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Abstract — JPEG2000 is a new international standard for 
still image compression. It provides various functions in one 
single coding stream and the better compression quality than 
the traditional JPEG, especially in the high compression ratio. 
However, the heavy computation and large internal memory 
requirement still restrict the consumer electronics applications. 
In this paper, we propose a QCB (quad code block)-based 
DWT method to achieve the higher parallelism than the 
traditional DWT approach of JPEG2000 coding process. 
Based on the QCB-based DWT engine, three code blocks can 
be completely generated after every fixed time slice 
recursively. Thus, the DWT and EBCOT processors can 
process simultaneously and the high computational EBCOT 
then has the higher parallelism of the JPEG2000 encoding 
system. By changing the output timing of the DWT process 
and parallelizing with EBCOT, the internal tile memory size 
can be reduced by a factor of 4. The memory access cycles 
between the internal tile memory and the code block memory 
also decrease with the smooth encoding flow. 1 

Index Terms — JPEG2000, DWT, EBCOT, code block, 
quad code block.  

I. INTRODUCTION 
 JPEG2000 provides higher quality and more functions than 
traditional JPEG. Moreover, JPEG2000 takes various 
functions (i.e. lossless, lossy, progressive, error resilience, ROI 
etc.) in one single coding stream and has an extensive set of 
features for diverse imagery systems [1-3]. This superior 
compression standard can be applied to many consumer 
electronics applications, such as high-quality digital cameras, 
surveillance systems, personal mobile devices, and medical 
images etc. In general, the main coding stream has to be 
performed by DWT, EBCOT, and MQ blocks, which can be 
regarded as the core algorithms of JPEG2000 standard. That is, 
after the process of these three coding blocks, the main coding 
stream can be generated to produce a JPEG2000 file. However, 
the complex encoding process requires much execution time. 
In the hardware implementation, the issues of high 
computation blocks and effective integration demand still 
restrict the wide applications of JPEG2000.  

Considering these three core blocks individually, the 
performance of DWT, EBCOT, and MQ processors are 
intensive with its throughput and memory requirement. Many 
studies are devoted to the optimization of the specific 
component. Generally, DWT needs a tile buffer to perform the 
subband transform [4]. Then, EBCOT divides each subband 
into several code blocks and performs the bit-plane coding 
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algorithm [5-7]. The MQ coder is a lossless compression, 
followed by EBCOT to generate the main compression data 
[8]. 

Although the dedicated components can be optimized 
individually, the overall encoding system may suffer 
performance degradations and need more hardware resources 
since different components require different I/O bandwidth 
and buffers [9,10]. In this paper, we propose a QCB-based 
DWT engine to ease the performance degradation of 
integration. Based on the changed output timing of the DWT 
process, three code blocks are iteratively generated every fixed 
execution time slice and the DWT and EBCOT processes can 
reach higher parallelism than the traditional DWT method. 
Moreover, the overall performance can preserve the high 
performance of the individual component and the internal 
memory size is also reduced.  

The paper is organized as follows. In Section II, the brief 
concept and the timing analysis of the basic JPEG2000 blocks 
is addressed. In Section III, the proposed QCB-based DWT 
method will be discussed and the architecture of the 
JPEG2000 coprocessor are emphasized. In Section IV, the 
overall performance is evaluated under the different bus 
architectures. In Section V, we compare the proposed 
architecture design with other related works [9,10]. Finally, a 
brief summary is given in Section VI.  

