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The star graph interconnection network has been recognized as an attractive alternative to the hypercube
for its nice topological properties. Unlike previous research concerning the issue of embedding exactly
one Hamiltonian cycle into an injured star network, this paper addresses the maximum number of fault-
free mutually independent Hamiltonian cycles in the faulty star network. To be precise, let SGn denote
an n-dimensional star network in which f ≤ n − 3 edges may fail accidentally. We show that there exist
(n − 2 − f )-mutually independent Hamiltonian cycles rooted at any vertex in SGn if n ∈ {3, 4}, and there
exist (n − 1 − f )-mutually independent Hamiltonian cycles rooted at any vertex in SGn if n ≥ 5.

Keywords: Hamiltonian; interconnection network; star graph; fault tolerance

2000 AMS Subject Classifications: 05C38; 05C45; 05C75; 05C90; 68M10

1. Introduction

The problem of finding Hamiltonian cycles in a graph is well known to be NP-complete and
has been discussed in many areas. In 1969, Lovasz [27] asked whether every finite connected
vertex-transitive graph has a Hamiltonian path, that is, a simple path that traverses every vertex
exactly once.

Definition 1 [4] A graph is said to be vertex-transitive if for every pair u, v of vertices, there
exists an automorphism of the graph that maps u into v. A graph is said to be edge-transitive if
for any two edges a and b, there exists an automorphism of the graph that maps a into b.

All known vertex-transitive graphs have a Hamiltonian path, but only four vertex-transitive
graphs without any Hamiltonian cycle are known to exist. Since none of these four graphs
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732 T.-L. Kung et al.

is a Cayley graph, there is a folklore conjecture [6] that every Cayley graph with more than
two vertices has a Hamiltonian cycle. In the last decades, this problem was extensively studied
[2,3,5–7,10,11,17–19,28–30,35]. For those Cayley graphs for which the existence of Hamiltonian
cycles has already been proved, more advanced properties, such as edge-Hamiltonicity, Hamil-
tonian connectivity, and Hamiltonian laceability, etc., are investigated [2,22]. In this paper, we
address one of such properties, the concept of mutually independent Hamiltonian cycles [36,37],
which is related to the number of Hamiltonian cycles in a given graph. Since its introduction,
this topic has gained many researchers’ attention [12,15,16,25,26,33]. In particular, Lin et al. [25]
showed that the maximum number of mutually independent Hamiltonian cycles rooted at any
vertex can be constructed recursively in the star graph interconnection network (for the detailed
definitions, see Sections 2 and 3).

The interconnection network is of great interest in the area of parallel and distributed com-
puter systems. Because it is usually multi-objected and complicated to design an interconnection
network, its underlying topology can be modelled as a graph, whose vertices correspond to pro-
cessors and whose edges correspond to connections/communication links. Hence, we use the
terms graphs and networks interchangeably. Among various kinds of network topologies, the star
graph is attractive for its high degree of symmetry. However, when some edges are removed
at random from the star graph, the symmetry will be broken. Hence, we wonder, in a theo-
retical point of view, how many mutually independent Hamiltonian cycles can be formed in
such an injured network. In this paper, the maximum number of fault-free mutually independent
Hamiltonian cycles in the faulty star graph will be studied. To be precise, let SGn denote an n-
dimensional star graph with f ≤ n − 3 faulty edges. Then we aim at proving the following result:
SGn has (n − 2 − f )-mutually (respectively, (n − 1 − f )-mutually) independent Hamiltonian
cycles rooted at any vertex if n ∈ {3, 4} (respectively, n ≥ 5).

The rest of this paper is organized as follows. In Section 2, graph-theoretic notations and the
definition of mutually independent Hamiltonian cycles are introduced. In Section 3, the star graph
and its basic properties are presented. Section 4 consists of the proof of our main result. Finally,
directions for future research are discussed in Section 5.

2. Preliminaries

Throughout this paper, graphs are simple, loopless, and undirected. For definitions and notations
not defined here, see [4]. A graph G is an ordered pair (V (G), E(G)), where V (G) is a non-empty
set, and E(G) is a subset of {{u, v}|{u, v} is a two-element subsets of V (G)}. The set V (G) is
called the vertex set of G, and the set E(G) is called the edge set of G. Two vertices u and v of
G are adjacent if {u, v} ∈ E(G). The degree of a vertex u in G is the number of edges incident
to u. A graph G is k-regular if all its vertices have the same degree k. A graph G is bipartite if
its vertex set can be partitioned into two disjoint subsets, denoted by V0(G) and V1(G), such that
every edge joins a vertex of V0(G) to a vertex of V1(G).

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let S be a non-
empty subset of V (G). The subgraph of G induced by S is a subgraph of G with vertex set S,
whose edge set consists of all the edges joining any two vertices in S. We use G − S to denote
the subgraph of G induced by V (G) − S. Let F be any subset of E(G). Then we use G − F to
denote the subgraph of G with vertex set V (G) and edge set E(G) − F . For any S ⊆ V (G) and
F ⊆ E(G), graph G − (S ∪ F) is defined to be the graph (G − F) − S.

A walk of length k ≥ 1 in a graph is a sequence of vertices, W := v1v2 · · · vk+1, such that vi and
vi+1 are adjacent for i = 1, 2, . . . , k. If v1 = x and vk+1 = y, we refer to W as an xy-walk. The
notation xWy is also used simply to signify an xy-walk W . Moreover, we use W−1 to denote the
reversed walk vk+1vk · · · v1. For any three vertices x, y, z in a graph, if xW1y and yW2z are walks,
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International Journal of Computer Mathematics 733

the sequence x W1 y W2 z, obtained by concatenating W1 and W2 at y, is a walk. A walk of length
0 consists of a single vertex. A path is a walk in which no vertex is repeated. For convenience, the
ith vertex of a path P is denoted by P(i). For any two vertices u and v in a graph G, the distance
between u and v, denoted by dG(u, v), is the length of the shortest path between u and v. A cycle
is a walk v1v2 · · · vn+1 in which n ≥ 3, v1 = vn+1, and the n vertices v1, v2, . . . , vn are distinct.

A path (or cycle) in a graph G is a Hamiltonian path (or Hamiltonian cycle) of G if it spans G.
A graph is Hamiltonian if it has a Hamiltonian cycle. A bipartite graph is Hamiltonian laceable
[34] if there exists a Hamiltonian path between any two vertices that are in different partite sets. A
Hamiltonian laceable graph G is said to be hyper-Hamiltonian laceable [22] if, for any i ∈ {0, 1}
and for any vertex v ∈ Vi(G), there exists a Hamiltonian path in G − {v} between any two vertices
of V1−i (G).

