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Abstract 

Let X be a super-Brownian motion with a general (time-space) homogeneous branching mech- 
anism. We study a relation between lifetime and compactness of range for X. Under a restricted 
condition on the branching mechanism, we show that the set X survives is the same as that 
the range of X is unbounded. (For a-branching super-Brownian motion, 1 < c~ ~< 2, similar results 
were obtained earlier by Iscoe (1988) and Dynkin (1991). ) We also give an interesting example 
in that case X dies out in finite time, but it has an unbounded range. @ 1997 Elsevier Science 
B.V. 
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O. Introduction 

A super-Brownian motion X = (X:,P~,) is a branching measure-valued Markov pro- 

cess. It can be obtained as a continuous limit of  branching Brownian particle systems. 

Among them the most well-studied is the e-branching super-Brownian motion. Here 

,~, 1 < 2 ~<2, is the branching mechanism of  X,  and it is related to the distribution of  

number of  offspring for each particle in the particle system setting. Many deep results 

have been obtained in the past decade on the sample path behavior o f  this process. In 

particular it is easy to show that, P : a . s . ,  the process X dies out in finite time (which 

means that there exists a finite random variable L,(' satisfying X t -  0 for all t ~> ~:) .  

Moreover the range of  X is, P,-a.s.,  compact. (For ~ = 2 ,  see lscoe, 1988; Dynkin, 

1991 for general ~.) 

In this paper we consider a super-Brownian motion X =(Xz,P~)  with a general 

( t ime-space)  homogeneous branching mechanism ~ as given in (1.6). Our objective in 
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this work is to establish a relation between lifetime and compactness of  range for the 
process X. In Section 1, we first recall a passage from Brownian particle systems to 
super-Brownian motions, and review a relation between a super-Brownian motion and 
the Cauchy problem for the corresponding p.d.e. In terms of  ~, we then estimate in 
Section 2 the probability that X survives. For every bounded function (function always 
means positive function) f ,  we study in Section 3 the asymptotic behavior of  ( f ,  Xt). 
(We write ( f ,  v) for the integral o f  f with respect to the measure v.) In particular, we 
obtain that the total mass process of  X converges, a.s., to either 0 or oc. In Section 
4, we show that under a restricted condition on ~9, the set that X survives is the same 
as that X has an unbounded range. Finally, we give an interesting example in which 
X has an unbounded range, even though it dies out eventually. 

1. Super-Brownian motion with a general branching mechanism 

A branching Brownian particle system Z = {Zt, t ~> 0} is a probabilistic model o f  a 
system of  particles living in the space ~a, dying and producing at their death time and 
death location random number of  offspring. We assume that 

(i) each particle has an exponentially distributed lifetime; 

(ii) at its death time and death location, a particle is replaced by a random number 
of  offspring; 
(iii) during its lifetime, the law of  the motion of  a particle is governed by the law of  
the standard Brownian motion; 
(iv) all particle lifetimes, motions, and branching are independent of  one another, and 
the particles alive at time t are indistinguishable. 
For fixed t > 0, Zt(B) is the number of  particles at time t in a set B C l~ a. Then, Zt is 
a point measure on Ed and the distribution of  Zt is determined by the three parameters 
q,k and ~p. Here, q is a random measure on Ea describing the initial distribution of  
the particle system, k the killing rate for each particle and (p a generating function 
describing the distribution of  number of  offspring. We call Z a branching Brownian 
particle system with parameters (q,k, ~p). 