II. JPEG2000 BASIC BLOCKS 
The basic blocks of JPEG2000 algorithm can be described 

in Fig.1. During the coding process, an image is split into 
several rectangular tiles. Then each tile can be coded 
independently. In general, the entire tile image needs to be 
buffered to perform the subband transformation. That is, the 2-
D DWT decomposes a tile image into LL, LH, HL, and HH 
subbands. The LL band can be decomposed into next 
resolution recursively. After the wavelet transform, 
coefficients in each subband are partitioned into several code 
blocks and performed independently by the EC (Entropy 
Coder) algorithm. The EC process carries out EBCOT and 
MQ algorithms. First, the EBCOT processes each code block 
bit-plane by bit-plane, and generates the context-based 
information. Then, the context data outputs are lossless coded 
by MQ coder to generate the main coding stream. 
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Fig. 1. Block diagram of JPEG2000 coding process. 
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Several studies have been focused on the dedicated 
hardware design for the individual components of JPEG2000 
[9,10]. However, the different coding flows and memory 
requirement are still crucial factors of integrating of overall 
JPEG2000 architecture. In this paper, we focus on the overall 
performance and memory reduction of JPEG2000 coprocessor 
architecture. 

To achieve the high throughput of the overall JPEG2000 
process, the parallel process between DWT and EBCOT is 
needed. Based on the pipelined DWT architecture [4,9,11,12], 
the throughput of DWT is dominated by the number of 
memory accesses and hardware resources. In the single DWT-
processor design, it needs N2 clock cycles to read row images 
for an N x N image to perform row-wise transform, and HL 
and HH bands are then generated with additional N2/2 clock 
cycles. After extra N2/2 clock cycles, the LH and LL bands are 
available and the LL band can be decomposed into next 
resolution recursively. The detailed analysis is listed in 
TABLE I. Since the dyadic decomposition of DWT, the output 
numbers of code blocks in each subband decrease dependent 
on the higher DWT resolution. 

 
TABLE I 

THE RELATION OF DWT OUTPUT TIMING AND OUTPUT NUMBER OF CODE 
BLOCKS (IMAGE SIZE= N X N, CODE BLOCK SIZE= N/8 X N/8, MEMORY 
PORT: A READ PORT AND A WRITE PORT, 3 LEVEL DECOMPOSITION). 
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To parallelize with the DWT and EBCOT processors, 

internal memory and multiple EBCOTs are used to process the 
output code blocks. As listed in TABLE I., there should be 32 
code-block size memories to buffer the HL and HH subband 
coefficients after 3/2N2 clock cycles, but the memory 
requirement decreases as the execution time increasing due to 
the dyadic property of DWT decomposition, shown in Fig.2.  
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Fig. 2. Memory requirements v.s. execution time (i.e. image size= NxN, 3 
DWT decomposition). 
 

Moreover, several EBCOT architectures are proposed to 
speed up the high computational bit-plane coding algorithm 

[5-7]. These speed-up methods can be classified into three 
main ways: sample skip, pass parallel, and bit-plane parallel 
processes. The architectural models of these methods are listed 
in TABLE II. Considering the hardware cost and flexibility, 
we choose the pass parallel architecture in the overall 
encoding system [6]. Based on the architectural model, it 
requires 8 EBCOT processors to carry out 32 code blocks 
within N2/2 clock cycles (i.e. assume 8 coding bit-plane, 
L=N/8, 3 level decomposition). Thus, the large internal 
memory requirement and hardware cost cause EBCOT become 
the bottleneck of overall JPEG2000 encoding flow. 
 

TABLE II 
THE ARCHITECTURAL MODEL OF DIFFERENT METHODS 

(L: THE WIDTH OF CODE BLOCK). 
Number of Processors  

Architecture Average 
Processing Time EBCOT 

processor 
MQ 

processor 
Sample Skip [5] 1.3 x n x L2 1 1 
Pass parallel [6] n x L2 1 3 

Bit-plane parallel [7] (1+δ ) x L2 10 5 

 

III. PROPOSED JPEG2000 ARCHITECTURE 

A. QCB-based Architecture for JPEG2000 Coprocessor 
To reduce the memory size and hardware cost, we propose a 

novel method for DWT process --- QCB (quad code block)- 
based DWT. The basic idea of the QCB- based DWT is to 
produce complete code blocks as soon as possible and 
performed by the EBCOT processor directly.  