Let G be a graph with N vertices. A rooted Hamiltonian cycle C in G can be described as v1

v2 · · · vN v1 to emphasize the order of vertices on C. Accordingly, v1 is seen as the root vertex, and
vi is seen as the ith vertex on C. Two Hamiltonian cycles rooted at a given vertex s of G, namely
C1 := v1v2 · · · vNv1 and C2 := u1u2 · · · uNu1 with v1 = u1 = s, are independent if vi �= ui for
2 ≤ i ≤ N . A collection of m Hamiltonian cycles C1, . . . , Cm in G, rooted at the same vertex, are
said to be m-mutually independent if Ci and Cj are independent whenever i �= j . Moreover, the
mutually independent Hamiltonicity of G, denoted by IHC(G), is defined to be the maximum
integer m such that for any vertex v of G, there exists a set of m-mutually independent Hamiltonian
cycles rooted at v in G. The concept of mutually independent Hamiltonian cycles can be applied
in many different areas [12,15,16,25,26,33].

3. The star graph

The hypercube has long been one of the most popular network topologies [21] because of its nice
topological properties. The star graph, proposed by Akers and Krishnamurthy [1], is an attractive
alternative to the hypercube for interconnecting processors in parallel computers. Since then, star
networks have received many researchers’ attention. For example, the diameter and fault diameter
were computed in [1,20,32]. Moreover, Fragopoulou and Akl [8,9] studied how to embed directed
edge-disjoint spanning trees into the star graph. The Hamiltonian properties of star graphs are
addressed in [13,14,23,38]. In particular, because processors or links may fail accidentally to affect
network performance, Tseng et al. [38] addressed fault-tolerant ring embedding in an injured star
network if no more than n − 3 edge faults occur.

The definition of star graphs is described as follows. Let n be any positive integer. For conve-
nience, we use In to denote the set {1, 2, . . . , n}. A permutation u1u2 · · · un on In is a sequence
of all elements of In. Every permutation can be written as a product of transpositions. An even
permutation (respectively, odd permutation) is a permutation that can be written as a product
of an even (respectively, odd) number of transpositions. The n-dimensional star graph SGn is
a graph whose vertex set is the set of all permutations on In. Two vertices, u1 · · · ui · · · un and
v1 · · · vi · · · vn, are adjacent through an edge of dimension i with 2 ≤ i ≤ n if u1 = vi , v1 = ui ,
and uj = vj for j ∈ In − {1, i}. Clearly, SGn is (n − 1)-regular with n! vertices. Moreover, it is
precisely a Cayley graph of the symmetric group with edge set consisting of all the transpositions
of form (1 i), where 2 ≤ i ≤ n. So it is vertex-transitive and edge-transitive [1]. The star graphs
SG2, SG3, and SG4 are illustrated in Figure 1.

For the sake of clarity, we use boldface letters to denote vertices of SGn. Moreover, we use e to
denote the vertex 12, . . . , n. It is known that SGn is a bipartite graph with one partite set V0(SGn)

consisting of all the even permutations and the other partite set V1(SGn) consisting of all the odd
permutations. Let u = u1u2 · · · un be a vertex in SGn. Then ui is the ith coordinate of u, denoted
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Figure 1. Illustrations for SG2, SG3, and SG4.

by (u)i , for 1 ≤ i ≤ n. For any 2 ≤ i ≤ n, the i-neighbour of vertex u, denoted by (u)i , is a vertex
adjacent to u through an edge of dimension i. Obviously, ((u)i)i = u.

For any 1 ≤ i ≤ n, let SG{i}
n denote the subgraph of SGn induced by the set of ver-

tices {u ∈ V (SGn)|(u)n = i}. Then SGn can be partitioned into n vertex-disjoint subgraphs
SG{1}

n , aSG{2}
n , . . . , SG{n}

n , and every of them is isomorphic to SGn−1. Let I ⊆ In. We use SGI
n

to denote the subgraph of SGn induced by ∪i∈IV (SG{i}
n ). For any pair i, j of distinct integers in

In, we use Ei,j to denote the set of edges between SG{i}
n and SG{j}

n .
In the rest of this section, we introduce some results to be used later.

Theorem 1 [38] Let F ⊂ E(SGn) with |F | ≤ n − 3 for n ≥ 3. Then SGn − F is Hamiltonian.

Li et al. [23] introduced the edge-fault-tolerant Hamiltonian laceability of a bipartite graph G,
which is the integer f such that for any F ⊆ E(G) with |F | ≤ f , G − F is still Hamiltonian lace-
able and there exists a subset F ′ of E(G) with |F ′| = f + 1 such that G − F ′ is not Hamiltonian
laceable. Moreover, they also defined the edge-fault-tolerant hyper-Hamiltonian laceability of a
graph G as the integer f such that for any F ⊆ E(G) with |F | ≤ f , G − F is hyper-Hamiltonian
laceable and there exists a subset F ′ of E(G) with |F ′| = f + 1 such that G − F ′ is no longer
Hyper-Hamiltonian laceable.

Theorem 2 [23] The star graph SGn is (n − 3)-edge-fault-tolerant Hamiltonian laceable and
(n − 4)-edge-fault-tolerant hyper-Hamiltonian laceable for n ≥ 4.

Lemma 1 [31] Assume that n ≥ 3. Then |Ei,j | = (n − 2)! for any 1 ≤ i �= j ≤ n. Moreover,
there are (n − 2)!/2 pairwise disjoint edges joining vertices of Vt(SG{i}

n ) to vertices of V1−t (SG{j}
n )

for any t ∈ {0, 1}.

Lemma 2 For n ≥ 3, let u and v be two distinct vertices of SGn with dSGn
(u, v) ≤ 2. Then

(u)1 �= (v)1.

Lemma 3 Let n ≥ 5 and F ⊂ E(SGn) with |F | ≤ n − 4. Assume that I = {a1, . . . , ar} is an
r-element subset of In for any r ∈ In. Suppose that u ∈ Vt(SG{a1}

n ) and v ∈ V1−t (SG{ar }
n ) for any
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International Journal of Computer Mathematics 735

t ∈ {0, 1}. Then there exists a Hamiltonian path H := x1P1y1x2P2y2 · · · xrPryr in SGI
n − F such

that x1 = u, yr = v, andPi is a Hamiltonian path of SG{ai }
n − F joining xi to yi for every 1 ≤ i ≤ r .

Proof Without loss of generality, we can assume that t = 0. Since SG{a1}
n is isomorphic to

SGn−1, this statement holds for r = 1 by Theorem 2. Thus, suppose that r ≥ 2 and set x1 = u
and yr = v. By Lemma 1, there are ((n − 2)!/2) > n − 4 pairwise disjoint edges joining vertices
of V1(SG{ai }

n ) to vertices of V0(SG{ai+1}
n ) for every i ∈ Ir−1. Therefore, we can choose {yi , xi+1} ∈

Eai,ai+1 − F with yi ∈ V1(SG{ai }
n ) and xi+1 ∈ V0(SG{ai+1}

n ) for i ∈ Ir−1. By Theorem 2, SG{ai }
n − F

has a Hamiltonian path Pi joining xi to yi for every i ∈ Ir . As a result, the sequence of vertices,
x1 P1 y1 x2 P2 y2 · · · xr Pr yr , forms a desired Hamiltonian path of SGI

n − F joining u to v. �

Lemma 4 Let n ≥ 5. Assume that F ⊂ E(SGn) with |F | ≤ n − 4, and |F ∩ SG{i}
n | ≤ n − 5 for

every i ∈ In. Moreover, assume that I = {a1, . . . , ar} is an r-element subset of In for any 2 ≤ r ≤
n. Suppose that u ∈ Vt(SG{a1}

n ), w ∈ V1−t (SG{a1}
n ), and v ∈ Vt(SG{ar }

n ) for any t ∈ {0, 1}. Then
there exists a Hamiltonian path H of (SGI

n − F) − {w} joining u to v.