Let/~ be a fixed finite measure on l~ a and write qF, for the Poisson random measure 
with the intensity /~. I f  Z = (Zt, Pq,,) is the Brownian particle system with parameters 
(q~, k, q)), then for every positive bounded function f ,  we have 

Pq, e-(f ,z ,)  = e-(U,,F,), (1.1) 

where u satisfies 

I/0' 1 u(t,x) + Hx k(o(u(t - s, ~ ) ) d s  = Hx[l - e-f(~')] .  (1.2) 

Here ut(x)= u(t,x) , qS(z)= ~ o ( 1 - z ) - l + z  and ~ = (~t, F/x) is a d-dimensional Brownian 
motion. (We write P W  for the expected value of  the random variable W with respect 
to the probability measure P . )  
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Let bl E R, b2>~O, m a measure on [1,cx~), and n a measure on (0, 1). We assume 

further that 

fx l l  um(du) < c~c 

and 

.]oI[ u2ntdu) < oct. 

Set cl =]bl ] ,  c2 =2b2  + f~ u2n(du) and c3 =m([l,~x~)). For every fi > 0, let Z/; be a 
branching Brownian particle system with parameters (q,./~,kfi, ~Pls), where 

1 
k/; =(cl + c2)~ + c3fi, 

, .313+-~--z+b~(1-: )+ ,.~+ (1 ~)2 

4-fi . (e -u(1-z)/l~- 1)m(du)+ e ,,it --~l~ _ 1-~ fi n(du . 

As fi 1 0, then Z[ ~ converges to a measure-valued diffusion X,, the super-Brownian 

motion. Moreover, for every positive bounded function f on ~'~, (1.1) and (1.2) imply 

that the function 

v / ( t , x ) =  logp~e </,x,>, (1.3) 

(we write P,- for P,~, ) satisfies the integral equation 

v ( t , x ) + I I ~  O ( v ( t - s , ~ , ) ) d s  ~-H~.f(~,),  (1.4) 

where 

SI F • 1 ( e-uz (e-" :  ~(z)  blz +b2z2 + - 1 + u z ) n ( d u ) +  - 1)m(du). (1.5t 

(For more detail, see, Dynkin, 1993.) Set a = b l  - .j'l -~ um(du), b=b2 and l (du) : :  

m(du) + n(du). Then (1.5) becomes 

f0 ~ ( z ) = a z + b z 2 +  (e " ~ -  1 + u z ) l ( d u ) ,  (1.6) 

where a ~ ~, b>~0 and f¢~ min(u, u2)l(du) < ~c. We call X a super-Brownian motion 
with parameter ~. Throughout this paper X = (X~, P,)  always denotes a super-Brownian 

motion with the parameter ~b of  the form ( l .6)  and we write 

~(~) az + 4,(z), 1.7) 

where 

4(z )  = bz 2 + (e "~ - 1 + uz)l(du).  1.8) 
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Note that it follows from (1.3) and (1.4) that 

P~ ( f  , Xt) =- e -~ tH,  f (~ t ) .  (1.9) 

Therefore, we say X is subcritical if a > 0, critical if a = 0, and supercritical if a < 0. 

Moreover, by Jensen's inequality and (1.9), we have the estimate 

vf(t,x)<~ - loge -&(f 'x ' )  = e-~tHx f (~ t ) .  (1.10) 

I f  f is a bounded measurable function on [~d, then vf satisfies the partial differential 

equation 

~u 
~ t  = A u -  ~b(u) in Ed × ( 0 , ~ ) .  (1.11) 

Moreover, if f is continuous, then v f ( t , x ) - - ~ f ( x )  as t+0 .  (In the case a~>0, see 
Dynkin, 1993 for a proof and with a little change, the proof there also works for the 

general cases.) I f  f is a constant function 2, then v f ( t , x )  is independent o f  x, and we 

will write v;~(t) instead o f  vf( t ,x) .  
I f  a>~0, set z 0 = 0 ;  otherwise, put z0--  max{z > 01~9(z)---0}. (We take z 0 = o o  if 

{z > 0 ] ~b(z) > 0} = ~ . )  Note that ~b ' (z )=a  + 2bz + Jo~ u(1 - e-~=)/(du) is strictly 

increasing in z. I f  0 < z0 < ~ ,  ~(z)  < 0 for 0 < z < z0, and ~(z) > 0 for z > z0. If  

z0 = ~ ,  then ¢(z)  < 0 and ~,(z) is decreasing in z. 