Based on the approach, a tile image is divided into several 
QCB blocks in advance of the DWT procedure, as shown in 
Fig.3. The QCB block0 then carries out the QCB-DWT 
process and generates four code blocks --- three for EBCOT 
encoding, and one for the next DWT decomposition, 
recursively. Based on the pipelined DWT architecture, the 
QCB-DWT throughput is approximately N2/8, dominated by 
the number of memory accesses (i.e. 2 x N /4 x N /4, twice 
memory access for row and column processing). Thus, the 
QCB-DWT can recursively generate three complete code 
blocks for EBCOT processors every N2/8 clock cycles. 
 

LL band

QCB block0
DWT transform

3 code blocks in HL, LH, HH subband
and 1 code block in LL subband

HL band

LH band HH band

Contributed from
QCB block0

QCB
block1

QCB
block2

QCB
block3

QCB
block4

QCB
block5

QCB
block6

QCB
block7

QCB
block8

QCB
block9

QCB
block10

QCB
block11

QCB
block12

QCB
block13

QCB
block14

QCB
block15

QCB
block0

Tile Image

N

4
N

8
N

…

… …

…

… …

…

… …

…

… …

 
Fig. 3. The QCB-DWT process in a tile image (Assume tile size= NxN, 
code block size= N/8 x N/8). 
 

Under the same assumptions of 8 coding bit-planes and 
pass-parallel architecture of EBCOT, we only need three 
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EBCOT processors to encode these three code blocks 
independently within N2/8 clock cycles, and achieve the same 
throughput of DWT. Also, the code block of LL band can be 
decomposed into next resolution. Based on the parallel 
processing, the ping-pong buffer CBM is required for DWT 
and EBCOT switching. The overall JPEG2000 coprocessor 
architecture is shown in Fig.4 and the memory requirements 
are listed in TABLE III. Based on the QCB-based DWT 
engine, the DWT and EBCOT processes can achieve higher 
parallelism. Thus, the internal tile memory size can be reduced 
by a factor of 4, i.e. only LL1 subband is needed to buffer. The 
hardware cost of EC is also decreased. 
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Fig. 4. Architecture of JPEG2000 Coprocessor. 

 
TABLE III 

THE MEMORY REQUIREMENT OF THE PROPOSED ARCHITECTURE. 
Assume: tile size= 256x256, code block size= 32x32 

Memory Type Memory Requirement 
(K Bytes) 

Tile Memory 
(QCB-DWT) 1/4 x (256x256x16) = 32 

Code block Memory  
(CBM0 ~ CBM3) 

2x3x32x32x16 = 12 

 

B. QCB-based DWT Method 
The basic idea of QCB-DWT is to divide a tile image into 

several QCB size images to perform the DWT process. Thus, the 
EBCOT can execute the bit-plane coding immediately after three 
code blocks are produced. Since the code block size is 
determined by the user or system demand (i.e. 32x32 or 64x64 
in general), it is reasonable to define the QCB block size before 
actually performing the QCB-DWT procedure. That is, the QCB 
block size is double width and height of one code block size. 

However, the QCB-DWT breaks the data path of each row and 
column image, some modifications should be applied to preserve 
the primitive algorithms. The lifting-based DWT algorithm is 
suitable for pipeline design method [4,11,12]. Since the data 
path is broken due to the boundary between two neighbor QCB 
blocks, it is necessary to store the pipeline registers for each 
QCB block boundaries to preserve the original data path by 
using internal or external memories.  

Considering the fast pipeline data path proposed in [12], there 
are 2 additional cycles--- “read” and “store” cycles which are 
needed to preserve the original data path in 5/3 filters, as shown 
in Fig.5. A quantitative analysis of additional memory access 
cycles are formulated in Eq(1)- Eq(3). The penalty of memory 

accesses in 5/3 filters and 9/7 filters are 2 and 5, since there are 
only one lifting step in 5/3 case but two steps in 9/7 filters. The 
detailed analyses of memory access increasing rate are listed in 
TABLE IV. With a little increasing of memory accesses than 
traditional DWT, QCB-DWT provides higher parallelism with 
EBCOT and less memory requirement in the overall JPEG2000 
encoding system. 
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Fig. 5. Additional cycles to preserve the same data path between 
different QCB blocks. 
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TABLE IV 
THE INCREASING RATE OF MEMORY ACCESS FOR  

