)

QCB
process
(clock
cycle)

Number of
coding bit

plane

QCB-
based
DWT

method

Traditional
DWT

method

Lenna256 8712 7168 6.51 207024 256000
Baboon256 8712 6981.81 6.73 207024 251904
Pepper256 8712 7028.36 6.54 208048 252920

Airplane256 8712 6888.72 6.17 207024 249840

V. COMPARISON
The traditional DWT process requires a large tile buffer to

perform the wavelet transformation and the parallelism
between DWT and EBCOT processors is also decreased.
Based on the proposed QCB-DWT engine, the original tile
image is divided into several QCB blocks in advance of the
DWT process. By recursively generating three code blocks, it
gains higher parallelism in DWT and EBCOT processes and
increase the overall throughput. In comparison with related
work for JPEG2000 coprocessor based on the traditional DWT
method [9,10], the proposed architecture requires less internal
tile memory by a factor of 4 through the QCB-based DWT
engine. As shown in TABLE VIII, the proposed architecture
requires only 1/4 tile memory to save the LL band coefficients
and the three EC processors can execute the bit plane coding
algorithm after the first QCB process is finished. The high
parallelism between DWT and EC increases the overall
performance and the efficient data-reuse also decreases the
number of internal memory access. Finally, the QCB-based
architecture can support larger tile size without degrading the
throughput since the DWT and EBCOT processors execute
concurrently in each QCB process.

TABLE VIII
COMPARISONS OF THE MEMORY REQUIREMENT AND THE NUMBER OF EC

PAIRS (ASSUME TILE SIZE= 128X128, FOR COMPARISONS).
JPEG2000 coprocessor

Hardware cost AMPHION [10] ANDRA et.al. [9] Proposed
architecture

Tile
memory

4096x16x4= 32 128x128x16= 32 1/4x128x128x16
= 8

Memory
Requirem

ent
(K bytes)

Code block
memory 1024x16x6= 12 32x8x64x3= 6 2x3x32x32x16=

12
Entropy Coder pairs 3 3 3

VI. CONCLUSION
In this paper, we propose a QCB-based DWT method to

raise the parallelism of JPEG2000 encoding flow and to
decrease the internal memory requirement. In the hardware
implementation, the performance degradation and hardware
cost are two main issues of the integration of JPEG2000
coprocessor. Based on the QCB-DWT engine, three code
blocks can be produced in each fixed time slice, the Entropy
Coder architecture then can be designed in accordance with
the QCB-DWT throughput to achieve the high parallelism of

JPEG2000 coding process. The proposed architecture not only
raises the overall throughput but also decreases the on-chip
memory requirement by a factor of 4. The proposed
JPEG2000 coprocessor can be optimized under different bus
architecture. Thus, the proposed architecture can be applied to
the JPEG2000-based imagery system for many image
applications.

REFERENCES

[1] ISO/IEC. ISO/IEC 15444-1. Information technology – JPEG 2000

image coding system, 2000.
[2] F. Frescura, M. Giorni, C. Feci, and S. Cacopardi, “JPEG2000 and

MJPEG2000 transmission in 802.11 wireless local area networks,”
IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, pp. 861–
871, Nov, 2003.

[3] A. Signoroni, F. Lazzaroni, and R. Leonardi, “Exploitation and
extension of the region-of-interest coding functionalities in JPEG2000,”
IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, pp. 818–
823, Nov. 2003.

[4] K. Andra, C. Chakrabati, and T. Acharya, “A VLSI Architecture for
Lifting-Based Forward and Inverse Wavelet Transform,” IEEE
TRANSACTIONS ON SIGNAL PROCESSING, VOL.50, NO.4, pp. 966-
977, APRIL 2002.

[5] C.J. Lian, K.F. Chen, H.H. Chen, and L.G. Chen, “Analysis and
Architecture Design of Block-Coding Engine for EBCOT in
JPEG2000, ” IEEE TRANSACTIONS ON CIRCUIT And SYSTEMS FOR
VEDIO TECHNOLOGY, VOL.13, NO.3, pp. 219-230, MARCH 2003.

[6] J.S. Chiang, Y.S Lin, and C.Y. Hsieh, “Efficient Pass-Parallel
Architecture For EBCOT in JPEG2000, ” THE 2002 IEEE International
Symposium on Circuits and Systems, VOL. 1, pp. 773-776, MAY 2002.

[7] H.C. Fang, T.C Wang, C.J. Lian, T.H. Chang, and L.G. Chen, “High
Speed Memory Efficient EBCOT Architecture for JPEG2000,” THE
2003 IEEE International Symposium on Circuits and Systems, Vol. 2,
Thailand, pp. 736-739, MAY 2003.