Proof Without loss of generality, we can assume that t = 0. By Lemma 1, there are (n − 2)!/2 >

n − 3 pairwise disjoint edges joining vertices of V0(SG{a1}
n ) to vertices of V1(SG{a2}

n ). Thus, we
can choose a vertex x of V0(SG{a1}

n ) − {u} with (x)1 = a2 and {x, (x)n} /∈ F . By Theorem 2, there
exists a Hamiltonian path P of (SG{a1}

n − F) − {w} joining u to x. By Lemma 3, there exists a
Hamiltonian path Q of SGI−{a1}

n − F joining (x)n to v. As a result, the sequence of vertices, u P

x (x)n Q v, forms a desired Hamiltonian path. �

Lemma 5 [24] Let w and b denote two adjacent vertices of SGn with n ≥ 4. For any vertex u
in Vt(SGn) − {w, b}, t ∈ {0, 1}, and for any i ∈ In, there exists a Hamiltonian path P of SGn −
{w, b} joining u to some vertex v in V1−t (SGn) − {w, b} with (v)1 = i.

Lemma 6 Let i ∈ In and F ⊂ E(SGn) with |F | ≤ n − 4 for n ≥ 4. Suppose that w and b are
two adjacent vertices of SGn, and u ∈ Vt(SGn) − {w, b} for any t ∈ {0, 1}. Then there exists a
Hamiltonian path of (SGn − F) − {w, b} joining u to some vertex v of V1−t (SGn) − {w, b} with
(v)1 = i.

Proof Without loss of generality, we can assume that t = 0. Since SGn is vertex-transitive, we
can assume that w = e and b = (e)j with some j ∈ In − {1}. We set Fk = F ∩ E(SG{k}

n ) for
every k ∈ In. The proof is done by induction on n. The induction basis, that is, the case n = 4,
follows from Lemma 5. Suppose that this statement holds for SGn−1 with n ≥ 5. We consider
the dimensions of all edges in F ∪ {{e, (e)j }}. If there is an edge in F whose dimension, say j ′,
is different from j , then SGn can be partitioned into n vertex-disjoint subgraphs with the j ′th
coordinate of each vertex (that is, the subgraph of SGn induced by the vertices with the same j ′th
coordinate is SGn−1). Otherwise, every edge of F has the same dimension j .

Case 1 The dimension j ′ exists. Without loss of generality, we can assume that j ′ = n. Thus,
we have {e, (e)j } ∈ E(SG{n}

n ) and |Fk| ≤ n − 5 for every k ∈ In.

Subcase 1.1 Suppose that u ∈ V0(SG{n}
n ). Since |F | ≤ n − 4, we can choose an integer r ∈

In−1 such that |F ∩ Er,n| = 0. By the induction hypothesis, there exists a Hamiltonian path P

of (SG{n}
n − Fn) − {e, (e)j } joining u to a vertex x ∈ V1(SG{n}

n ) with (x)1 = r . We can choose
a vertex v in V1(SGIn−1−{r}

n ) with (v)1 = i. By Lemma 3, there exists a Hamiltonian path Q of
SGIn−1

n − F joining (x)n to v. Then the sequence of vertices, uPx(x)nQv, is a desired path.
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736 T.-L. Kung et al.

Subcase 1.2 Suppose that u ∈ V0(SG{k}
n ) for some k ∈ In−1. By Lemma 1, there are (n −

2)!/2 > n − 3 pairwise disjoint edges joining vertices of V1(SG{k}
n ) to vertices of V0(SG{n}

n ). We
can pick out a vertex y of V1(SG{k}

n ) such that (y)n ∈ V0(SG{n}
n ) − {e} and {y, (y)n} /∈ F . By

Theorem 2, there exists a Hamiltonian path H of SG{k}
n − Fk joining u to y. We can choose

an integer r of In−1 − {k} such that |F ∩ Er,n| = 0. By the induction hypothesis, there exists a
Hamiltonian path P of (SG{n}

n − Fn) − {e, (e)j } joining (y)n to a vertex x of V1(SG{n}
n ) − {(e)j }

with (x)1 = r . Besides, we choose a vertex v of V1(SGIn−1−{k,r}
n ) with (v)1 = i. By Lemma 3, there

exists a Hamiltonian path Q of S
In−1−{k}
n − F joining (x)n to v. Then the sequence of vertices, u

H y (y)n P x (x)n Q v, turns out to be a desired path.

Case 2 Every edge in F has the same dimension j . Without loss of generality, we may assume
that j = n. Thus, we have |Ft | = 0 for every t ∈ In.

Subcase 2.1 Suppose that u ∈ V0(SG{k}
n ) for some k ∈ In−1 − {1}. By Lemma 1, there are

(n − 2)!/2 > n − 4 pairwise disjoint edges joining vertices of V1(SG{k}
n ) to vertices of V0(SG{1}

n ).
Thus, we can choose a vertex x of V1(SG{k}

n ) with (x)1 = 1 and {x, (x)n} /∈ F . By Theorem 2, there
exits a Hamiltonian path H of SG{k}

n joining u to x. Similarly, we can choose a vertex y of V0(SG{1}
n )

with (y)1 = n, {y, (y)n} /∈ F , and y �= (x)n. This can be done because there are ((n − 2)!)/2 ≥
n − 2 pairwise disjoint edges between the sets V0(SG{1}

n ) and V1(SG{k}
n ). By Theorem 2, SG{1}

n −
{(e)n} has a Hamiltonian path P joining (x)n to y. Let v be a vertex in V1(SGIn−1−{1,k}

n ) with
(v)1 = i. By Lemma 4, there exists a Hamiltonian path Q of (SGIn−{1,k}

n − F) − {e} joining (y)n

to v. Then the sequence of vertices, u H x (x)n P y (y)n Q v, turns out to be a desired path.

Subcase 2.2 Suppose that u ∈ V0(SG{1}
n ). By Lemma 1, there are (n − 2)!/2 > n − 4 pairwise

disjoint edges joining vertices of V0(SG{1}
n ) to vertices of V1(SG{n}

n ). Thus, we can choose a vertex
x of V0(SG{1}

n ) − {u} with (x)1 = n and {x, (x)n} /∈ F . By Theorem 2, there exists a Hamiltonian
path H of SG{1}

n − {(e)n} joining u to x. Furthermore, we choose a vertex v of V1(SGIn−1−{1}
n ) with

(v)1 = i. By Lemma 4, there exists a Hamiltonian path Q of (SGIn−{1}
n − F) − {e} joining (x)n

to v. Then the sequence of vertices, u H x (x)n Q v, forms a desired path.