Proposition 1.1. Assume O<~zo < cx~. We have Vzo(t)=zo for  all t~>0, and i f  
O < zl < zo < 22, then 

"~l ~V,~l(t)  < Z0 < V;.2(t)~"~2, Vt > 0. 

ProoL To prove the first statement, we assume Vzo(to)< zo for some to > 0. Let 

to = sup {t ~< to, Vzo (t) ~> zo }. We have, by assumption, 0 ~< to < to. Therefore, v~ o (t) < zo 
for all to < t < to, and vz,~(to)=z0. Since, vtz~(t)= - O(v~o(t)) and O(z)~<0 for z < z0, 

Vzo(t) is increasing in (to, to). Therefore, we have Vzo(t)>~Vz~(~)=zo for all to < t < to. 
The contradiction implies that Vzo(t))zo for all t > 0. Since V~o(t)= - O(Vzo(t)) < 0, 

we have vzo(t)=zo. 
Assume that 0 < 2l < z o  < )°2. Note that (1.9) implies that P~{Xt ¢ 0 }  > 0 for all 

t and /~. On { X , ¢ 0 } ,  we have (21,Xt) < {zo,Xt) < (22,Xt). Combining with (1.3) 

gives v;.,(t) < Zo < v;~(t). Moreover, the fact that O(z)~<0 for z<<.zo and (1.4) imply 
that 2l <~v;~,(t). Similar arguments imply that v;~2(t)<~).2. [] 

2. Survival probability of X 

We first study the total mass process (1,Xt). For every c > 0, the function 

Vc(t) : - logPxe -(c'xtl, (2.1) 

satisfies the ODE 

v~c(t) + ~(Vc(t)) = 0 for all t > 0, (2.2) 
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and v c ( 0 ) = c .  (The study of  the total mass process via the ODE (2.2) goes back to 

Kawazu and Watanabe, 1991.) Clearly, for every t > 0, the function vc(t) is increasing 

in c and so the limit v ~  ( t)  = l i m c ~  v<(t) exists. If  z0 = :x~, then ~(z )  < 0 for all z, 

and thus v~(t) > 0 for all t > 0. In that case we have v ~ ( t ) =  oc,. 

P r o p o s i t i o n  2.1. Assume O<~zo < ~x~. Then v:~( t )= :x, j~r  all t > 0 ![" and only (/ ip 

satisfies the following condition 

F l = ~)(u) d u =  ~c, Vz > zo. (2.3) 

Proof.  Assume c > zo. Dividing both sides of  (2.2) by ~(v , ( t ) )  gives 

g(t) 
- - + I = O .  
4,0:.(t)) 

Integrating from 0 to t, we have 

/0 t d s + t = 0 .  (2.4) 
I~:,(2) 

q/(vc(s)) 

Put vc(s)= u and v~.(s)ds = du. Then (2.4) becomes 

f 
. It) 1 

~(u)  du + t = 0. (2.5) 

To prove the sufficiency, we assume ~ satisfies the condition (2.3) and v ~ ( t o ) <  x 

for some to > 0. By Proposition 1.1, we have v~( to)  > zo. Letting c 1" oc in (2.5) gives 

f 
.~,(t~>) 1 

. ~ ~/(u~-) du 4- to = 0, ( 2 . 6 )  

which contradicts the assumption. Therefore, v ~ ( t ) =  oc for every t > 0. 

To prove the necessity, we assume that v ~ ( t ) = o c  for all t > 0 and c e =  

f , ~  l /q/(u)du < oc for some c, > z!). It follows from (2.5) that 

f "  ' J .... , 0 < 2 c 2 =  - - d u ~ <  - - d u  for all c > z o .  (2.7) 
(2c,)= ~ ( U )  t', (2~ 2 ) 0 (td) 

Since v~0(2c2)= oc, we can pick up a constant c > z0 such that vc(2c2)>>.cl. Then we 

have, by (2.7), that 

2c2 ~< ~ du = c2. 
' I 

We get a contradiction and thus f ~  ~ du = c~ for all z > z0. [] 

P r o p o s i t i o n  2.2. I f  ~ does not satisfy condition (2.3), then v ~ ( t )  converges to zo as 

t goes to v<:. 

Proof.  Assume c > z0. Since v~(t) > zo for all t > 0, we get v [ ( t ) -  - ~(vc(t))  < O. 
Therefore, vc(t) is decreasing in t and so is v~( t ) .  Set zl = l i m t ~  v~( t ) .  Clearly, we 
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have zl >~z0. Letting c ~ cx~ in (2.5) gives 

t = - -  du, 

and thus 

I 

Since 0 does not satisfy condition (2.3), we have zl =z0.  [] 

Lemma 2.3. Let g(u) be a continuous function. Assume that g(u)>O for  all u>~zl > 0  

and there exist two constant cl > 0  and c2, c2 >~zl, such that g(u)>>- I / c lu jb r  all u>~c2. 

Then Jor every z > zl, we have 

i f  and only i f  

g( u ) + u du = cx~. 

Proof.  For u>c2, we have l>~g(u)/(g(u)+ u) and, by assumption, 

g (u )  1 1 
- >/ > 0 .  

g(u)+u 1+ ~ l +cT 

The conclusion follows from the comparison test for integral. ~3 

Definition 1. A function g : [0, c~) -+ [0, cx~) is said to satisfy the condition (L) if for 

every z > 0, 

(L) g - ~  du = ~ .  
2" 

P r o p o s i t i o n  2.4. Assume 0 <~zo < exp. The function 0 satisfies the condition (L) i f  and 
only i f  the function ~/ satisfies the condition (2.3). 

Proof.  I f  b > 0 ,  it is clear that neither ~ satisfies (2.3) nor ~b satisfies condition 

(L). Therefore, we consider the case b - - 0 .  Without loss o f  generality, we can as- 
sume lal = 1. Note that (~b(z)/z)>~c>O for z sufficiently large (see (4.5)). I f  a =  1, 

our result follows from Lemma 2.3. Assume a = -  1. The necessity is clear. To 
prove the sufficiency, we assume f~z ~1 d u =  exp. Set g(z )= ~ ( z ) =  ~(z) - z .  In this 
case (~(z)/z)>~c> 1 (see, e.g., Sheu, 1994, Lemma 4.2), g satisfies the conditions in 
Lemma 2.3. Lemma 2.3 implies that q~(z)= g ( z ) +  z satisfies condition (L). [] 

Let ~cp= sup{t>~0, X~ ~ 0} be the lifetime of  the super-Brownian motion X. We 
say X survives if ~ = ~ .  
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Theorem 2.5. Let  l* be a flnite measure on E,t and assume 0~<z0<~>c. ! / ~  sati,~lies 
condition (L),  then X survives, P~, - a.s.; otherwise, we have 

P~,[Xsurvives] = I - e . . . .  ( 1 , f , )  (2.8) 

Proof.  Note that 

p,,[xt ¢ 0 ]  = 1 - P**[xt = 0 ]  = 1 - e-vx(t)(l'l'), 

and 

Pj,[Xsurvives] = lira g,[Xr ¢ 0]. 
t---> 

Our conclusion follows from Propositions 2.1, 2.2 and 2.4. 

It is clear from a similar argument as above that if  z0 ~ ,  then X survives, Pt,-a.s. 

In that case it is easy to see that the range of  X is unbounded a.s. Therefore, from this 

point on, we consider only the case O~<z0 <~c .  The following result is of  independent 

interest. It was first obtained by Evans and O'Connel l  (1994) in the case ~b(z) = az+hz:.  

