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ABSTRACT

Reconfiguring the PTZ parameters of a camera network is an

combinatorial optimization problem and computing the op-

timal solution is very time consuming. Therefore, existing

methods can only provide sub-optimal solutions. In this pa-

per, a nonlinear objective function for better utilizing the cam-

eras to track multiple targets is proposed. Furthermore, it is

shown that by expanding the unknown parameters and im-

posing new constraints, the nonlinear objective function can

be converted into a linear production game (LPG) problem.

Since an LPG possesses an optimal solution which can be

evaluated with polynomial time, the proposed method is ef-

ficient and accurate. Computer simulations have been con-

ducted and the results show that the proposed method is very

promising.

Index Terms— Visual Surveillance, Camera Network,

Pan-Tilt-Zoom Camera, Linear Production Game.

1. INTRODUCTION

Intelligent video surveillance systems have been around for

decades and have been densely deployed at important places

all over the world. While it has been shown that a single cam-

era can provide useful information for event detection and

target tracking [1, 2], a surveillance system usually consists

of a camera network to reduce blind spots and to improve its

reliability [3, 4, 5, 6, 7, 8, 9]. A camera network is usually

composed of heterogeneous cameras including panoramic

cameras, fixed cameras, infrared cameras, and pan-tilt-zoom

(PTZ) cameras. Among the different types of imaging de-

vices, PTZ cameras are the most important ones for an in-

telligent surveillance system, because they can change their

field of views (FOVs) actively in response to different task

requirements. However, introducing PTZ cameras into a

surveillance system also brings in a challenging issue about

how to control and to coordinate the cameras to accomplish

a given task. Most of the surveillance tasks related to PTZ

cameras are related to three functions namely tracking multi-

ple targets, improving evidential quality, and maximizing the

surveillance coverage as explained in the following.

Target tracking involves target detection and temporal

and/or inter-view target correspondence matching. Lim et

al. [3] track the targets observed in FOVs and build a dy-

namic scene model containing the position, the velocity, and

the view-dependent visibility of each target. Their system

comprises three modules solving three main tasks. Cameras

are assigned to tasks by solving a bipartite matching problem

attempting to ensure that tasks of higher priority will be ac-

complished first. In the PTZ camera network by Ukita and

Matsuyama [4], each time when the system detects a new

target, the closest idle camera will be assigned to track the

target. This system is simple an effective provided that the

number of cameras are greater than the number of targets.

Qureshi and Terzopoulos [5] demonstrated a multi-camera

tracking system. In their system, calibrated wide-FOV cam-

eras are used to locate targets, and PTZ cameras are used to

fixate on the located targets. Their PTZ network operates

with heuristic rules developed to track targets cooperatively.

In summary, a cooperative target tracking approach can not

only efficiently utilize the camera resources but also allow

cameras to support each other to recover an otherwise failed

task.

While a solution to the target tracking problem can pro-

vide the trajectory of each target, a surveillance system usu-

ally demands more information. For example, it is frequently

required to record the face of a human target or the license

plate of a vehicle target with a sufficient resolution. These ap-

plications are related to the improvement of evidential qual-

ity [7, 8]. Additionally, PTZ cameras are frequently used to

extend the coverage of the surveillance area by pan-tilt scan-

ning. Piciarelli et al. [9] proposed an approach to reconfigure

the pan-tilt-zoom parameters of all PTZ cameras according

to a given probability map of observing an event at a spe-

cific location. Song et al. [6] applied the competitive game

theory to maximize the surveillance coverage. They adopted

a sequential optimization strategy to achieve the Nash equi-

librium [10]. With their method, a PTZ camera is randomly

selected at a time for tuning its parameters while keeping

other cameras’ parameters unchanged. When a Nash equi-

librium is achieved, the cameras may cover the entire area
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at acceptable resolution. When a human operator chose to

track a specific target at a higher resolution, the target will

be assigned to a proper PTZ camera which will be excluded

from the game. Therefore, the other cameras will adjust their

parameters trying to maintain the maximum surveillance cov-

erage. The main advantage of their method is that it can be

easily implemented and the amount of information required

to be exchanged is very low. However, it should be noted that

the Nash equilibrium is not necessarily an optimal solution.

Also, tracking of a specific target with higher resolution is

treated as an exception task which cannot be optimized using

the same game theory framework.

Reconfiguring PTZ cameras to achieve any of the above-

mentioned three goals is intrinsically a combinatorial opti-

mization problem and computing the optimal solution is very

time consuming. Therefore, existing methods can only pro-

vide suboptimal solutions. In this paper, we propose an opti-

mal and flexible solution to a PTZ network coordination prob-

lem. We show that the PTZ network problem can be formu-

lated as a linear production game (LPG) problem [11]. The

optimal solution of the PTZ network problem can be com-

puted in polynomial time. The remainder of the paper is

organized as follows. In Section 2, the PTZ network prob-

lem is formulated. Section 3 describes the proposed LPG

method. Section 4 details the experiment results. Conclu-

sions are given in Section 5.

2. PROBLEM FORMULATION

Suppose that there are n calibrated PTZ cameras deployed in

a region, each of which is controlled by a network-connected

processor. Let m denote the number of detected targets in the

surveillance region. Each detected target is represented by a

status vector denoted by gk
t =

[
bk
t ,v

k
t

]
, where bk

t and vk
t are

the 3-D bounding box and the velocity of target k estimated

at time t. The target statuses Tt =
{
gk
t

∣∣ k = 1, 2, ...,m
}

and

the static background scene model constitute a dynamic scene

model which can be used to predict the statuses of all the m
targets expressed as T̂t+1 =

{
ĝk
t+1

∣∣ k = 1, 2, ...,m
}

, at time

t + 1. The scene model is maintained by a central informa-

tion processing node which gathers the information regarding

to the detected targets and the camera parameters from each

camera node. In order to integrate the detected target infor-

mation, it is assumed that the camera network has been cali-

brated and the homography between any two of the cameras

is known. The central information processing node is also in

charge of determining the optimal camera parameters.

2.1. Parameters to be determined

Let φi denote the FOV of the i-th camera, which is controlled

by the pan-tilt-zoom parameters of the camera. We assume

that the relationship between the FOV and the pan-tilt-zoom

parameters of a camera is known. Therefore, the problem

of determining the optimal camera parameters is transformed

into the problem of selecting the optimal FOV for each cam-

era. Due to the limitation of the lens motor speed, a camera

can only change its parameters locally in a short period of

time. Therefore, given the current parameters of each camera,

a set of feasible FOVs can be constructed, which is expressed

as follows.

Φi =
{
φi
j

∣∣ j = 1, 2, ..., wi

}
, (1)

for i = 1, 2, ..., n, where wi is the number of feasible FOVs

of the i-th camera. The PTZ camera coordination problem is

formulated as the following combinatorial optimization prob-

lem.

(
φ1, ..., φn

)
= arg max

φi∈Φi,i=1,...,n
Q

(
φ1, ..., φn

)
, (2)

where Q (.) : Φ1 × · · · × Φn �−→ R is a function mapping(
φ1, ..., φn

)
to a real quality value. In the next subsection, we

will describe how to assess the quality of a set of FOVs under

different goals.

2.2. Quality function of the camera fields of view

Given the dynamic scene model, a virtual image of the pre-

dicted bounding boxes of the targets can be computed for each

camera FOV using a graphics card. The image region cor-

responding to an un-occluded bounding box is defined as a

region of interest (ROI). For a visual surveillance system, as-

sessing the quality of an FOV usually comprises the following

two steps.

1. Examining whether the FOV includes some ROIs: an

FOV contains no ROI should be evaluated to have the lowest

quality.

2. Evaluating the dimension (width and height) of each

ROI: the ROI should possess a sufficient resolution to accom-

plish the given task. Aldrige and Gilbert have suggested dif-

ferent resolution requirements for different tasks [12]. When

the resolution is lower than the suggested value, a low quality

value should be evaluated. Conversely, when the resolution is

higher than the suggested value, the quality value should be

upper bounded or be reduced to induce a camera zoom out for

monitoring a larger area.

For most of the surveillance tasks, the quality of an FOV

can be evaluated individually and the total quality function,

Q
(
φ1, ..., φn

)
, can be simplified as follows.

Q
(
φ1, ..., φn

)
= f (q1, q2, ..., qn) , (3)

where qi = Q
(
φi

)
for i = 1, ..., n, and f(·) : Rn �−→ R is a

function that maps the n individual quality values into a total

quality value. Possible choices of f(·) will be discussed later.

Furthermore, the quality function of each FOV, say φi, can

also be expressed as a function of the qualities of individual

ROIs. Since the quality of each ROIs can be evaluated inde-

pendently, it is reasonable to compute the quality of an FOV
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as follows.

Q
(
φi

)
=

m∑
k=1

Qk

(
φi

)
, (4)

where Qk

(
φi

)
� Q

(
b̂k
t+1;φ

i, T̂t+1 −
{
ĝk
t+1

})
is the non-

negative quality of observing target k with FOV φi, which is

zero when b̂k
t+1 is not observable from the FOV φi or it is

completely occluded by targets in T̂t+1 except for itself.

The simplest form of f(.) in equation (3) is a linear sum-

mation function given by

Q
(
φ1, ..., φn

)
=

n∑
i=1

Q
(
φi

)
. (5)

However, the drawback of the above equation is that an eye-

catching target may attract too many cameras causing unat-

tended targets. To overcome this drawback, the following

nonlinear quality function is adopted in this work.

Q
(
φ1, ..., φn

)
=

m∑
k=1

max
i

Qk

(
φi

)
, (6)

where only the maximum ROI quality of each target counts

toward the total quality. Thus, the quality of a solution bi-

ased on a specific target will be lower than that of a solution

apportions the cameras to monitor different targets.

3. THE PROPOSED APPROACH

In this section, we will show that the nonlinear objective func-

tion (6) can be converted to a linear function by expanding the

set of feasible solutions and imposing new constraints.

Let T i
j and

∣∣T i
j

∣∣ denote the set of targets covered the FOV

φi
j and the number of targets in T i

j , respectively. The total

number of the subsets of T i
j is 2|T i

j |. For each subset Si
j,h ⊂

T i
j , 1 ≤ h ≤ 2|T i

j |, a virtual FOV, φi
j,h can be constructed

which ignores any target not in Si
j,h, i.e., Qk

(
φi
j,h

)
= 0, for

all k /∈ Si
j,h.

By replacing φi
j with the virtual FOVs, φi

j,h, h =

1, ..., 2|T i
j |, the number of feasible FOVs to be assigned

to the i-th camera become
∑wi

j=1 2
|T i

j |. To select the optimal

FOVs, we define binary variables xi
j,h ∈ B (B � {0, 1}) to

denote the status whether the (j, h)-th virtual FOV of the i-th
camera, i.e., φi

j,h, is selected as the optimal FOV. Therefore,

the optimization problem of FOV selection can be rewritten

as follows.

max
x

n∑
i=1

wi∑
j=1

xi
j,h

m∑
k=1

Qk

(
φi
j,h

)
, (7)

subject to

wi∑
j=1

2|Ti
j |∑

h=1

xi
j,h ≤ 1, (8)

for i = 1, 2, ..., n, and

n∑
i=1

wi∑
j=1

2|Ti
j |∑

h=1

xi
j,h oijhk ≤ 1, (9)

for k = 1, 2, ...,m, where x =
[
· · ·xi

j,h · · ·
]

and the follow-

ing binary coefficient, oijhk ∈ B, indicating whether target k
is observable in the virtual FOV φi

j,h. The constraint speci-

fied in (8) ensures that each camera can only be assigned one

FOV at a time, whereas (9) guarantees that the quality value

of a target can only be evaluated with a single FOV.

Since the coefficients in the objective function (7) and in

the constraints (8) and (9) are all non-negative, the optimiza-

tion problem is equivalent to an LPG [11]. In an LPG, all

players (cameras) are coordinated to enforce a cooperative

behavior in a cooperative game. An LPG has the following

two very attracting properties.

1.The optimal solution always exists [11].

2.The optimal solution can be computed in polynomial

time [13].

In this work, the branch-and-cut algorithm [14] is adopted

to compute the optimal integer solution. The relation between

the solutions to (7) and to (6) can be reveal by changing the

summation order of (7) as follows.

m∑
k=1

⎡
⎣

n∑
i=1

wi∑
j=1

xi
j,h Qk

(
φi
j,h

)
⎤
⎦ =

m∑
k=1

q∗k, (10)

where q∗k is the quality of target k evaluated at one of the

optimal FOVs. Since an optimal solution guaranteesc that

(10) is an upper bound of (6), the LPG solution is equivalent

to the optimal solution of the nonlinear objective function (6).

4. EXPERIMENTS

In order to compare the performances of different approaches,

we implemented a simulation system which contains three

virtual PTZ cameras and many manually generated pedestri-

ans with different paths and moving speeds. Figure 1 shows

the simulation environment where the whole coverage of each

PTZ is depicted as a fan-shaped region. In addition to the

method proposed in Section 3 (nonlinear objective function

LPG, abbreviated as NOF-LPG), we have also implemented

the linear sum method (linear objective funcion LPG, abbre-

viated as LOF-LPG), which maximizes (5), and the method

proposed in [6] (abbreviated as SONG) for comparison. The

simulation system is implemented at a PC with a CPU of Intel

core 2 DUO E8400 3.00Ghz. For each time instance, it takes

about 220 ms to process the image data and to update the

scene model. If the computation load is distributed to differ-

ent nodes, the preprocessing time will be reduced to approx-

imately 75 ms. Additionally, computing the PTZ parameters
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using NOF-LPG, LOF-LPG and SONG takes 13 ms, 2.2 ms

and 0.5 ms, respectively. Therefore, the frame rate in the com-

puter simulation is set to 10. Notably, the number of targets

in each view, i.e.,
∣∣T i

j

∣∣, determines the computation load of

NOF-LPG. However, the number of targets in an FOV is usu-

ally small. In the simulation, the maximum number of targets

in an FOV is only five. Therefore, although the computation

time of the proposed NOF-LPG method is much longer than

that of either LOF-LPG or SONG.

Figure 2 shows the performance of the three methods,

where the ground truth data is computed by counting the

number of targets inside any of the three fan-shaped regions.

In this experiment, the LOF-LPG method outperformed the

SONG method because LOF-LPG utilizes a central opti-

mization method. Furthermore, the proposed NOF-LPG

method outperforms the other two methods because NOF-

LPG chooses a better objective function.

5. CONCLUSIONS

In this paper, the process of assessing the quality of a set

of FOVs is described and a nonlinear objective function for

reducing the number of unattended targets in a surveillance

region is developed. Furthermore, we have shown that the

nonlinear optimization problem can be converted into a linear

production game problem which is guaranteed to have a op-

timal solution. The branch-and-cut method has been adopted

to solve the PTZ parameters selection problem. Computer

simulations have been conducted to test the proposed method

against the other two methods and the results show that the

proposed method has achieved that highest tracking rate.
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Fig. 1. Simulation surveillance environment with three PTZ

cameras and computer generated random targets.
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Fig. 2. Tracking results of different methods.

4320