Subcase 2.3 Suppose that u ∈ V0(SG{n}
n ). Since |F | ≤ n − 4, we can choose two inte-

gers k1 and k2 in In−1 − {1} such that {(e)k1 , ((e)k1)n} /∈ F and {(e)k2 , ((e)k2)n} /∈ F . Let
X = {{e, (e)t }|t ∈ In−1 − {1, k1, k2}}. Obviously, |X| = n − 4. Moreover, we can choose a ver-
tex x ∈ V1(SG{n}

n ) such that (x)1 ∈ In−1 − {1, k1, k2} and {x, (x)n} /∈ F . Since (x)1 �= k1 and
(x)1 �= k2, we have x �= (e)k1 and x �= (e)k2 . By Theorem 2, there exists a Hamiltonian path
H of SG{n}

n − X joining u to x. Because vertex e has precisely two neighbours, that is, (e)k1 and
(e)k2 , in SG{n}

n − X, the edges {e, (e)k1} and {e, (e)k2} must be consecutive on H . Thus, with no
loss of generality, we can write H = u H1(e)k1e(e)k2H2x. Let y = (e)k2 . Since (y)1 �= (x)1, we
have i �= (x)1 or i �= (y)1.

Subcase 2.3.1 Suppose that i �= (x)1. Let k3 = (x)1. We choose a vertex v of V1(SG{k3}
n ) with

(v)1 = i. By Lemma 1, there are (n − 2)!/2 > n − 4 pairwise disjoint edges joining vertices of
V1(SG{k1}

n ) to vertices of V0(SG{1}
n ). Thus, we can choose a vertex z of V1(SG{k1}

n ) with (z)1 = 1
and {z, (z)n} /∈ F . By Theorem 2, there exists a Hamiltonian path T of SG{k3}

n joining (x)n to v.
Similarly, there exist a Hamiltonian path P of SG{k1}

n joining ((e)k1)n to z. By Lemma 4, there exists
a Hamiltonian path Q of (SGIn−1−{k1,k3}

n − F) − {(e)n} joining (z)n to (y)n. Then the sequence of
vertices, u H1 (e)k1 ((e)k1)n P z (z)n Q (y)n y H2 x (x)n T v, is a desired one.
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Subcase 2.3.2 Suppose that i �= (y)1. Let k3 = (y)1. Then the proof of this case happens to
be similar to that of Subcase 2.3.1. Thus, we omit the details. �

Lemma 7 Let {a, b} ⊂ In with a < b, and let F ⊂ E(SGn) with |F | ≤ n − 4 for n ≥ 4. Suppose
that x ∈ V0(SGn), and x1 and x2 are two distinct neighbours of x. Then there exists a Hamiltonian
path of (SGn − F) − {x, x1, x2} between two vertices u and v in V0(SGn) − {x} such that (u)1 = a

and (v)1 = b.

Proof Since SGn is vertex-transitive, we can assume that x = e, x1 = (e)i1 , and x2 = (e)i2 with
some {i1, i2} ⊂ {2, 3, . . . , n}. Then this lemma is proved by induction on n.

Suppose that n = 4. Thus, we have |F | = 0. Since SG4 is edge-transitive, we can assume that
x1 = (e)2 = 2134 and x2 = (e)3 = 3214. The required paths of SG4 − {1234, 2134, 3214} are
listed in Table 1.

Suppose that the statement holds for SGn−1 with n ≥ 5. Let Fk = F ∩ E(SG{k}
n ) for every

k ∈ In. Without loss of generality, suppose that F contains at least one edge of dimension n.
Thus, we have |Fk| ≤ n − 5 for every k ∈ In. Because a < b, we have a �= n and b �= 1. Since
|F | ≤ n − 4, we can choose an integer c in In−1 − {1, a} such that |F ∩ Ec,n| = 0. Moreover, we
can choose a vertex v of V0(SG{1}

n ) with (v)1 = b.

Case 1 Suppose that i1 �= n and i2 �= n. By the induction hypothesis, there exists a Hamil-
tonian path H of (SG{n}

n − Fn) − {e, (e)i1 , (e)i2} joining a vertex u of V0(SG{n}
n ) with (u)1 = a

to a vertex y of V0(SG{n}
n ) with (y)1 = c. By Lemma 3, there exists a Hamiltonian path R of

SGIn−1
n − F joining (y)n to v. As a result, the sequence of vertices, u H y (y)n R v, forms a desired

path in (SGn − F) − {e, (e)i1 , (e)i2}.
Case 2 Either i1 = n or i2 = n. Without loss of generality, we can assume that i2 = n. We
choose a vertex u ∈ V0(SG{n}

n ) with (u)1 = a. By Lemma 6, there exists a Hamiltonian path H

of (SG{n}
n − Fn) − {e, (e)i1} joining a vertex u to some vertex y of V1(SG{n}

n ) with (y)1 = c. By
Lemma 4, there exists a Hamiltonian path Q of (SGIn−1

n − F) − {(e)n} joining (y)n to v. As a
result, the sequence of vertices, u H y (y)n Q v, is a desired path. �

4. Mutually independent Hamiltonian cycles in faulty star graphs

Lin et al. [25] showed the next theorem.

Theorem 3 [25] IHC(SG3) = 1, IHC(SG4) = 2, and IHC(SGn) = n − 1 if n ≥ 5.

For the sake of clarity, our main result, Theorem 4, will be divided into three lemmas
(Lemma 8–10).

Lemma 8 Let f ∈ E(SG4). Then IHC(SG4 − {f }) = 1.

Proof Since SG4 is edge-transitive, we can assume that f = {1234, 4231}. By Theorem 1, there
exists a Hamiltonian cycle in SG4 − {f }. Thus, we have IHC(SG4 − {f }) ≥ 1. To show that
IHC(SG4 − {f }) ≤ 1, it suffices to point out that there will be no two-mutually independent
Hamiltonian cycles rooted at vertex 1234. In Table 2, we list all Hamiltonian cycles of SG4 − {f }
rooted at 1234. By brute force, we can check that there do not exist two-mutually independent
Hamiltonian cycles. Hence, the proof is completed. �
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Table 1. The required Hamiltonian paths in SG4 − {1234, 2134, 3214}.

a = 1 and b = 2 1324 3142 4132 1432 3412 4312 2314 1324 3124 4123 2143 1243 4213 2413 1423 3421 4321 2341 3241 4231 2431
a = 1 and b = 3 1423 2413 4213 1243 2143 4123 3124 1324 2314 4312 3412 1432 4132 3142 1342 2341 4321 3421 2431 4231 3241
a = 1 and b = 4 1324 3142 4132 1432 3412 4312 2314 1324 3124 4123 2143 1243 4213 2413 1423 3421 2431 4231 3241 2341 4321
a = 2 and b = 3 2314 1324 3124 4123 2143 1243 4213 2413 1423 3421 4321 2341 3241 4231 2431 1432 4132 3142 1342 4312 3412
a = 2 and b = 4 2314 1324 3124 4123 2143 1243 4213 2413 1423 3421 4321 2341 3241 4231 2431 1432 3412 4312 1342 3142 4132
a = 3 and b = 4 3124 1324 2314 4312 3412 1432 4132 3142 1342 2341 4321 3421 2431 4231 3241 1243 2143 4123 1423 2413 4213

Table 2. All Hamiltonian cycles rooted at 1234 in SG4 − {{1234, 4231}}.

1234 2134 3124 1324 2314 4312 3412 1432 4132 3142 1342 2341 4321 3421 2431 4231 3241 1243 2143 4123 1423 2413 4213 3214 1234
1234 2134 3124 1324 4321 2341 3241 4231 2431 3421 1423 4123 2143 1243 4213 2413 3412 1432 4132 3142 1342 4312 2314 3214 1234
1234 2134 3124 4123 1423 2413 4213 1243 2143 3142 4132 1432 3412 4312 1342 2341 3241 4231 2431 3421 4321 1324 2314 3214 1234
1234 2134 4132 1432 2431 4231 3241 1243 2143 3142 1342 2341 4321 3421 1423 4123 3124 1324 2314 4312 3412 2413 4213 3214 1234
1234 2134 4132 3142 1342 4312 3412 1432 2431 4231 3241 2341 4321 3421 1423 2413 4213 1243 2143 4123 3124 1324 2314 3214 1234
1234 2134 4132 3142 2143 4123 3124 1324 2314 4312 1342 2341 4321 3421 1423 2413 3412 1432 2431 4231 3241 1243 4213 3214 1234
1234 3214 2314 1324 3124 4123 2143 1243 4213 2413 1423 3421 4321 2341 3241 4231 2431 1432 3412 4312 1342 3142 4132 2134 1234
1234 3214 2314 1324 4321 3421 2431 4231 3241 2341 1342 4312 3412 1432 4132 3142 2143 1243 4213 2413 1423 4123 3124 2134 1234
1234 3214 2314 4312 1342 3142 4132 1432 3412 2413 4213 1243 2143 4123 1423 3421 2431 4231 3241 2341 4321 1324 3124 2134 1234
1234 3214 4213 2413 1423 4123 2143 1243 3241 4231 2431 3421 4321 2341 1342 3142 4132 1432 3412 4312 2314 1324 3124 2134 1234
1234 3214 4213 2413 3412 4312 2314 1324 3124 4123 1423 3421 4321 2341 1342 3142 2143 1243 3241 4231 2431 1432 4132 2134 1234
1234 3214 4213 1243 3241 4231 2431 1432 3412 2413 1423 3421 4321 2341 1342 4312 2314 1324 3124 4123 2143 3142 4132 2134 1234
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Lemma 9 Suppose that n ≥ 5 and F ⊂ E(SGn) with |F | = n − 3. Let u ∈ V (SGn). Then there
exist two-mutually independent Hamiltonian cycles rooted at u in SGn − F .

Proof Because SGn is edge-transitive, there exists an automorphism φ1 of SGn mapping any
edge in F into an edge of dimension n. For convenience, let w = φ1(u). Moreover, let φ2 :
V (SGn) → V (SGn) be a function defined as follows: φ2(v) = h((v)1)h((v)2), . . . , h((v)n) for
any v ∈ V (SGn), where h : In → In is a function such that h((w)j ) = j for each j ∈ In. Clearly,
φ2 is also an automorphism of SGn. It is easy to check that the composition of φ1 and φ2, namely
φ2 ◦ φ1, is an automorphism of SGn such that φ2 ◦ φ1(u) = e. For this reason, we can assume that
u = e, and F contains at least one edge of dimension n. Let Fk = F ∩ E(SG{k}

n ) for every k ∈ In.
As a result, we have |Fk| ≤ n − 4 for every k ∈ In.

Case 1 Suppose that {e, (e)n} /∈ F . Let B = (bi,j ) be a 2 × n matrix with

bi,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j if i = 1,

n if i = 2 and j = 1,

j + 1 if i = 2 and 2 ≤ j ≤ n − 2,

2 if i = 2 and j = n − 1,

1 if i = 2 and j = n.

By Lemma 3, there exists a Hamiltonian path P of SG
⋃n

j=1{b1,j }
n − F joining (e)n to e. Similarly,

there exists a Hamiltonian path H of SG
⋃n

j=1{b2,j }
n − F joining e to (e)n. Then we set C1 := e

(e)n P e and C2 := e H (e)n e. Obviously, {C1, C2} forms a set of two-mutually independent
Hamiltonian cycles rooted at e in SGn − F (see Figure 2(a) for illustration).

Case 2 Suppose that {e, (e)n} ∈ F and |Fn| = n − 4. Obviously, we have |Fk| = 0 for
every k ∈ In−1. By Theorem 1, there exists a Hamiltonian cycle H = e R q p e of

(b)
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Figure 2. The two-mutually independent Hamiltonian cycles in SG5 − F for Lemma 9.
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SG{n}
n − Fn. Accordingly, we have that {p, (p)n} /∈ F and {q, (q)n} /∈ F . By Lemma 2,

(p)1 �= (q)1. We set (p)1 = in−1 and (q)1 = i1. Let i2i3 · · · in−2 be an arbitrary permutation
of In−1 − {i1, in−1}.

For 1 ≤ k ≤ n − 2, let xk be a vertex of V0(SG{ik}
n ) such that (xk)1 = ik+1 and {xk, (xk)

n} /∈ F .
By Theorem 2, there exists a Hamiltonian path P1 of SG{i1}

n joining (q)n to x1. Similarly, there is a
Hamiltonian path Pk of SG{ik}

n joining (xk−1)
n to xk for 2 ≤ k ≤ n − 2, and there is a Hamiltonian

path Pn−1 of SG{in−1}
n joining (xn−2)

n to (p)n. Then we set C1 := e R q (q)n P1 x1 (x1)
n P2 x2

(x2)
n · · · xn−2 (xn−2)

n Pn−1 (p)n p e.
We can pick out a vertex yn−1 of V1(SG{in−1}

n ) such that (yn−1)1 = i2 and {yn−1, (yn−1)
n} /∈ F .