Theorem 2.6. Assume (a does not sati.sfv condition (L)  and a < 0 .  Then the super- 

Brownian motion X conditioned on extinction has the same law as super-Brownian 

motion with parameter ~(z) ,  where ~ ( z ) - - ~ ( z  +zo).  

Proof.  The proof  is the same in spirit as that of  Evans and O 'Conne l l ' s  (1994). For 

every positive bounded function f ,  we have 

g,[e "/x')lY' < ~ ]  - 1 p~[e_(/.x,/' 
8 [ S < . ~ 1  

= e:,}(l,~,)p,,e-~2/+:, .x,) 
= e (vt~-,}{/} z.,]t) 

Px, [_9,~ < oc]] 

where t:t ~,,(t)(x) = v/+z,)(t,x) satisfies the integral equation 

I/o' 1 vt+:>(t,x) + Fix ~(v j+ : , ( t  - s, ~,.))ds 

Set u ( t , x ) =  vt+:o(t,x ) zo. Then u satisfies 

= r I , . f { ~ , )  + zo. {2.9) 

I£ } u ( t , x )  + rtx (J(u(t  - s ,&) )ds  = n , ] ( ~ , ) .  

Our result follows from the uniqueness of  the solutions of  (2.10). 

(2.10) 

3. Asymptotic behavior of (f, Xt) 

We first study the asymptotic behavior of  the total mass Yr = (1,Xt) of  X. 
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Proposition 3.1. For every finite measure /~, Y~ = l i m t ~  Yt exists P~-a.s. 

Proof.  By the Markov property, we have 

P~[e -y'+' IT,]  = Px~ e -Y' ~- e -v(/)Y', (3.1) 

where v ( t ) =  vj (t). I f  a~>0, the Eq. (2.2) implies that v(t)~<1 and thus, by (3.1), e - r '  
is a submartingale. I f  0 < z 0 < e c ,  similar arguments as above show that e -z°r' is a 

martingale. Our claim now follows from the martingale convergence theorem. [] 

Theorem 3.2. For every finite measure #, we have P~[0 < Y~ < o  c] = 0 and 

P~[Y~ = 0 ] =  1 - P~[Y~ = o c ] = e  -z°(l'"). (3.2) 

Proof.  For every 2 >zo, set w;.(x) = - l o g P x e  - ;#~ . It follows from the Markov prop- 
erty that 

w;,(x) = - logPxPx, e -;'r~ = - logp~e -(w~'x'). 

Since w;~<2, w;,(x) satisfies the p.d.e. 

0w 
a t  = ~ w  - ~ ( w ) .  ( 3 . 3 )  

Since w;. is independent of  t and x, (3.3) implies that O(w; . )=0.  For every 2>z0,  we 

have, by Proposition 1.1, w;>~zo and thus, w;. =z0.  For every 2>z0,  write 

e -z°(l'~) =Pue -;'r~ -~ P~[Y~ = 0 ]  + P~ [e - ; ' r~ ,0<  Yo~ <oc] .  (3.4) 

I f  2 e > 2 1 > z 0 ,  we have e - ; " Y ~ > e  - ; J ~  on the set { 0 < Y o ~ < o c } .  Thus, we obtain 

from (3.4) that P~[0 < Y~ < o c ]  = 0. Moreover, we have 

P~[Yo~ = 0] = l im Pue ;.r~ _- e-Z0(1,~). [] 
A ~ O ~  

Theorem 3.3. For every positive bounded nonzero function f ,  ( f ,  Xt) converges 

weakly to Y~. Moreover, i f  a>~O, it converges to 0 a.s. 