DIFFERENT DWT DECOMPOSITION LEVELS. 
Memory access increasing rate 

(Tile size= 256x256, code block size= 32x32) Filters 
1 level 2 level 3 level 4 level 5 level 

5/3 2.3 % 2.1 % 2.2 % 2.3 % 2.3 % 
9/7 5.9 % 5.5 % 5.6 % 5.7 % 5.8 % 
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C. JPEG2000 Coprocessor Design 
Considering the hardware implementation of JPEG2000 

coprocessor shown in Fig.4, one needs to define the basic 
handshaking for each component to control the DWT, CBM 
and EC components correctly. Since a tile image is divided 
into several QCB images, we use “Tile_INIT” and 
“TILE_INIT_ACK” signals to complete the tile initialization 
and use the “QCB_INIT” and “QCB_INIT_ACK” signals to 
achieve the QCB initialization. As shown in Fig.6, each 
component can be initialized via the proper configuration data. 
In general cases, several QCB processes are carried out in a 
tile procedure. The “QCB_Done” and “QCB_Done_ACK” 
signals indicate the end of each QCB process and can be used 
to synchronize the QCB process. 
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Fig. 6. The basic handshaking of each component. 

 
Based on the basic handshaking, the main controller is 

designed to control the overall data flow. As shown in Fig.7, 
the “Tile_setteing” and “QCB_setting” states can be 
synchronized by checking the “Tile_INIT_ACK” and 
“QCB_INIT_ACK” signals from each component. Similarly, 
the “QCB_process” state can be synchronized through the 
inspection of each “QCB_Done” signals. The detailed 
descriptions of each state are depicted in TABLE V.  
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Fig. 7. Finite state machine of the main controller. 

 
TABLE V 

DESCRIPTION OF THE MAIN FINITE STATE MACHINE. 
State Description 
Idle Coprocessor in the idle state 

Reset_components Reset all components (contained: DWT, CBM, EC) 
INIT_controller Calculate the initial data of each component 

Tile_setting Initialization for tile process 
QCB_setting Initialization for QCB process 
QCB_process DWT, CBM, EC process the data concurrently 
QCB_finished Go to the next QCB process, or process the new tile 

image, or finish the overall coding process 
Done Coprocessor done 

 
Finally, since the input image size is different, the initial 

data for each component have to be calculated for the various 
image size. TABLE VI describes the algorithm to calculate the 
initial data of each component. Since the tile memory size may 
be restricted by the hardware cost, the “Tile_sizeY” and 
“Tile_sizeX” are set to programmable variables. The output 
parameters are then used to initialize the DWT, CBM, and EC 
components. The algorithm can be realized by the software or 
hardware optimized through the look-up table under the 
specific parameters. 
 

TABLE VI 
THE QCB INITIALIZATION ALGORITHM. 

/* Controller initialization */ 
/* Calculate the number of tiles in the input image */ 
Input:  
//input image size 

Image_sizeY, Image_sizeX, 
//user-defined tile size (i.e.128x128 or 256x256) 

Tile_sizeY, Tile_sizeX,             
Output:  
//number of tiles in an image 

Tile_numberY, Tile_number_X, 
 
/* Declare */ 
Tile_numY =0; 
Tile_numX =0; 
Ts_X=0; 
Ts_Y=0; 
 
/* Calculate */ 
//Calculate the X-axis tile number in an image 
while (Ts_X=< Image_sizeX){ 
   Ts_X=Ts_X + Tile_sizeX;         
   Tile_numX ++; 
} 
//Calculate the Y-axis tile number in an image 
while (Ts_Y=< Image_sizeY){ 
   Ts_Y=Ts_Y + Tile_sizeY; 
   Tile_numY ++; 
} 
 
/* output */ 
Tile_numberX= Tile_numX; 
Tile_numberY= Tile_numY; 
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TABLE VI 
THE QCB INITIALIZATION ALGORITHM (CONT’D). 

/* Controller initialization */ 
/* Calculate the QCB initialization data for each 
component */ 
Input:  

Image_sizeY, Image_sizeX,    // input image size 
 Tile_sizeY, Tile_sizeX,           // user-defined tile size 

Tile_index_Y,Tile_index_X,  // input the tile index number 
//of an image                             

Output:  
CB_sizeY, CB_sizeX, QCB_sizeY, QCB_sizeX, Dwt_level

 
/* Declare */ 
Dwt_num=0; 
CBS=32;                                    //code block size is 32x32 
ist_Y=Tile_sizeY;                     //default size: tile size 
ist_X=Tile_sizeX;                     //default size: tile size 
 
/* Calculate */ 
//calculate the corner size in the tile image 
if (Image_sizeY < Tile_sizeY*Tile_index_Y) 
   ist_Y= Image_sizeY – Tile_sizeY*(Tile_index_Y-1); 
if (Image_sizeX < Tile_sizeX*Tile_index_X) 
   ist_X= Image_sizeX - Tile_sizeX*(Tile_index_X-1); 
 
//LL band size must less then code block size 
while (ist_X>=CBS or ist_Y>=CBS) 
{ 
   ist_Y=ist_Y>>1; 
   ist_X=ist_X>>1; 
   Dwt_num++; 
} 
 
/* output */ 
Dwt_level=Dwt_num ;       // Number of DWT decomposition
CB_Y=ist_Y;                   // Code block height 
CB_X=ist_X;                   // Code block width 
QCB_Y=ist_Y>>1;           // Quad Code block height 
QCB_X=ist_X>>1;           // Quad Code block width 
 

IV. OVERALL SYSTEM PERFORMANCE 
Based on the QCB-based DWT engine, the proposed 

JPEG2000 coprocessor achieves higher parallelism and 
requires less hardware resources than the traditional DWT 
method. However, the overall performance could be still 
restricted by the I/O bandwidth. Thus, the overall hardware 
cost can be optimized for the different bus architectures. In the 
bus issue, we consider the split bus and single bus 
architectures. In the split bus, since there are separate I/O ports, 
the QCB-DWT and EC can execute concurrently by using 
CBM (ping-pong buffer) to execute each QCB process, as 
shown in Fig.8. Since every time slice delay is determined by 
the QCB-DWT throughput and the coding bit plane number 
processed by EBCOT, it is reasonable to design both 
components with the same throughput. Based on the pass-
parallel [6] architecture of EBCOT and the single DWT-

processor design, three EBCOT processors can reach to the 
QCB-DWT throughput under the 8-coding bit plane 
assumption. 

In the single bus architecture, the bus timing is shown in 
Fig.5. Since the QCB-DWT and EC use the same I/O bus, the 
two components can be optimized individually to increase the 
overall throughput and CBM can be reduced to the single 
buffer. However, since the QCB-DWT and EC cannot process 
simultaneously under the single bus condition, the main 
advantage of the QCB-based method is the less internal tile 
memory requirement. 
 

QCB_DWT QCB_DWT QCB_DWT QCB_DWT QCB_DWT QCB_DWT

EC ECEC EC

Input :

Output :

CBM CBM

( DWT_QCB_Done = ‘‘‘‘ 1’’’’ &  EC_QCB_Done = ‘‘‘‘ 1’’’’ )

CBMCBMCBM CBM

EC

……

 
Fig. 8. The I/O timing of the spilt bus architecture. 
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Fig. 9. The I/O timing of the single bus architecture. 

 
Moreover, we evaluate the overall performance of 

JPEG2000 coprocessor in the split bus architecture in TABLE 
VII. Several 256x256 size images are chosen as the test 
benches to assess the performance of the proposed architecture 
performing 3-level DWT decomposition and EC process (i.e. 
code block size is 32x32). The pipelined QCB-DWT and three 
pass-parallel EC architectures are applied to the coprocessor. 
TABLE VII lists the detailed clock cycles of each component 
and overall performance. Under the real test pattern, the clock 
cycle of EBCOT in each QCB process is determined by the 
maximal coding bit plane number of the three code blocks. 
Since the coding bit plane number is not larger than eight, the 
QCB process is restricted by the throughput of QCB-based 
DWT (i.e. 66x66x2=8712, (64+2) for the worst case of 5/3 
filters). In comparison of the QCB-based and the traditional 
DWT based JPEG2000 coprocessor architecture, the proposed 
architecture needs less clock cycles to process the same testing 
image since it has the higher parallelism between the DWT 
and EC processes. 
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TABLE VII 
THE PERFORMANCE OF THE QCB-BASED JPEG2000 COPROCESSOR. 

Average 64 code block Overall performance  
(clock cycle) 

Testing 
image 

QCB process 
of 5/3 DWT 
(clock cycle) 

QCB 
process 
(clock 
cycle) 

Number of 
coding bit 

plane 

QCB-
based  
DWT 

method 

Traditional 
DWT 

method 

Lenna256 8712 7168 6.51 207024 256000 
Baboon256 8712 6981.81 6.73 207024 251904 
Pepper256 8712 7028.36 6.54 208048 252920 

Airplane256 8712 6888.72 6.17 207024 249840 
 

V. COMPARISON 
The traditional DWT process requires a large tile buffer to 

perform the wavelet transformation and the parallelism 
between DWT and EBCOT processors is also decreased. 
Based on the proposed QCB-DWT engine, the original tile 
image is divided into several QCB blocks in advance of the 
DWT process. By recursively generating three code blocks, it 
gains higher parallelism in DWT and EBCOT processes and 
increase the overall throughput. In comparison with related 
work for JPEG2000 coprocessor based on the traditional DWT 
method [9,10], the proposed architecture requires less internal 
tile memory by a factor of 4 through the QCB-based DWT 
engine. As shown in TABLE VIII, the proposed architecture 
requires only 1/4 tile memory to save the LL band coefficients 
and the three EC processors can execute the bit plane coding 
algorithm after the first QCB process is finished. The high 
parallelism between DWT and EC increases the overall 
performance and the efficient data-reuse also decreases the 
number of internal memory access. Finally, the QCB-based 
architecture can support larger tile size without degrading the 
throughput since the DWT and EBCOT processors execute 
concurrently in each QCB process. 
 

TABLE VIII 
COMPARISONS OF THE MEMORY REQUIREMENT AND THE NUMBER OF EC 

PAIRS (ASSUME TILE SIZE= 128X128, FOR COMPARISONS). 
JPEG2000 coprocessor 

Hardware cost AMPHION [10] ANDRA et.al. [9] Proposed 
architecture 

Tile 
memory 

4096x16x4= 32 128x128x16= 32 1/4x128x128x16
= 8 

Memory 
Requirem

ent 
(K bytes) 

Code block 
memory 1024x16x6= 12 32x8x64x3= 6 2x3x32x32x16= 

12 
Entropy Coder pairs 3 3 3 
 

VI. CONCLUSION 
In this paper, we propose a QCB-based DWT method to 

raise the parallelism of JPEG2000 encoding flow and to 
decrease the internal memory requirement. In the hardware 
implementation, the performance degradation and hardware 
cost are two main issues of the integration of JPEG2000 
coprocessor. Based on the QCB-DWT engine, three code 
blocks can be produced in each fixed time slice, the Entropy 
Coder architecture then can be designed in accordance with 
the QCB-DWT throughput to achieve the high parallelism of 

JPEG2000 coding process. The proposed architecture not only 
raises the overall throughput but also decreases the on-chip 
memory requirement by a factor of 4. The proposed 
JPEG2000 coprocessor can be optimized under different bus 
architecture. Thus, the proposed architecture can be applied to 
the JPEG2000-based imagery system for many image 
applications. 
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