For 2 ≤ k ≤ n − 3, we have |{u ∈ V1(SG{ik}
n )|(u)1 = ik+1and dSGn

(u, (xk−1)
n) = 2}| = n − 3 <

(n − 2)!/2 if n ≥ 5. Thus, we can choose a vertex yk of V1(SG{ik}
n ) such that dSGn

(yk, (xk−1)
n) >

2, (yk)1 = ik+1, and {yk, (yk)
n} /∈ F for 2 ≤ k ≤ n − 3. Since |{u ∈ V1(SG{in−2}

n )|(u)1 = i1

and dSGn
(u, (xn−3)

n) = 2}| = n − 3 < (n − 2)!/2 if n ≥ 5, we can choose a vertex yn−2 of
V1(SG{in−2}

n ) such that dSGn
(yn−2, (xn−3)

n) > 2, (yn−2)1 = i1, and {yn−2, (yn−2)
n} /∈ F . By

Theorem 2, there exists a Hamiltonian path Q1 of SG{i1}
n joining (yn−2)

n to (q)n. Again, there
exists a Hamiltonian path Q2 of SG{i2}

n joining (yn−1)
n to y2, there exists a Hamiltonian path Qn−1

of SG{in−1}
n joining (p)n to yn−1, and there exists a Hamiltonian path Qk of SG{ik}

n joining (yk−1)
n

to yk for each 3 ≤ k ≤ n − 2. Then we set C2 := e p (p)n Qn−1 yn−1 (yn−1)
n Q2 y2 (y2)

n Q3 y3
(y3)

n . . . (yn−2)
n Q1 (q)n q R−1 e.

In summary, {C1, C2} forms a set of 2-mutually independent Hamiltonian cycles rooted at e in
SGn − F . Figure 2(b) illustrates C1 and C2 in S5.

Case 3 Suppose that {e, (e)n} ∈ F and |Fn| ≤ n − 5. Since |F | = n − 3, there exists an
integer of In−1 − {1}, say in−1, such that |F ∩ Ein−1,n| = 0. Assume that i1 and i2 are two inte-
gers of In−1 − {in−1} such that |F ∩ Ei1,i2 | = max{|F ∩ Es,t ||s, t ∈ In−1 − {in−1}}. Moreover,
let i3i4 · · · in−2 be an arbitrary permutation of In−1 − {i1, i2, in−1}. Since {e, (e)n} ∈ F , we have
|F ∩ Ei1,i2 | ≤ n − 4. Therefore, we have |F ∩ Ein−2,i1 | ≤ n − 5 and |F ∩ Eik,ik+1 | ≤ n − 5 for
2 ≤ k ≤ n − 3.

By Lemma 1, there are (n − 2)!/2 > n − 3 pairwise disjoint edges joining vertices of V0(SG{n}
n )

to vertices of V1(SG{i1}
n ). Thus, we can choose a vertex w ∈ V0(SG{n}

n ) − {e} such that (w)1 = i1

and {w, (w)n} /∈ F . By Theorem 2, there exists a Hamiltonian path R of (SG{n}
n − Fn) − {(e)in−1}

joining e to w. For each 1 ≤ k ≤ n − 2, let xk be a vertex of V0(SG{ik}
n ) such that (xk)1 = ik+1

and {xk, (xk)
n} /∈ F . By Theorem 2, there exists a Hamiltonian path P1 of SG{i1}

n − Fi1 joining
(w)n to x1. Similarly, there exists a Hamiltonian path Pk of SG{ik}

n − Fik joining (xk−1)
n to xk for

each 2 ≤ k ≤ n − 2, and there exists a Hamiltonian path Pn−1 of SG{in−1}
n − Fin−1 joining (xn−2)

n

to ((e)in−1)n. Then we set C1 := e R w (w)n P1 x1 (x1)
n P2 x2 (x2)

n . . . (xn−2)
n Pn−1 ((e)in−1)n

(e)in−1 e.
Next, we can pick out a vertex yn−1 of V1(SG{in−1}

n ) such that (yn−1)1 = i2 and {yn−1, (yn−1)
n} /∈

F . For any 2 ≤ k ≤ n − 3, we have |{u ∈ V1(SG{ik}
n )|(u)1 = ik+1 and dSGn

(u, (xk−1)
n) = 2}| =

n − 3. By Lemma 1, there are (n − 2)!/2 pairwise disjoint edges joining vertices of V1(SG{ik}
n )

to vertices of V0(SG{ik+1}
n ). It is noticed that (n − 2)!/2 > (n − 3) + (n − 5) = 2n − 8 if n ≥ 5.

Thus, we can choose a vertex yk of V1(SG{ik}
n ) such that dSGn

(yk, (xk−1)
n) > 2, (yk)1 = ik+1,

and {yk, (yk)
n} /∈ F for each 2 ≤ k ≤ n − 3. Since (n − 2)!/2 > |{u ∈ V1(SG{in−2}

n )|(u)1 = i1 and
dSGn

(u, (xn−3)
n) = 2}| + (n − 5) = (n − 3) + (n − 5) = 2n − 8 if n ≥ 5, we can choose a ver-

tex yn−2 of V1(SG{in−2}
n ) such that dSGn

(yn−2, (xn−3)
n) > 2, (yn−2)1 = i1, and {yn−2, (yn−2)

n} /∈
F . By Theorem 2, there exists a Hamiltonian path Q1 of SG{i1}

n − Fi1 joining (yn−2)
n to

(w)n. Again, there exists a Hamiltonian path Q2 of SG{i2}
n − Fi2 joining (yn−1)

n to y2, there
exists a Hamiltonian path Qn−1 of SG{in−1}

n − Fin−1 joining ((e)in−1)n to yn−1, and there exists
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a Hamiltonian path Qk of SG{ik}
n − Fik joining (yk−1)

n to yk for 3 ≤ k ≤ n − 2. We set
C2 := e(e)in−1((e)in−1)nQn−1yn−1(yn−1)

nQ2y2(y2)
nQ3y3(y3)

n · · · (yn−2)
nQ1(w)nwR−1e.

As a result, {C1, C2} turns out to be a set of two-mutually independent Hamiltonian cycles
rooted at e in SGn − F . Figure 2(c) illustrates C1 and C2 in S5. �

Lemma 10 Let f be any integer of In−4 for n ≥ 5. Suppose that F ⊂ E(SGn) with |F | = f , and
u is any vertex of SGn. Then there exist (n − 1 − f )-mutually independent Hamiltonian cycles
rooted at u in SGn − F .

Proof As explained in the proof of Lemma 9, there exists an automorphism of SGn that can map
any edge in F into an edge of dimension n and map u to e simultaneously. Hence, we can assume
that u = e, and F contains at least one edge of dimension n. Let Fk = F ∩ E(SG{k}

n ) for every
k ∈ In. Thus, we have |Fk| ≤ n − 5 for every k ∈ In. Moreover, let A1 = E1,n − {{e, (e)n}}, and
let Ai = Ei,n ∪ {{e, (e)i}} for 2 ≤ i ≤ n − 1.

Case 1 Suppose that {e, (e)n} ∈ F . It is noticed that there are at least n − 1 − f elements of
|F ∩ A2|, |F ∩ A3|, . . . , |F ∩ An−1| equal to 0. Without loss of generality, we can assume that
|F ∩ (∪n−1

i=f +1Ai)| = 0. Thus, at least one of |F ∩ A1|, . . . , |F ∩ Af | equals to 0.

Subcase 1.1 Suppose that |F ∩ A1| = 0. Let B = (bi,j ) be an (n − 1 − f ) × n matrix with

bi,j =
{

f + i + j if f + i + j ≤ n,

f + i + j − n otherwise.

It is noticed that bi,n−f −i = n for every 1 ≤ i ≤ n − 1 − f . Then we will construct a set of (n −
1 − f )-mutually independent Hamiltonian cycles {C1, C2, . . . , Cn−1−f } rooted at e in SGn − F .

Let i ∈ In−2−f . We set ti = n − f − i. By Lemma 7, there exists a Hamiltonian path Qi of

(SG
{bi,ti

}
n − Fbi,ti

) − {e, (e)bi,1 , (e)bi,n} joining two vertices xi and yi in V0(SG
{bi,ti

}
n ) − {e} such that

(xi )1 = bi,ti−1 and (yi )1 = bi,ti+1. By Lemma 3, there exists a Hamiltonian path Pi of SG
∪ti−1

j=1 {bi,j }
n −

F joining ((e)bi,1)n to (xi )
n. Similarly, there exists a Hamiltonian path Ri of SG

∪n
j=ti+1{bi,j }

n − F

joining (yi )
n to ((e)bi,n )n. Then we set Ci := e (e)bi,1 ((e)bi,1)n Pi (xi )

n xi Qi yi (yi )
n Ri ((e)bi,n )n

(e)bi,n e.
By Lemma 6, (SG

{bn−1−f,1}
n − Fbn−1−f,n

) − {e, (e)bn−1−f,n} has a Hamiltonian path T joining (e)b1,n

to a vertex z ofV0(SG
{bn−1−f,1}
n ) − {e}with (z)1 = bn−1−f,2. By Lemma 3, there exists a Hamiltonian

path W of SG
∪n

j=2{bn−1−f,j }
n − F joining (z)n to ((e)bn−1−f,n )n. Then we set Cn−1−f := e (e)b1,n T z

(z)n W ((e)bn−1−f,n )n (e)bn−1−f,n e.
As a result, {C1, . . . , Cn−2−f , Cn−1−f } turns out be a set of (n − 1 − f )-mutually independent

Hamiltonian cycles rooted at e in SGn − F . Figure 3 illustrates {C1, C2, C3, C4} in SG6 − F with
|F | = f = 1.

Subcase 1.2 Suppose that |F ∩ A1| > 0. It is noticed that f ≥ 2 in this subcase. Thus, at
least one of |F ∩ A2|, . . . , |F ∩ Af | equals to 0. Without loss of generality, we can assume that
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Figure 3. Mutually independent Hamiltonian cycles in SG6 − F with |F | = 1 for Subcase 1.1 of Lemma 10.

|F ∩ A2| = 0. Let B = (bi,j ) be an (n − 1 − f ) × n matrix with

bi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f + i + j if f + i + j ≤ n,

2 if f + i + j = n + 1,

1 if f + i + j = n + 2,

f + i + j − n otherwise.

Using a similar manner to that of Subcase 1.1, we can construct a set of (n − 1 − f )-mutually
independent Hamiltonian cycles {C1, C2, . . . , Cn−1−f } rooted at e in SGn − F .

Case 2 Suppose that {e, (e)n} /∈ F . It is noticed that there are at least n − 2 − f elements
of |F ∩ A2|, |F ∩ A3| . . . , |F ∩ An−1| equal to 0. Without loss of generality, we can assume that
|F ∩ (∪n−1

i=f +2Ai)| = 0. Thus, at least one of |F ∩ A1|, . . . , |F ∩ Af +1| is 0.

Subcase 2.1 Suppose that |F ∩ A1| = 0. Let Bn = (bi,j ) be an (n − 1 − f ) × n matrix with

B5 =
⎡
⎣1 2 3 4 5

4 5 1 2 3
5 4 2 3 1

⎤
⎦ ,

and for n ≥ 6

bi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j if i = 1,

f + i + j if 2 ≤ i ≤ n − 2 − f and f + i + j ≤ n,

f + i + j − n if 2 ≤ i ≤ n − 2 − f and f + i + j > n,

n if i = n − 1 − f and j = 1,

3 if i = n − 1 − f and j = 2,

2 if i = n − 1 − f and j = 3,

n − 1 if i = n − 1 − f and j = 4,

j − 1 if i = n − 1 − f and 5 ≤ j ≤ n − 1,

1 if i = n − 1 − f and j = n.

Then we construct a set of (n − 1 − f )-mutually independent Hamiltonian cycles
{C1, C2, . . . , Cn−1−f } rooted at e in SGn − F as follows.

We can pick out a vertex v of V1(SG{b1,n}
n ) − {(e)bn−2−f,1} with (v)1 = b1,n−1. By Theorem 2,

there exists a Hamiltonian path W of (SG{b1,n}
n − Fb1,n

) − {e} joining v to (e)bn−2−f,1 . By Lemma 3,

there exists a Hamiltonian path D of SG
∪n−1

j=1{b1,j }
n − F joining (e)n to (v)n. We set C1 := e (e)n D

(v)n v W (e)bn−2−f,1 e.
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Let i ∈ In−2−f − {1}. We set ti = n − f − i. By Lemma 7, there exists a Hamiltonian path

Qi of (SG
{bi,ti

}
n − Fbi,ti

) − {e, (e)bi,1 , (e)bi,n} joining two vertices xi and yi in V0(SG
{bi,ti

}
n ) − {e}

such that (xi )1 = bi,ti−1 and (yi )1 = bi,ti+1. By Lemma 3, there exists a Hamiltonian path Pi

of SG
∪ti−1

j=1 {bi,j }
n − F joining ((e)bi,1)n to (xi )

n. Similarly, there exists a Hamiltonian path Ri of

S
∪n

j=ti+1{bi,j }
n − F joining (yi )

n to ((e)bi,n )n. Then we set Ci := e (e)bi,1 ((e)bi,1)n Pi (xi )
n xi Qi yi

(yi )
n Ri ((e)bi,n )n (e)bi,n e.

By Lemma 1, there are (n − 2)!/2 > n − 3 pairwise disjoint edges joining vertices of
V0(SG

{bn−1−f,k}
n ) to vertices of V1(SG

{bn−1−f,k−1}
n ) for 3 ≤ k ≤ n − 1. Thus, we can choose a

vertex zk of V0(SG
{bn−1−f,k}
n ) such that (zk)1 = bn−1−f,k−1, {zk, (zk)

n} /∈ F , and zk �= C1((k −
1)(n − 1)! + 1). By Lemma 4, there exists a Hamiltonian path T of (SG

∪2
j=1{bn−1−f,j }

n −
F) − {e} joining (e)b2,n to (z3)

n. By Theorem 2, there exists a Hamiltonian path Hk of
SG

{bn−1−f,k}
n − Fbn−1−f,k

joining zk to (zk+1)
n for 3 ≤ k ≤ n − 2. By Lemma 3, there exists a

Hamiltonian path Hn−1 of SG
∪n

j=n−1{bn−1−f,j }
n − F joining zn−1 to (e)n. Then we set Cn−1−f :=

e(e)b2,nT (z3)
nz3H3(z4)

n · · · zn−2Hn−2(zn−1)
nzn−1Hn−1(e)ne.

Consequently, {C1, C2, . . . , Cn−2−f , Cn−1−f } is a set of (n − 1 − f )-mutually independent
Hamiltonian cycles rooted at e in SGn − F . Figure 4(a) illustrates {C1, C2, C3, C4} in SG6 − F

with |F | = f = 1.

Subcase 2.2 Suppose that |F ∩ A1| > 0. Thus, at least one of |F ∩ A2|, . . . , |F ∩ Af +1|
equals to 0. Without loss of generality, we can assume that |F ∩ A2| = 0. Let Bn = (bi,j ) be
an (n − 1 − f ) × n matrix with

bi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n if i = 1 and j = 1,

j + 1 if i = 1 and 2 ≤ j ≤ n − 2,

2 if i = 1 and j = n − 1,

1 if i = 1 and j = n,

f + i + j if 2 ≤ i ≤ n − 2 − f and f + i + j ≤ n,

2 if 2 ≤ i ≤ n − 2 − f and f + i + j = n + 1,

1 if 2 ≤ i ≤ n − 2 − f and f + i + j = n + 2,

f + i + j − n if 2 ≤ i ≤ n − 2 − f and f + i + j ≥ n + 3,

j if i = n − 1 − f.

By Lemma 1, there are (n − 2)!/2 > n − 3 pairwise disjoint edges joining vertices of
V0(SG{b1,2}

n ) to vertices of V1(SG{b1,1}
n ). Thus, we can choose a vertex z of V0(SG{b1,2}

n ) such that
(z)1 = b1,1, {z, (z)n} /∈ F , and (z)n �= (e)b2,n . By Theorem 2, there exists a Hamiltonian path T

of (SG{b1,1}
n − Fb1,1) − {e} joining (e)b2,n to (z)n. By Lemma 3, there exists a Hamiltonian path H

of SG
∪n

j=2{b1,j }
n − F joining z to (e)n. Then we set C1 := e (e)b2,n T (z)n z H (e)n e.

Let i ∈ In−2−f − {1}. We set ti = n − f − i. By Lemma 7, there exists a Hamiltonian path

Qi of (SG
{bi,ti

}
n − Fbi,ti

) − {e, (e)bi,1 , (e)bi,n} joining two vertices xi and yi in V0(SG
{bi,ti

}
n ) − {e}

such that (xi )1 = bi,ti−1 and (yi )1 = bi,ti+1. By Lemma 3, there exists a Hamiltonian path Pi

of SG
∪ti−1

j=1 {bi,j }
n − F joining ((e)bi,1)n to (xi )

n. Similarly, there exists a Hamiltonian path Ri of

SG
∪n

j=ti+1{bi,j }
n − F joining (yi )

n to ((e)bi,n )n. Then we set Ci := e (e)bi,1 ((e)bi,1)n Pi (xi )
n xi Qi yi

(yi )
n Ri ((e)bi,n )n (e)bi,n e.

By Lemma 1, there are (n − 2)!/2 > n − 3 pairwise disjoint edges joining vertices of
V0(SG

{bn−1−f,2}
n ) to vertices of V1(SG

{bn−1−f,3}
n ). Thus, we can pick out a vertex w of V0(SG

{bn−1−f,2}
n )
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Figure 4. Mutually independent Hamiltonian cycles in SG6 − F with |F | = 1 for Case 2 of Lemma 10.

such that (w)1 = bn−1−f,3, {w, (w)n} /∈ F , and dSGn
(w, (yn−2−f )n) > 1. Moreover, we choose

a vertex v of V1(SG
{bn−1−f,n}
n ) such that (v)1 = bn−1−f,n−1 and {v, (v)n} /∈ F . By Lemma 3, there

exists a Hamiltonian path D1 of SG
∪2

j=1{bn−1−f,j }
n − F joining (e)n to w. Similarly, there exists a

Hamiltonian path D2 of SG
∪n−1

j=3{bn−1−f,j }
n − F joining (w)n to (v)n. By Theorem 2, there exists

a Hamiltonian path W of (SG
{bn−1−f,n}
n − Fbn−1−f,n

) − {e} joining v to (e)bn−2−f,1 . Then we set
Cn−1−f := e (e)n D1 w (w)n D2 (v)n v W (e)bn−2−f,1 e.

Hence, {C1, C2, . . . , Cn−2−f , Cn−1−f } forms a set of (n − 1 − f )-mutually independent
Hamiltonian cycles rooted at e in SGn − F . Figure 4(b) illustrates {C1, C2, C3, C4} in SG6 − F

with |F | = f = 1. �

Combining Theorem 3 and Lemmas 8–10, we summarize those results as follows.

Theorem 4 Let F ⊂ E(SGn) with |F | ≤ n − 3 for n ≥ 3, and let u ∈ V (SGn). Then there exist
(n − 2 − |F |)-mutually independent Hamiltonian cycles rooted at u in SGn − F if n ∈ {3, 4},
and there exist (n − 1 − |F |)-mutually independent Hamiltonian cycles rooted at u in SGn − F

if n ≥ 5.

5. Conclusion

In this paper, we study the problem of finding mutually independent Hamiltonian cycles in a
faulty star graph. That is, given a set of faulty edges F ⊂ E(SGn) with |F | ≤ n − 3, we show that
SGn − F has a set of (n − 2 − |F |)-mutually (respectively, (n − 1 − |F |)-mutually) independent
Hamiltonian cycles rooted at any vertex if n ∈ {3, 4} (respectively, n ≥ 5). We believe that a
similar result could be obtained for the graph generated by any transposition tree of order n [1]
when at most n − 3 edges fail. On the other hand, we also believe that our current result can be
further refined; to be precise, we would like to show that IHC(SGn − F) = δ(SGn − F), where
δ(SGn − F) denotes the minimum degree of graph SGn − F .

The edge faults considered in this work are random and independent. To guarantee that such
a faulty star graph remains Hamiltonian in this situation, the maximum number of faulty edges
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cannot exceed n − 3. For this reason, we can make a more general condition on the nature of faulty
edges such that every vertex still has at least two neighbours in a faulty star graph. This kind of sets
of faulty edges is called conditionally faulty. Let F ⊂ E(SGn) be conditionally faulty. Then we
believe that mutually independent Hamiltonian cycles can be constructed in SGn if |F | ≤ 3n − 10.
These results convince us that the star graph is really robust enough to interconnect computing
units in parallel and distributed systems.
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[28] D. Marušič, Hamiltonian cycles in vertex symmetric graphs of order 2p2, Discrete Math. 66 (1987), pp. 169–174.
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