Proof.  In the cases a >~ 0 the result follows easily from Theorem 3.2. We consider the 

case a < 0. For every 2 > 0, we have 

e - z ° 0 ' " )  = lim P~[e -;(y'x'),  Y~ = 0] ~ lim infP~e -; '(f 'x ')  
l ---+ OO t---r OO 

~< lim s u p  P~e -)'(f'y~) = lira sup e -  (~>~ (t),~) 
l - - r  OC t ~  

= e -  l i  . . . .  i n f ( ' ; t ( ' ) ' l ~ )  ~<e - ( l i r n ' ~  inf';/(')'i'). (3.5) 

I f  ). sup~ f ( x )  < zo, v;,f(t, x )  <~ Vzo (t, x )  = zo and therefore as t --~ oc, v~,f(t, x )  converges 
to z0. (See, e.g. Aronson and Weinberger, 1978, Corollary 3.1.) Then (3.5) implies 
that for 2 sufficiently small, we have 

lim P~e -;'(f'y') = e -z°(l'~). (3.6) 
t ~ o < 3  
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For any ). > 20 > 0, we have 

e z./I,~,) ~< lira Pt, e -:(,/'x') <~ lira Poe -;°(t'X'). (3.7) 
I --÷ :~X; l ----* Oc._ 

Our result follows by taking 2o sufficiently small in (3,7) and then by (3.6). _] 

4. Finite lifetime and compactness of range 

The range ,~ of  the super-Brownian motion X is the smallest closed set in [~a 

satisfying Src.~ for every t>~O, where St is the support of  Xt. 

Definition 2. A function ,q : [0, oc) ~ [0, oc) is said to satisfy the condition (R) if tbr 

every z > 0, 

j [ r  ' '~ '  1 (R) , du = oc. 
: ~/fo ~J(s)ds 

The following is quoted from Sheu (1994). 

Theorem 4.1. Let I~ be a finite measure. I f  0 satisfies condition (R), then P:a.s, the 
ran qe .~ is not compact; otherwise, we have 

Pi,[,~ is compact] = e -z°(l'~) . (4.1) 

In view of  Theorems 2.5 and 4.1 it is interesting to compare condition (L) with 

condition (R). 

Proposition 4.2. (A) I f  0 satisfies condition (L), then it also satisfies condition (R). 

(B) I f  0 satisfies condition (R) and f2 ul(du)<~c,  then 0 also satis[ies condition 
(L). 

Proof.  (A) Assume 0 satisfies condition (L). Since 0( t )  is increasing in t, we get 

fo O(s)ds <, tO(t). To show 0 satisfies condition (R), it suffices to verify that for every 
z > 0, we have 

: ~ ds = oc. (4.2) 

Note that 

0(s) _ ~ s ) ,  

fo X e - u s -  l + us O(s) _ bs + 
S S 

l(du). (4.3) 
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By the comparison theorem for integrals, it suffices to check that lim i n f s ~  O(s)/s = 

c > 0. This is trivial in the case b > 0. Assume b = 0. Then for any c, > 0, we have 

j0 (9(s) _ e -us --_ 1 + us l(du) ~> u - /(du) 
S S 

= u l ( d u ) -  l l ( [e ,  oc)). (4.4) 
, S 

Choosing e > 0 such that l([e, o c ) ) >  0 and letting s ~ oc gives lim i n f s ~  ¢(s) /s  > O. 

(B) Assume ¢ satisfies condition (R). Clearly, the condition (R) implies b = 0. Then, 
by l 'H6pital 's rule, 

l i r n  ¢(s) } 

Since 

lira ¢ ' ( s ) =  lim / . 2  
s --+ oo s ~ x 3  J O  

= l i ra  f°d2(u)du- l i m  - - 1  (4.5) 
s . . . .  ¢ : ( s )  ~ - - ~  2 ¢ ' ( s ) "  

f 0  c3@ 
u(l - e-"S)/(du) = u l (du)<oo ,  

the comparison theorem implies that ¢ satisfies condition (L). [] 

Theorem 4.3. (A) I f  ¢ satisfies condition (L), then 

P~[ X survives] = P~[.P2 is not compact] = 1. 