[8] K.K. Ong, W.H. Chang, Y.C. Tseng, Y.S. Lee, and C.Y. Lee, “A high
throughput low cost context-based adaptive arithmetic codec for
multiple standards,” The 2002 IEEE International Symposium on Image
Processing, VOL.1, pp. 872-875, Sept. 2002

[9] K. Andra, C. Chakrabati, and T. Acharya, “A High-Performance
JPEG2000 Architecture,” IEEE TRANSACTIONS ON CIRCUIT And
SYSTEMS FOR VEDIO TECHNOLOGY, VOL.13, NO.3, pp. 209-218,
MARCH 2003.

[10] AMPHION Products ---CS6510 JPEG2000 Encoder [Online].Available:
http://www.amphion.com/cs6510.html

[11] J.M. Jou, Y.H. Shiau, and C.C. Liu, “Efficient VLSI Architectures for
the Biorthogonal Wavelet Transform by Filter Bank and Lifting
Scheme,” The 2001 IEEE International Symposium on Circuits and
Systems, vol. 2, pp. 529 –532, 2001.

[12] B.F Wu and C.F. Lin, “A Rescheduling and Fast Pipeline VLSI
Architecture for Lifting-based Discrete Wavelet Transform,” The 2003
IEEE International Symposium on Circuits and Systems, VOL. 2, pp.
732–735, May, 2003.

Bing-Fei Wu (S’89-M’92-SM’02) was born in
Taipei, Taiwan in 1959. He received the B.S. and
M.S. degrees in control engineering from National
Chiao Tung University (NCTU), Hsinchu, Taiwan,
in 1981 and 1983, respectively, and the Ph.D. degree
in electrical engineering from the University of
Southern California, Los Angeles, in 1992.

From 1983 to 1984, he was with the Institute of
Control Engineering, NCTU as an Assistant

Researcher. From 1985 to 1988, he was with the Department of
Communication Engineering at the same university as a Lecturer. Since 1992,

B.-F. Wu and C.-F. Lin: An Efficient Architecture for JPEG2000 Coprocessor

he has been with the Department of Electrical Engineering and Control
Engineering, where he currently is Professor. As an active industry
consultant, he was also involved in the chip design and applications of the
flash memory controller and 3C consumer electronics in multimedia. The
research has been awarded by the Ministry of Education (MOE) as the Best
Industry-Academics Research Cooperation in Universities. His research
interests include chaotic systems, fractal signal analysis, multimedia coding,
wavelet analysis and applications.

Prof. Wu is a Senior Member of IEEE. He also holds the memberships of the
Chinese Automatic Control Society, Chinese Institute of Electrical and
Electronic Engineers and Chinese Institute of Engineers (CIE). He founded
and served as the Chair of the IEEE Systems, Man and Cybernetics Society
Taipei Chapter in Taiwan, 2003. He has been the Director of The Research
Group of Control Technology of Consumer Electronics in the Automatic
Control Section of National Science Council (NSC), Taiwan, from 1999 to
2000. Prof. Wu received the Research Awards from NSC in the years of 1992,
1994, 1996-2000; the Long-Term Dragon Golden Thesis Award sponsored by
the Acer Foundation in 2003; the First Prize Award of the We Win (Win by
Entrepreneurship and Work with Innovation & Networking) Competition
hosted by Industrial Bank of Taiwan in 2003; the Silver Award of Technology

Innovation Competition sponsored by the AdvanTech in 2003; the Third
Winner Award in the Hewlett-Packard Information Appliance Competition in
2000; The first Runner-Up Macronix Golden Silicon Award and the Best
Originality Award in the 1st and 2nd Semiconductor and Application
Competition sponsored by Macronix International Co., Ltd., in 2001-2002;
the Distinguished Engineering Professor Award from CIE in 2002; and the
Outstanding Information Technology Elite Award in 2003.

Chung-Fu Lin (S’02) was born in Taipei, Taiwan in
1977. He received the B.S. degree in mechanical
engineering from National Central University in 1999
and M.S. degree in mechanical engineering from
National Chiao Tung University. He is a Ph.D student
in the electrical and control engineering from National
Chiao Tung University. He received the Macronix
Golden Silicon Honorable Mention in the 3rd

Semiconductor and Application Competition sponsored by Macronix
International Co., Ltd., in 2003. His research interests include multimedia
application, VLSI design and implementation.

1189

	footer1:

