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The star graph interconnection network has been recognized as an attractive alternative to the hypercube
for its nice topological properties. Unlike previous research concerning the issue of embedding exactly
one Hamiltonian cycle into an injured star network, this paper addresses the maximum number of fault-
free mutually independent Hamiltonian cycles in the faulty star network. To be precise, let SG,, denote
an n-dimensional star network in which f < n — 3 edges may fail accidentally. We show that there exist
(n — 2 — f)-mutually independent Hamiltonian cycles rooted at any vertex in SG,, if n € {3, 4}, and there
exist (n — 1 — f)-mutually independent Hamiltonian cycles rooted at any vertex in SG,, if n > 5.
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1. Introduction

The problem of finding Hamiltonian cycles in a graph is well known to be NP-complete and
has been discussed in many areas. In 1969, Lovasz [27] asked whether every finite connected
vertex-transitive graph has a Hamiltonian path, that is, a simple path that traverses every vertex
exactly once.

DEerINITION 1 [4] A graph is said to be vertex-transitive if for every pair u, v of vertices, there
exists an automorphism of the graph that maps « into v. A graph is said to be edge-transitive if
for any two edges « and b, there exists an automor phism of the graph that mapsa into b.

All known vertex-transitive graphs have a Hamiltonian path, but only four vertex-transitive
graphs without any Hamiltonian cycle are known to exist. Since none of these four graphs
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is a Cayley graph, there is a folklore conjecture [6] that every Cayley graph with more than
two vertices has a Hamiltonian cycle. In the last decades, this problem was extensively studied
[2,3,5-7,10,11,17-19,28-30,35]. For those Cayley graphs for which the existence of Hamiltonian
cycles has already been proved, more advanced properties, such as edge-Hamiltonicity, Hamil-
tonian connectivity, and Hamiltonian laceability, etc., are investigated [2,22]. In this paper, we
address one of such properties, the concept of mutually independent Hamiltonian cycles [36,37],
which is related to the number of Hamiltonian cycles in a given graph. Since its introduction,
this topic has gained many researchers’ attention [12,15,16,25,26,33]. In particular, Lin et al. [25]
showed that the maximum number of mutually independent Hamiltonian cycles rooted at any
vertex can be constructed recursively in the star graph interconnection network (for the detailed
definitions, see Sections 2 and 3).

The interconnection network is of great interest in the area of parallel and distributed com-
puter systems. Because it is usually multi-objected and complicated to design an interconnection
network, its underlying topology can be modelled as a graph, whose vertices correspond to pro-
cessors and whose edges correspond to connections/communication links. Hence, we use the
terms graphs and networks interchangeably. Among various kinds of network topologies, the star
graph is attractive for its high degree of symmetry. However, when some edges are removed
at random from the star graph, the symmetry will be broken. Hence, we wonder, in a theo-
retical point of view, how many mutually independent Hamiltonian cycles can be formed in
such an injured network. In this paper, the maximum number of fault-free mutually independent
Hamiltonian cycles in the faulty star graph will be studied. To be precise, let SG,, denote an n-
dimensional star graph with f < n — 3 faulty edges. Then we aim at proving the following result:
SG, has (n — 2 — f)-mutually (respectively, (n — 1 — f)-mutually) independent Hamiltonian
cycles rooted at any vertex if n € {3, 4} (respectively, n > 5).

The rest of this paper is organized as follows. In Section 2, graph-theoretic notations and the
definition of mutually independent Hamiltonian cycles are introduced. In Section 3, the star graph
and its basic properties are presented. Section 4 consists of the proof of our main result. Finally,
directions for future research are discussed in Section 5.

2. Préiminaries

Throughout this paper, graphs are simple, loopless, and undirected. For definitions and notations
not defined here, see [4]. A graph G is an ordered pair (V (G), E(G)), where V (G) is a non-empty
set, and E(G) is a subset of {{u, v}|{u, v} is a two-element subsets of V(G)}. The set V(G) is
called the vertex set of G, and the set E(G) is called the edge set of G. Two vertices u and v of
G are adjacent if {u, v} € E(G). The degree of a vertex u in G is the number of edges incident
to u. A graph G is k-regular if all its vertices have the same degree k. A graph G is bipartite if
its vertex set can be partitioned into two disjoint subsets, denoted by Vo (G) and V3 (G), such that
every edge joins a vertex of Vo(G) to a vertex of V1 (G).

A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C E(G). Let S be a non-
empty subset of V(G). The subgraph of G induced by § is a subgraph of G with vertex set S,
whose edge set consists of all the edges joining any two vertices in S. We use G — S to denote
the subgraph of G induced by V(G) — S. Let F be any subset of E(G). Then we use G — F to
denote the subgraph of G with vertex set V(G) and edge set E(G) — F. Forany S C V(G) and
F C E(G), graph G — (S U F) is defined to be the graph (G — F) — S.

Awalk of length k > 1inagraph is asequence of vertices, W := vjv; - - - vx41, Such that v; and
v;y1 are adjacentfori = 1,2, ..., k. If vy = x and vgy1 = y, we refer to W as an xy-walk. The
notation x Wy is also used simply to signify an xy-walk W. Moreover, we use W~ to denote the
reversed walk v vy - - - v1. For any three vertices x, y, z inagraph, if x Wiy and y W,z are walks,
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the sequence x Wy y W, z, obtained by concatenating Wy and W, at y, is a walk. A walk of length
0 consists of a single vertex. A path is a walk in which no vertex is repeated. For convenience, the
ith vertex of a path P is denoted by P (i). For any two vertices u and v in a graph G, the distance
between u and v, denoted by dg (1, v), is the length of the shortest path between u and v. A cycle
isawalk vjvy - - - v, 41 iInWhich n > 3, v = v, 41, and the n vertices vy, v, ..., v, are distinct.

A path (or cycle) in a graph G is a Hamiltonian path (or Hamiltonian cycle) of G if it spans G.
A graph is Hamiltonian if it has a Hamiltonian cycle. A bipartite graph is Hamiltonian laceable
[34] if there exists a Hamiltonian path between any two vertices that are in different partite sets. A
Hamiltonian laceable graph G is said to be hyper-Hamiltonian laceable [22] if, forany i € {0, 1}
and for any vertex v € V;(G), there exists a Hamiltonian path in G — {v} between any two vertices
of V1i_:(G).

Let G be a graph with N vertices. A rooted Hamiltonian cycle C in G can be described as vy
vy - - - vy v1 to emphasize the order of vertices on C. Accordingly, v, is seen as the root vertex, and
v; is seen as the ith vertex on C. Two Hamiltonian cycles rooted at a given vertex s of G, hamely
Cy:=v1vy---vyvy and Cp := uquy - - - uyug With vy = ug = s, are independent if v; £ u; for
2 <i < N.Acollection of m Hamiltonian cycles Cy, ..., C,, in G, rooted at the same vertex, are
said to be m-mutually independent if C; and C; are independent whenever i # j. Moreover, the
mutually independent Hamiltonicity of G, denoted by ZHC(G), is defined to be the maximum
integer m such that for any vertex v of G, there exists a set of m-mutually independent Hamiltonian
cycles rooted at v in G. The concept of mutually independent Hamiltonian cycles can be applied
in many different areas [12,15,16,25,26,33].

3. Thestar graph

The hypercube has long been one of the most popular network topologies [21] because of its nice
topological properties. The star graph, proposed by Akers and Krishnamurthy [1], is an attractive
alternative to the hypercube for interconnecting processors in parallel computers. Since then, star
networks have received many researchers’ attention. For example, the diameter and fault diameter
were computed in [1,20,32]. Moreover, Fragopoulou and Akl [8,9] studied how to embed directed
edge-disjoint spanning trees into the star graph. The Hamiltonian properties of star graphs are
addressed in [13,14,23,38]. In particular, because processors or links may fail accidentally to affect
network performance, Tseng et al. [38] addressed fault-tolerant ring embedding in an injured star
network if no more than n — 3 edge faults occur.

The definition of star graphs is described as follows. Let n be any positive integer. For conve-
nience, we use I, to denote the set {1, 2, ..., n}. A permutation uyu; - - - u, on I, is a sequence
of all elements of T,,. Every permutation can be written as a product of transpositions. An even
permutation (respectively, odd permutation) is a permutation that can be written as a product
of an even (respectively, odd) number of transpositions. The n-dimensional star graph SG,, is
a graph whose vertex set is the set of all permutations on I,,. Two vertices, uy - - - u; - - - u,, and
vy---v; - - - Uy, are adjacent through an edge of dimensioni with2 <i <n ifu; = v;, v1 = u;,
and u; = v; for j € I, — {1, i}. Clearly, SG, is (n — 1)-regular with n! vertices. Moreover, it is
precisely a Cayley graph of the symmetric group with edge set consisting of all the transpositions
of form (1 i), where 2 < i < n. So it is vertex-transitive and edge-transitive [1]. The star graphs
SG,, SG3, and SGy are illustrated in Figure 1.

For the sake of clarity, we use boldface letters to denote vertices of SG,,. Moreover, we use e to
denote the vertex 12, ..., n. It is known that SG,, is a bipartite graph with one partite set V,(SG,)
consisting of all the even permutations and the other partite set V1 (SG,,) consisting of all the odd
permutations. Let u = uqju; - - - u,, be a vertex in SG,,. Then u; is the ith coordinate of u, denoted
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Figure 1. lllustrations for SG;, SG3, and SGg.

by (u);,forl <i <n.Forany2 <i < n, thei-neighbour of vertex u, denoted by (u), is a vertex
adjacent to u through an edge of dimension i. Obviously, ((u)’)’ = u.

For any 1<i <n, let SG! denote the subgraph of SG, induced by the set of ver-
tices {u € V(SG,)|(u), = i}. Then SG, can be partitioned into n vertex-disjoint subgraphs
SG!M, aSG!, ..., SG!, and every of them is isomorphic to SG,_. Let I C T,,. We use SG/
to denote the subgraph of SG,, induced by U;;V (SG!). For any pair i, j of distinct integers in
I, we use E"/ to denote the set of edges between SG!} and SGU/).

In the rest of this section, we introduce some results to be used later.
THEOREM 1 [38] Let F C E(SG,) with |F| < n — 3for n > 3. Then SG,, — F isHamiltonian.

Li et al. [23] introduced the edge-fault-tolerant Hamiltonian laceability of a bipartite graph G,
which is the integer f suchthatforany F C E(G) with |F| < f, G — F isstill Hamiltonian lace-
able and there exists a subset F’ of E(G) with |F’| = f + 1 such that G — F’ is not Hamiltonian
laceable. Moreover, they also defined the edge-fault-tolerant hyper-Hamiltonian laceability of a
graph G as the integer f such that forany F € E(G) with |F| < f, G — F is hyper-Hamiltonian
laceable and there exists a subset F’ of E(G) with |F’| = f + 1 such that G — F’ is no longer
Hyper-Hamiltonian laceable.

THEOREM 2 [23] The star graph SG,, is (n — 3)-edge-fault-tolerant Hamiltonian laceable and
(n — 4)-edge-fault-tolerant hyper-Hamiltonian laceable for n > 4.

Lemma 1[31] Assume that n > 3. Then [E"/| = (n — 2)! for any 1 <i # j < n. Moreover,
thereare (n — 2)!/2 pairwisedigoint edgesjoining verticesof V, (SG!')) to verticesof V; _, (SG/)
for anyt € {0, 1}.

LeEmMMA 2 For n > 3, let u and v be two distinct vertices of SG, with dgg (U, v) < 2. Then
(W1 # 1.

LEMMA 3 Letn >5and F C E(SG,) with |F| <n —4. Assumethat I = {ai,...,a} isan
r-element subset of I, for any r € T,,. Suppose that u € V,(SG!*)) and v € V;_,(SG!*)) for any
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t € {0, 1}. Then there existsa Hamiltonian path H := x; Piy1Xo P2Yo - - - X, P.Y, in SG,’l — F such
thatx; = u,y, = v,and P; isaHamiltonianpathof SG!*! — F joiningx; toy; for everyl <i <r.

Proof Without loss of generality, we can assume that r = 0. Since SG!“! is isomorphic to
SG,,_1, this statement holds for » = 1 by Theorem 2. Thus, suppose that »r > 2 and set x; = u
andy, = v. By Lemma 1, there are ((n — 2)!/2) > n — 4 pairwise disjoint edges joining vertices
of V1(SG!“?) to vertices of Vo (SG!“+1)) for every i € I,_;. Therefore, we can choose {y;, X;+1} €
E%a+ — Fwithy, € Vi(SG!“)) andx; 1 € Vo(SG!“+)) fori e I,_;. By Theorem 2, SG!*) — F
has a Hamiltonian path P; joining x; to y; for every i € I,.. As a result, the sequence of vertices,
X1 P1Yq X2 P2 Yy -+ X P.Yy,, forms a desired Hamiltonian path of SG,’l — Fjoiningutov. W

LemMMa 4 Letn > 5. Assumethat F C E(SG,) with |[F| <n —4,and |F NSG!"}| < n —5 for
everyi € I,,. Moreover, assumethat I = {ay, ..., a,} isanr-element subset of I, forany2 < r <
n. Suppose that u € V,(SG!*)), w € V;_,(SG!*)), and v € V,(SG!*!) for any ¢ € {0, 1}. Then
there exists a Hamiltonian path H of (SG! — F) — {w} joiningu tov.

Proof Without loss of generality, we can assume thatr = 0. By Lemma 1, there are (n — 2)!/2 >
n — 3 pairwise disjoint edges joining vertices of Vo(SG/)) to vertices of V;(SG!)). Thus, we
can choose a vertex x of Vo(SG!)) — {u} with (X); = a, and {X, (x)"} ¢ F. By Theorem 2, there
exists a Hamiltonian path P of (SG!“! — F) — {w} joining u to x. By Lemma 3, there exists a
Hamiltonian path Q of SG!~11} — F joining (x)" to v. As a result, the sequence of vertices, u P
X (X)" Q v, forms a desired Hamiltonian path. |

LEMMA 5 [24] Let w and b denote two adjacent vertices of SG, with n > 4. For any vertex u
inV,(SG,) — {w, b}, r € {0, 1}, and for any i € I,,, there exists a Hamiltonian path P of SG, —
{w, b} joining u to some vertexv in V,_,(SG,) — {w, b} with (v); = i.

LEMMA 6 Leti €1, and F C E(SG,) with |[F| <n — 4 for n > 4. Suppose that w and b are
two adjacent vertices of SG,,, and u € V,(SG,) — {w, b} for any ¢ € {0, 1}. Then there exists a
Hamiltonian path of (SG, — F) — {w, b} joining u to some vertexv of V1_,(SG,) — {w, b} with
V)1 =1.

Proof Without loss of generality, we can assume that ¢+ = 0. Since SG,, is vertex-transitive, we
can assume that w = e and b = (e)/ with some j € I, — {1}. We set F, = F N E(SG!*!) for
every k € I,,. The proof is done by induction on n. The induction basis, that is, the case n = 4,
follows from Lemma 5. Suppose that this statement holds for SG,,_; with n > 5. We consider
the dimensions of all edges in F U {{e, (e)/}}. If there is an edge in F whose dimension, say j’,
is different from j, then SG, can be partitioned into n vertex-disjoint subgraphs with the j'th
coordinate of each vertex (that is, the subgraph of SG,, induced by the vertices with the same j’th
coordinate is SG,_;). Otherwise, every edge of F has the same dimension ;.

Casel The dimension j’ exists. Without loss of generality, we can assume that ;' = n. Thus,
we have {e, (e)/} € E(SG!™) and |F;| < n — 5 forevery k € 1.

Subcase 1.1 Suppose that u € Vo(SG!™). Since |F| < n — 4, we can choose an integer r €
I,_1 such that |F N E™"| = 0. By the induction hypothesis, there exists a Hamiltonian path P
of (SG™ — F,) — {e, (&)/} joining u to a vertex x € V1(SG") with (x); = r. We can choose
a vertex v in V1 (SG-1=1) with (v); = i. By Lemma 3, there exists a Hamiltonian path Q of
SGE"-1 — F joining (x)" to v. Then the sequence of vertices, uPx(x)" Qv, is a desired path.
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SQubcase 1.2 Suppose that u € Vo(SG*)) for some k € T,_;. By Lemma 1, there are (n —
2)!/2 > n — 3 pairwise disjoint edges joining vertices of V1 (SG*) to vertices of V,(SG!")). We
can pick out a vertex y of V1(SG¥*)) such that (y)" € Vo(SG!™) — (e} and {y, ()"} ¢ F. By
Theorem 2, there exists a Hamiltonian path H of SG* — F, joining u to y. We can choose
an integer » of I,_; — {k} such that |F N E""| = 0. By the induction hypothesis, there exists a
Hamiltonian path P of (SG! — F,) — {e, (e)/} joining (y)" to a vertex x of V1(SG") — {(e)’}
with (x); = r. Besides, we choose a vertex v of V3 (SGl-2 ="}y with (v); = i. By Lemma 3, there
exists a Hamiltonian path Q of Syt _ joining (X)" to v. Then the sequence of vertices, u
Hy )" Px ()" Qv,turns out to be a desired path.

Case?2 Every edge in F has the same dimension ;. Without loss of generality, we may assume
that j = n. Thus, we have |F;| = 0 forevery r € I,,.

Subcase2.1  Suppose that u € Vo(SG*) for some k € T,_; — {1}. By Lemma 1, there are
(n —2)!/2 > n — 4 pairwise disjoint edges joining vertices of V31 (SG!*) to vertices of Vo(SGM).
Thus, we can choose a vertex x of V1 (SG*)) with (x); = 1and {x, (x)"} ¢ F.By Theorem 2, there
exits a Hamiltonian path H of SG!* joining u to x. Similarly, we can choose a vertex y of Vo (SG!M)
with (y)1 = n, {y, ()"} ¢ F,and y # (X)". This can be done because there are ((n — 2)!)/2 >
n — 2 pairwise disjoint edges between the sets Vo(SG{M) and V1(SG¥). By Theorem 2, SG!Y —
{(&"} has a Hamiltonian path P joining (x)" to y. Let v be a vertex in V;(SGL-1~(14) with
(V)1 = i. By Lemma 4, there exists a Hamiltonian path Q of (SG~: — F) — {e} joining (y)"
to v. Then the sequence of vertices, u H x ()" Py (y)" Q v, turns out to be a desired path.

Subcase22  Supposethatu e Vo(SG!M). By Lemmal, thereare (n — 2)!/2 > n — 4 pairwise
disjoint edges joining vertices of Vo (SG!M) to vertices of V;(SG!™)). Thus, we can choose a vertex
x of Vo(SG!Y) — {u} with (x); = n and {x, (X)"} ¢ F. By Theorem 2, there exists a Hamiltonian
path H of SG — {(e)"} joining u to x. Furthermore, we choose a vertex v of V;(SGl-1~1)) with
(V)1 = i. By Lemma 4, there exists a Hamiltonian path Q of (SG~™M — F) — {e} joining (x)"
to v. Then the sequence of vertices, u H x (x)" Q v, forms a desired path.

Subcase 2.3 Suppose that u € VO(SGE,"}). Since |F| <n —4, we can choose two inte-
gers k1 and ky in I,_; — {1} such that {(&)%, (&%)} ¢ F and {(&%, ((&)*)"} ¢ F. Let
X ={{e, (©'}|t € I,_1 — {1, k1, k2}}. Obviously, | X| = n — 4. Moreover, we can choose a ver-
tex x € V1(SG!") such that (x); € I,_1 — {1, k1, ko} and {x, (x)"} ¢ F. Since (X); # k; and
(X)1 # ko, We have X # ()% and x # (e)*2. By Theorem 2, there exists a Hamiltonian path
H of SG!™ — X joining u to x. Because vertex e has precisely two neighbours, that is, (e)*: and
(®%2, in SGI" — X, the edges {e, ()"} and {e, (e)*2} must be consecutive on H. Thus, with no
loss of generality, we can write H = u Hy(e)e(e)*2 Hyx. Let y = (€)*2. Since (y)1 # (X)1, we
have i # (X)1 ori # (Y)1.

SQubcase2.3.1  Suppose thati # (X);. Let k3 = (X)1. We choose a vertex v of V1 (SG!*!) with
(V)1 =i. By Lemma 1, there are (n — 2)!/2 > n — 4 pairwise disjoint edges joining vertices of
V1(SG¥) to vertices of Vo(SG!M). Thus, we can choose a vertex z of V;(SG!*) with (2); = 1
and {z, (2"} ¢ F. By Theorem 2, there exists a Hamiltonian path 7' of SG!**/ joining (x)" to v.
Similarly, there exista Hamiltonian path P of SG!X) joining ((e)*)" to z. By Lemma 4, there exists
a Hamiltonian path Q of (SGl-:~tkka}h _ Fy — 1(e)"} joining (2)" to (y)". Then the sequence of
vertices, u Hy (&K ()" Pz (2)" Q (y)'y Ho X (X)" T v, is a desired one.
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Subcase 2.3.2 Suppose that i £ (y)1. Let k3 = (y)1. Then the proof of this case happens to
be similar to that of Subcase 2.3.1. Thus, we omit the details. ]

LEMMA 7 Let{a, b} C I, witha < b,andlet F C E(SG,) with|F| < n — 4forn > 4. Suppose
thatx € V(SG,), and x; and X, aretwo distinct neighbours of x. Then there existsa Hamiltonian
pathof (SG, — F) — {X, X1, Xo} betweentwo verticesu andv in V,(SG,) — {x} suchthat (u); = a
and (v), = b.

Proof Since SG,, is vertex-transitive, we can assume that X = e, x; = (€)1, and X, = ()2 with
some {i1, i2} C {2, 3, ..., n}. Then this lemma is proved by induction on .

Suppose that n = 4. Thus, we have |F| = 0. Since SG, is edge-transitive, we can assume that
X1 = (€)2 = 2134 and x, = (€)% = 3214. The required paths of SG4 — {1234, 2134, 3214} are
listed in Table 1.

Suppose that the statement holds for SG,_; with n > 5. Let F, = F N E(SG!*) for every
k € T,,. Without loss of generality, suppose that F contains at least one edge of dimension n.
Thus, we have |F;| < n — 5 for every k € I,. Because a < b, we have a # n and b # 1. Since
|F| <n — 4, we can choose an integer cinI,,_; — {1, a} suchthat | F N E<"| = 0. Moreover, we
can choose a vertex v of Vo(SG!M) with (v); = b.

Casel Suppose that i; # n and i, # n. By the induction hypothesis, there exists a Hamil-
tonian path H of (SG'™ — F,) — {e, (&), (€)2} joining a vertex u of Vo(SG!") with (u); = a
to a vertex y of Vo(SG!™) with (y); = c. By Lemma 3, there exists a Hamiltonian path R of
SGl-+ — F joining (y)" to v. As a result, the sequence of vertices, u H y (y)" R v, forms a desired
path in (SG, — F) — {e, (&), (&)2}.

Case?2 Either i1 = n or i, = n. Without loss of generality, we can assume that i, = n. We
choose a vertex u € VO(SG,‘,”‘) with (u); = a. By Lemma 6, there exists a Hamiltonian path H
of (SG!" — F,) — {e, (&)} joining a vertex u to some vertex y of V1(SG'™) with (y); = c. By
Lemma 4, there exists a Hamiltonian path Q of (SGE[;-1 — F) — {(e)"} joining (y)" to v. As a
result, the sequence of vertices, u H y (y)" Q v, is a desired path. ]

4. Mutually independent Hamiltonian cyclesin faulty star graphs

Lin et al. [25] showed the next theorem.
THEOREM 3 [25] ZHC(SG3) = 1, ZHC(SGy) = 2, and ZHC(SG,) =n —1ifn > 5.

For the sake of clarity, our main result, Theorem 4, will be divided into three lemmas
(Lemma 8-10).

LEMMA 8 Let f € E(SGy). ThenZHC(SG4 — {f}) = 1.

Proof Since SGy is edge-transitive, we can assume that f = {1234, 4231}. By Theorem 1, there
exists a Hamiltonian cycle in SG4 — {f}. Thus, we have ZHC(SG4 — {f}) > 1. To show that
THC(SG4 — {f}) < 1, it suffices to point out that there will be no two-mutually independent
Hamiltonian cycles rooted at vertex 1234. In Table 2, we list all Hamiltonian cycles of SG4 — { f}
rooted at 1234. By brute force, we can check that there do not exist two-mutually independent
Hamiltonian cycles. Hence, the proof is completed. |
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Table 1. The required Hamiltonian paths in SG4 — {1234, 2134, 3214}.

a=1andb =2
a=1landb =3
a=1landb=14
a=2andb=3
a=2andb =4
a=3andb =4

1324
1423
1324
2314
2314
3124

3142
2413
3142
1324
1324
1324

4132
4213
4132
3124
3124
2314

1432
1243
1432
4123
4123
4312

3412
2143
3412
2143
2143
3412

4312
4123
4312
1243
1243
1432

2314
3124
2314
4213
4213
4132

1324
1324
1324
2413
2413
3142

3124
2314
3124
1423
1423
1342

4123
4312
4123
3421
3421
2341

2143
3412
2143
4321
4321
4321

1243
1432
1243
2341
2341
3421

4213
4132
4213
3241
3241
2431

2413
3142
2413
4231
4231
4231

1423
1342
1423
2431
2431
3241

3421
2341
3421
1432
1432
1243

4321
4321
2431
4132
3412
2143

2341
3421
4231
3142
4312
4123

3241
2431
3241
1342
1342
1423

4231
4231
2341
4312
3142
2413

2431
3241
4321
3412
4132
4213

Table 2. All Hamiltonian cycles rooted at 1234 in SG4 — {{1234, 4231}}.

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234

2134
2134
2134
2134
2134
2134
3214
3214
3214
3214
3214
3214

3124
3124
3124
4132
4132
4132
2314
2314
2314
4213
4213
4213

1324
1324
4123
1432
3142
3142
1324
1324
4312
2413
2413
1243

2314
4321
1423
2431
1342
2143
3124
4321
1342
1423
3412
3241

4312
2341
2413
4231
4312
4123
4123
3421
3142
4123
4312
4231

3412
3241
4213
3241
3412
3124
2143
2431
4132
2143
2314
2431

1432
4231
1243
1243
1432
1324
1243
4231
1432
1243
1324
1432

4132
2431
2143
2143
2431
2314
4213
3241
3412
3241
3124
3412

3142
3421
3142
3142
4231
4312
2413
2341
2413
4231
4123
2413

1342
1423
4132
1342
3241
1342
1423
1342
4213
2431
1423
1423

2341
4123
1432
2341
2341
2341
3421
4312
1243
3421
3421
3421

4321
2143
3412
4321
4321
4321
4321
3412
2143
4321
4321
4321

3421
1243
4312
3421
3421
3421
2341
1432
4123
2341
2341
2341

2431
4213
1342
1423
1423
1423
3241
4132
1423
1342
1342
1342

4231
2413
2341
4123
2413
2413
4231
3142
3421
3142
3142
4312

3241
3412
3241
3124
4213
3412
2431
2143
2431
4132
2143
2314

1243
1432
4231
1324
1243
1432
1432
1243
4231
1432
1243
1324

2143
4132
2431
2314
2143
2431
3412
4213
3241
3412
3241
3124

4123
3142
3421
4312
4123
4231
4312
2413
2341
4312
4231
4123

1423
1342
4321
3412
3124
3241
1342
1423
4321
2314
2431
2143

2413
4312
1324
2413
1324
1243
3142
4123
1324
1324
1432
3142

4213
2314
2314
4213
2314
4213
4132
3124
3124
3124
4132
4132

3214
3214
3214
3214
3214
3214
2134
2134
2134
2134
2134
2134

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234

8€L

‘le 18 Buny -1
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LEmma 9 Supposethatn > 5and F C E(SG,) with |[F| =n — 3. Letu € V(SG,). Then there
exist two-mutually independent Hamiltonian cyclesrooted at u in SG,, — F.

Proof Because SG, is edge-transitive, there exists an automorphism ¢; of SG, mapping any
edge in F into an edge of dimension n. For convenience, let w = ¢;(u). Moreover, let ¢, :
V(SG,) — V(SG,) be a function defined as follows: ¢» (V) = A((V)1)h((V)2), ..., h((Vv),) for
any v € V(SG,), where h : I, — L, is a function such that #((w) ;) = j for each j € I,. Clearly,
¢ is also an automorphism of SG,,. It is easy to check that the composition of ¢, and ¢,, namely
¢2 o ¢1, is an automorphism of SG,, such that ¢, o ¢1(u) = €. For this reason, we can assume that
u = e and F contains at least one edge of dimension n. Let F, = F N E(SG") for every k € 1,.
As aresult, we have | Fi| < n — 4 forevery k € 1,,.

Casel Suppose that {e, (e)"} ¢ F.Let B = (b; ;) be a 2 x n matrix with

j ifi =1,
n ifi=2and j =1,
bij=13j+1 ifi=2and2<j<n-2,
2 ifi=2and j =n—1,
1 ifi=2and j =n.
By Lemma 3, there exists a Hamiltonian path P of SG,EJ"’I':l{bl"'} — F joining (e)" to e. Similarly,

there exists a Hamiltonian path H of SGHZl{bZ“’} — F joining e to (e)". Then we set C; := e
(e" P eand C, := e H (e)" e Obviously, {C1, C,} forms a set of two-mutually independent
Hamiltonian cycles rooted at e in SG,, — F (see Figure 2(a) for illustration).

Case2 Suppose that {e, ()"} € F and |F,| = n — 4. Obviously, we have |F;| =0 for
every k el,_;. By Theorem 1, there exists a Hamiltonian cycle H= e R q p e of

(a) 1 2 SG ;I )-E 25 26 SG;Z’-E 49 50 SGS )_E 73 74 SG;“LE 97 98 SG;SLFS 1
C, ol ote ole >He. s o
e (e) P e
1 SG:LE 24 25 SG? LE 48 49 SG;A}_ E 72 73 SG S)_E 96 97 SG ;I ’_E 120 1
G o oHc e ° ° O
e H (e)] €
(b) 1 SGLS}_(EU{p}) 23 24 SG;”’ 47 48 49 50 SG;’:) 71 72 7374 SG;“’ 95 96 SG ;’1’ 119120 1
Ci|o ore Orje0e————Ore0e T P O1®0
R q (q)S P, X Xl)’ P, X, (Xz) P, X, (XJ) 4 (p)S pe
1213 SG;M) 26| |27 SG ;’1) 48 49 50| | 51 SG :") 7273 74|75 SG;") 98 «)§G§51 (F;U{p}) 1
G oelo - ®-o— eoello— eoefo . - o
ep Q. YW O Y &y 2 @lla R e
(C) 1SG?)- (EU{(E)H})ZX 24 SG;" ’_E 47| |48 49 50 SGK:’_F’Z 71| |72 7374 SGK;’_E 95| | 96 SG;HLF‘ 119[120 1
Cilo * oHece——olece >He ¢
e R w| (W)’ P, X[ (%)’ b, X} |,)° P x|y P (@Ye'e
1 s6iE ][, s6EE [, SGUE, SGI'F, SGTL(EU(e")
G oelo P DOPIIP 0080 .

LO T O
e@(@y O, yllw @ ylw 2 yoy @2 ww R e

Figure 2. The two-mutually independent Hamiltonian cycles in SGs — F for Lemma 9.
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SG!" — F,. Accordingly, we have that {p, (p)"} ¢ F and {q,(q)"} ¢ F. By Lemma 2,
(P)1 # (@)1. We set (p)1 =i,—1 and (q); = i1. Let iziz---i,_» be an arbitrary permutation
of I,_y — {i1, ip—1}.

Forl <k <n — 2, letx, be avertex of V5(SG!") such that (x;)1 = ix1 and {X;, (X;)"} ¢ F.
By Theorem 2, there exists a Hamiltonian path P; of SG!"*/ joining (g)" to . Similarly, there is a
Hamiltonian path P, of Sij“ joining (Xg_1)" to x; for2 < k < n — 2, and there is a Hamiltonian
path P,_; of SG!-1) joining (x,_2)" to (p)". Then we set C1 := e R q (0)" Py X1 (X1)" P2 X2
(XZ)n s Xp—2 (Xn—Z)n Py 1 (p)" pe

We can pick out a vertex y,_, of Vi(SGl-1)) such that (y, 1)1 = i and {y,_1, (Y,_1)"} & F.
For2 <k <n—3,wehave|{u € V1(SG/'*))|(u); = ixy1anddgg (U, (Xe-1)") =2}| =n —3 <
(n — 2)!/2if n > 5. Thus, we can choose a vertex y, of Vl(SG,{jk’) such that dsg, Ve Xe-1)") >
2, (Y1 =irp1, and {y,, ()"} ¢ F for 2 <k <n—3. Since |{u e V1(SGl2h)|(u); =iy
and dsg, (U, (X,—3)") =2} =n -3 < (n — 2)!/2 if n > 5, we can choose a vertex y,_, of
Vi(SG!"2) such that dgg (Y, 2. (Xu—3)") > 2, (Y, o)1 =i1, and {y, 5. (Y, )"} ¢ F. By
Theorem 2, there exists a Hamiltonian path Q; of SG!™) joining (y,_,)" to (q)". Again, there
exists a Hamiltonian path Q, of SG!™ joining (y,_;)" toy,, there exists a Hamiltonian path Q,,_;
of SG!-1} joining (p)” toy,_;, and there exists a Hamiltonian path Q, of SG!**! joining (y,_;)"
toy, foreach3 <k <n —2. Thenweset C; :=ep ()" Qu-1Y,_1 ¥V,_1)" Q2¥s (¥2)" Q33
(¥3)" ... (Y, )" Q1 (@"q R e

In summary, {C1, C,} forms a set of 2-mutually independent Hamiltonian cycles rooted at ein
SG, — F. Figure 2(b) illustrates C; and C; in Ss.

Case3 Suppose that {e, (¢)"} € F and |F,| <n —5. Since |F| =n — 3, there exists an
integer of I,_; — {1}, say i,_1, such that | F N E»-v"| = 0. Assume that i; and i, are two inte-
gers of I,,_y — {i,—1} such that |F N Ev2| = max{|F N E*'||s, t € I,_1 — {i,—1}}. Moreover,
let iziy - - - i,_, be an arbitrary permutation of I,_; — {i1, i2, i,_1}. Since {e, (&)"} € F, we have
|F N Eivi2| < pn — 4, Therefore, we have |[F N E-2i| <p—5and |F N E*#1| <pn —5 for
2<k=<n-3.

By Lemmal,thereare (n — 2)!/2 > n — 3 pairwise disjoint edges joining vertices of Vo (SG!")
to vertices of V;(SG/it)). Thus, we can choose a vertex w € Vo(SG™) — {€} such that (w); = i;
and {w, (w)"} ¢ F. By Theorem 2, there exists a Hamiltonian path R of (SG!" — F,) — {(e)"}
joining eto w. Foreach 1 < k < n — 2, let x; be a vertex of VO(SG,{fk}) such that (X¢)1 = ixq1
and {x;, (Xx)"} ¢ F. By Theorem 2, there exists a Hamiltonian path P; of Sijl} — F;, joining
(W)" to x;. Similarly, there exists a Hamiltonian path P, of Sijk} — F;, joining (X¢_1)" to x; for
each 2 < k < n — 2, and there exists a Hamiltonian path P,_; of SG,{j'lfl} — F;,_, joining (X,_2)"
to ((€)-1)". Then we set C1 := e R W (W)" P1 X1 (X1)" P2 Xo (X2)" ... (Xy_2)" Py_1 ((€)"-1)"
(€)1 e

Next, we can pick out a vertexy,,_, of Vl(Sij"*l‘) suchthat (y,_;)1 = izand{y,_1, (Y,_1)"} ¢
F.Forany 2 < k <n — 3, we have |{u € Vi(SG{*))|(u); = ixs1 and dgg (U, (—1)") = 2}| =
n — 3. By Lemma 1, there are (n — 2)!/2 pairwise disjoint edges joining vertices of V;(SGli))
to vertices of Vo(SGU+)). It is noticed that (n — 2)!/2 > (n — 3) + (n — 5) = 2n — 8 if n > 5.
Thus, we can choose a vertex y, of V1(SG!") such that dsg, Vi -1)") > 2, (V)1 = ixs1,
and {y,, (y,)"} ¢ Fforeach2 < k < n — 3.Since (n — 2)!/2 > |{u € V1(SG!"-)|(u); = iy and
dsg, (U, X,—3)") =2}|+ (n =5 =n—-3)+(n—5 =2n-38 if n > 5, we can choose a ver-
tex y, _, of V1(SG["-2)) such that dsg (¥, 5. (Xu—3)") > 2, (¥,_p)1 = i1, and {y, 5. (¥,_»)"} ¢
F. By Theorem 2, there exists a Hamiltonian path Q; of SG!Y — F,, joining (y,_,)" to
(w)". Again, there exists a Hamiltonian path Q, of SG!"?) — F;, joining (y,_,)" to y,, there
exists a Hamiltonian path Q,_; of SG,{jH} — F;,_, joining ((&)1)" toy,_,, and there exists
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a Hamiltonian path Q; of SG*) — F;, joining (y,_;)" to y, for 3<k <n—2. We set
Co = e©®" 1 ((&" )" Qu_1Y,_1(Yu_1)" Q2Y>(¥2)" Q3Y5(¥3)" - - - (¥,_»)" Q1 (W)"WR e

As a result, {Cy, C} turns out to be a set of two-mutually independent Hamiltonian cycles
rooted at ein SG,, — F. Figure 2(c) illustrates C; and C; in Ss. ]

LEmmA 10 Let f beanyinteger of I,,_4 for n > 5. Supposethat F C E(SG,) with|F| = f,and
u is any vertex of SG,. Then there exist (n — 1 — f)-mutually independent Hamiltonian cycles
rootedatuinSG, — F.

Proof Asexplained in the proof of Lemma 9, there exists an automorphism of SG,, that can map
any edge in F into an edge of dimension n and map u to e simultaneously. Hence, we can assume
that u = e, and F contains at least one edge of dimension n. Let F, = F N E(SG¥) for every
k € I,. Thus, we have | F,| < n — 5 for every k € I,. Moreover, let A, = E*" — {{e, (&)"}}, and
let A, = E" U {{e (&)} for2 <i<n—1.

Casel Suppose that {e, (e)"} € F. Itis noticed that there are at least n — 1 — f elements of
|[FN Ay, |FNAs|,...,|FNA,_1| equal to 0. Without loss of generality, we can assume that
|F N (U/Z},,A)| = 0. Thus, at least one of |[F N Ay,..., [F N A| equals to 0.

Subcase 1.1 Suppose that |[F N A1| = 0. Let B = (b; ;) bean (n — 1 — f) x n matrix with

)it if f+i+j<n,
b f+i+j—n otherwise.

Itis noticed that b; ,_y_; = nforevery 1 <i <n —1— f. Then we will construct a set of (n —
1 — f)-mutually independent Hamiltonian cycles {C1, C», ..., C,—1— s} rooted at e in SG,, — F.

Letiel, o_s. Wesety;, =n— f —i. By Lemma 7, there exists a Hamiltonian path Q; of
(SG,{qb"”"} — Fy,,) — {e (&), (&)} joining two vertices x; and y; in VO(SGib""}) — {€} such that
ti—1 o

(X;)1 = b;;,—1and (Y;)1 = b; ;. +1. By Lemma 3, there exists a Hamiltonian path P; ofSG:ff=1 b _
F joining ((e)1)" to (x;)". Similarly, there exists a Hamiltonian path R; of SG:’:”'*l{b"‘f} —F
joining (y;)" to ((€)"»)". Then we set C; := e (&)"* ((&")" P; (x)" X; Qi Y; (¥)" R ((&)")"
(el e

By Lemma 6, (SGUrrr) Fp,_._,,) — {& (e)’-1-/»} has a Hamiltonian path 7" joining (e)"*~
toavertex z of VO(Sfo’“’l’f‘l}) — {e}with (2)1 = b,_1_ 2. By Lemma 3, there exists a Hamiltonian
path W of SG./2"" " _ F joining (2)" to ((&)"+++)". Then we set Coiji=e€@ T2z
@" W ((@rin)" (@i .

Asaresult, {Cy, ..., Cy_2—f, Co_1— ¢} turns out be a set of (n — 1 — f)-mutually independent
Hamiltonian cycles rooted at ein SG,, — F. Figure 3 illustrates {Cy, C2, C3, C4} in SGg — F with
|F|=f=1

Subcase 1.2 Suppose that |F N Az| > 0. It is noticed that f > 2 in this subcase. Thus, at
least one of |FF N Ayl, ..., |F N Ay| equals to 0. Without loss of generality, we can assume that
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C SGI“F, SG\"F. SG'F. 5G.- (FUfe(er©) SG,“F, SG."F.
O—9—+0 OO
e (&)((e)’)° P, (x)°|x 0, Yif[(y)° R, ((e)°J(e)’e
C, SGi“F. SG,"F. §G,- (FUfee @) SG"F, SG*F, SG:"F.
O8O g ®- an '
e (©°((e)) Py (SN N O A A R, ((e)°)[(e)*e
[eN SG.“F, 5G,"- (FUfe(er©) SG,"F, SG“F. SG:“F, SGiF.
O8O OO
e@e) Py )X O3 vi|)° R, ((e))° |(e)'e
Cy| SG'-(Fufe®}) SGI'F, SGF, SG.'F, SG.“F, SG'F.

s 4 O+
eler T 7|(z)° w ((©9) fe) e

Figure 3. Mutually independent Hamiltonian cycles in SGg — F with |F| = 1 for Subcase 1.1 of Lemma 10.

|[FN Azl =0.Let B=(b;;)bean (n —1— f) x n matrix with

fH+i+] if f+i+j<n,
. if f+i+j=n+1,
R if f+i+j=n+2,

f+i+j—n otherwise.

Using a similar manner to that of Subcase 1.1, we can construct a set of (n — 1 — f)-mutually
independent Hamiltonian cycles {C1, C», ..., C,—1_ ¢} rooted at ein SG,, — F.

Case?2 Suppose that {e, (e)"} ¢ F. It is noticed that there are at least n — 2 — f elements
of |[FN Ayl |FNAs|...,|FNA,_1| equal to 0. Without loss of generality, we can assume that
|F N (U/Zf,,A)] = 0. Thus, at least one of [F N Ay, ..., [F N Ayzy]isO0.

Subcase 2.1 Suppose that |[F N A1| = 0. Let B, = (b;,j) bean (n — 1 — f) x n matrix with

1 2 3 45
Bs=|4 5 1 2 3|,
54 2 31
and forn > 6
J ifi =1,
f+i+j if2<i<n-2-fandf+i+;=<n,
f+i+j—n f2<i<n-—-2-fandf+i+j>n,
n ifi=n—-1— fandj=1,
bij=13 ifi=n—-1— fandj =2,

2 ifi=n—1— fandj =3,
n—1 ifi=n—-1— fandj =4,
j—1 ifi=n—-1—fand5<j<n-1,
1 ifi=n—-1— fandj=n.

Then we construct a set of (n —1— f)-mutually independent Hamiltonian cycles
{C1,Ca, ..., Ch_1_r} rooted at ein SG,, — F as follows.

We can pick out a vertex v of Vl(SG,{fl"”}) — {(€)P-2-71} with (v); = by ,_1. By Theorem 2,

there exists a Hamiltonian path W of (Sfo’l"’} — Fp,,) — {€} joining v to (e)-2-71, By Lemma 3,

. . . by s
there exists a Hamiltonian path D of SG,?-/:l{ wd _ F joining (&)" to (v)".We set C; :=e ()" D
W'V W (g)br2ite
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Letiel,_o_y—{1}. Weset; =n — f —i. By Lemma 7, there exists a Hamiltonian path
0, of (Sfo’”"‘} — F,,) — (e (®"*, (¢)”} joining two vertices x; and y; in VO(SG,{f"""}) —{e}
such that (x;)1 = b; -1 and (y;)1 = b;,,+1. By Lemma 3, there exists a Hamiltonian path P;

=1,
of SGf":1 bt _ g joining ((&%1)" to (x;)". Similarly, there exists a Hamiltonian path R; of

sy E joining (y,)" to ((€)%+)". Then we set C; := e (€% (&))" P, ()" X; O; Y,
()" Ri (&))" ()i e.

By Lemma 1, there are (n —2)!/2 > n — 3 pairwise disjoint edges joining vertices of
VO(SG,ib”’i’“'}) to vertices of Vl(SG,ib”’l’“"“) for 3 <k <n—1. Thus, we can choose a
vertex z; of VO(Sfo’”’l’f'”) such that (zx)1 = by—1-rx-1, {Zx. (z)"} ¢ F, and z; # C1((k —
1)(n —1)! +1). By Lemma 4, there exists a Hamiltonian path T of (SGE,J;:M"’““} -
F) — {e} joining (e)’2" to (z3)". By Theorem 2, there exists a Hamiltonian path H; of
SGif’"’l’”} — Fy,_,_,, joining z, t0 (z41)" for 3 <k <n—2. By Lemma 3, there exists a
Hamiltonian path H,_; of sg =ittt g joining z,_1 to (e)". Then we set C,_1_ :=
e(e)bz’” T(Z3)nZ3H3(Z4)n e Zn72Hn72(anl)nznlenfl(e)ne-

Consequently, {C1, Ca, ..., Chp—f, Ch1—_y} is a set of (n — 1 — f)-mutually independent
Hamiltonian cycles rooted at e in SG,, — F. Figure 4(a) illustrates {C1, C», C3, C4} in SGg — F
with |F| = f = 1.

Subcase 2.2 Suppose that |[F N Aq| > 0. Thus, at least one of |FNAz|,...,|FNAs|
equals to 0. Without loss of generality, we can assume that |F N Az| = 0. Let B, = (b;;) be
an (n — 1 — f) x n matrix with

n ifi=21and j =1,
j+1 ifi=1land2 <j <n-2,
2 ifi=1and j =n —1,
1 ifi=1and j =n,

bij=1f+i+] if2<i<n—-2-—fand f+i+j<n,
2 if2<i<n—-2—fand f+i+j=n+1,
1 if2<i<n—-2-—fandf+i+j=n+2,
fHi+j—n if2<i<n-2-fandf+i+j=n+3,
Jj ifi=n—-1-—f.

By Lemma 1, there are (n —2)!/2 > n — 3 pairwise disjoint edges joining vertices of
VO(SGf,b“}) to vertices of Vl(SG,{f’l'l}). Thus, we can choose a vertex z of VO(SGi,b“}) such that

(21 =b11, {z,(@"} ¢ F, and (2)" # (e)b>». By Theorem 2, there exists a Hamiltonian path T
of (SG,{f’l‘” — F,,,) — {€} joining (e)®2+ to (z)". By Lemma 3, there exists a Hamiltonian path H
of SG:’ZZ{IJ“} — F joining zto (e)". Thenwe set C; :=e(e)?>" T (2)" z H (6)" e
Letiel,_o_y—{1}. Weset; =n — f —i. By Lemma 7, there exists a Hamiltonian path
Q; of (SGib”’i} - F,)—{e (€)%, (e)P+} joining two vertices x; and y; in VO(SGf,bi"f}) —{e}
such that (x;)1 = b; -1 and (y;)1 = b;,,+1. By Lemma 3, there exists a Hamiltonian path P;

ri—1 o
of SG:’:l{b"’} — F joining ((&%1)" to (x;)". Similarly, there exists a Hamiltonian path R; of

"-,‘Jr b[_j .. X . .
sG, " _ F joining (y,)" to ((/")". Then we set C; := e (©)"* (&™) P, ()" ; Q1 ¥;
V)" R (®")" (&)’ e

By Lemma 1, there are (n —2)!/2 > n — 3 pairwise disjoint edges joining vertices of
Vo(SG 72 to vertices of V4 (SG"*). Thus, we can pick out a vertex w of Vo(SGY1-17)y
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(a)c, SGI'F, SG'F, SG."F. SGI“F, SG*F, SGL- (FUfe))

O
e e’ D || v w (e)’| e
Cy SG."F, SGI'F, G- (FUfeer @) SG'R SGU'F, SGI'F,

O O8O0
e @)’ L (SO0 SO | TN R (e)Jeye
Cs SG'F. G- (FUfee©]) SG."F. SG'E SGIF. SG'F,
OO H9- O+
e @) P [CON T N 41| (N Ry (())°)(e)*e
Cf SG-(Eufe) SG'F. SG*F SG'F. SG'F, SG“F,
O . 2 & O
ele) T (2,)°| 2 H, (2.)°)| 24 H, (25)°]| 2 Hy (e)] e

®) e[ se-@Eue SGI'F, SGIR SGI'F, SGI-F SGI'F

o1+ OO O
e|(e) T (2)%|| z H (@ e
Cy SG.'F, SGF, G- (FUle©- (@) SG™E SG!'F, SGI'F,
O8O0 O+e—O
e @) P e 0 wllw) R (@) Jfe)'e
Cy SG“F. G- (FUuleer @) SG'F, SG,"F, SG,*F, SGFE.
O—e+0 O+eO0
e@l@r P wx 0y wfla)r R, @Y leore
C SGJ*F. SG.“F. SG.“F. SG"F, SG,"F, SG- (Fu{eh
O s g O
e @ D, wl|o D, oy W @

Figure 4. Mutually independent Hamiltonian cycles in SGg — F with |F| = 1 for Case 2 of Lemma 10.

such that (W)1 = b,—1-r3, {W, (W)"} ¢ F, and dsg (W, (Y,_,_)") > 1. Moreover, we choose
a vertex v of Vl(SG,[,b”’1’f‘”}) such that (V)1 = b,_1-r,—1 and {v, (v)"} ¢ F. By Lemma 3, there

n—1-f.j

. . . 2_,{b L .. .
exists a Hamiltonian path D, of SG:-”{ h F joining (e)" to w. Similarly, there exists a

Hamiltonian path D, of SG,Lj b F joining (w)" to (v)". By Theorem 2, there exists
a Hamiltonian path W of (SGPrtormd Fy, ,_,,) — {€} joining v to (e)’—-s1. Then we set
Coo1-r :=€(8)" DyW (W)" Dy (V)" VW ()27 e,

Hence, {C1,Co, ..., Cy_o—f, Cp_1_¢} forms a set of (n —1 — f)-mutually independent
Hamiltonian cycles rooted at e in SG,, — F. Figure 4(b) illustrates {C1, C,, C3, C4} in SGg — F
with |F| = f = 1. [}

fiUA

Combining Theorem 3 and Lemmas 8-10, we summarize those results as follows.

THEOREM 4 Let F C E(SG,) with|F| <n —3forn > 3,andletu € V(SG,). Thenthereexist
(n — 2 — | F])-mutually independent Hamiltonian cycles rooted at u in SG, — F if n € {3, 4},
and there exist (n — 1 — | F|)-mutually independent Hamiltonian cyclesrooted at u in SG,, — F
ifn > 5.

5. Conclusion

In this paper, we study the problem of finding mutually independent Hamiltonian cycles in a
faulty star graph. That is, given a set of faulty edges F C E(SG,) with | F| < n — 3, we show that
SG, — F hasasetof (n — 2 — | F|)-mutually (respectively, (n — 1 — | F|)-mutually) independent
Hamiltonian cycles rooted at any vertex if n € {3, 4} (respectively, n > 5). We believe that a
similar result could be obtained for the graph generated by any transposition tree of order n [1]
when at most n — 3 edges fail. On the other hand, we also believe that our current result can be
further refined; to be precise, we would like to show that ZHC(SG, — F) = §(SG,, — F), where
3(SG,, — F) denotes the minimum degree of graph SG,, — F.

The edge faults considered in this work are random and independent. To guarantee that such
a faulty star graph remains Hamiltonian in this situation, the maximum number of faulty edges
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cannot exceed n — 3. For this reason, we can make a more general condition on the nature of faulty
edges such that every vertex still has at least two neighbours in a faulty star graph. This kind of sets
of faulty edges is called conditionally faulty. Let F C E(SG,) be conditionally faulty. Then we
believe that mutually independent Hamiltonian cycles can be constructed in SG,, if | F| < 3n — 10.
These results convince us that the star graph is really robust enough to interconnect computing
units in parallel and distributed systems.
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