(B) I f  ¢ does not satisJjl condition (L) and J ~  ul(du) < oo, then we have 

{X survives} = { ~  is not compact}, P~ - a . s .  

Proof. (A) follows easily from Theorems 2.5, 4.1 and 4.2. To prove (B), we set 

E = {X survives}, 

F = {:~ is not compact}. 

First, we check that P~(G)= 0, where G =E\F. Suppose that P~(G)>0. Then there 
exists a ball Bn centered at 0 with radius n such that 

P~[~CB, ,L  - - 2 ]  >0.  (4.6) 

Take f = 1B~;. Then we have, by Theorem 3.3 and then by (4.6), 

e z0(l,~} = lira P~,e -/f 'x '} ~>e -z°0'~} + P~[~CBn,L = oc] > e z,,O.~}. 
t~OC 

The contradiction gives P~(G)=0.  Since P~(E)=PI , (F )=  1 - e  -z°(l'~}, an elementary 
reasoning shows that P~(G) = 0 implies that Pp(E A F )  = O. [] 

i f  ¢ satisfies condition (L) and f :  u l (du )<oc ,  then the range of X is the total space 
~d. In fact, we prove a much stronger result. We write S, for the support of Xt. 
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Theorem 4.4. I f  (p satisfies condition (L) and Jl] u / ( d u ) < ~ c ,  then jor  every t>O, we 
have, PI(-a.s., St = Nd (of. Theorem 9, in Bertoin et al., 1996). 

Proof. If  4> satisfies condition (L), then b : O. Moreover, we have 

£ ~( 
~)(z) -- az + e-" :  - 1 + uz) l (du)  

<~ a + ul(du z = c z ,  (4.7) 

where c =  a + Jo ul(du).  Note that for every bounded continuous function f ,  wc have 

Pj,[(.f, X t ) = O ] =  lira P~,e-;(/'x' = l i m e  (,.,(r).x.',, (4.8) 

where v; f ( t ,x )  satisfies the Eq. (1.11) with v2.r(t,x )--+ ) . f ( x )  as t .L 0. We consider first 

the case that a>~O, Set w2.r ( t , x )=2H~f(~ t ) ,  where ~, is a Brownian motion with the 

constant killing rate c. Then w;.j satisfies 

~w 
- - A w - c w  in [~+ x ~ d ,  

?t 

with w~t(t ,x  ) ~ 2 [  as t ,L 0. It follows from the comparison principle (see, e.g., Dynkin. 

1992) that r~l(t ,x)>~w~l(t ,x ). Clearly, w~.t(t ,x)Toc,  as 2T ~c and so is c~r(t,x ). If 
a < 0 ,  then r~/>~u~.t, where u;. r is the unique solution of  

~u 
- - - A u - ~ ( u )  in R + x ~ d ,  
& 

with u~l( t ,x)-- ,  2 f ( x )  as t ~. 0. In the previous case we obtained that u ;~-~  vc, and 

thus v~/ ~ o c  as ) . -+ re .  Therefore, it follows from (4.8) that PI,[(f, X t ) : O ] - O  
for all bounded continuous function f .  This implies that for every y ~ [R d, we havc 

P/,[St N {y} ¢ 0 ]  = 1 and thus S t -  [R'l,Pl,-a,s. 

Remark. If X is a 2-branching super-stable process (which means the underlying 

process is a symmetric stable process of  index / :IE(0,2)),  then Perkins (1990) ob- 

served that St ~ ~3 implies that St = ~d,P~,-a.s., for all t >0 .  Also see Evans and Perkins 
(1991) for much more general cases than just stable spatial motion and finite variance 

branching. 

5. Examples 

For every nonnegative integer [L set IIi (du) : 10 ~<, ~ i ( u ) u  2 i log u l/S du. We first es- 

timate .[i] u21/~(du)' For /~=0,  1,2 . . . . .  we have 

,I ~01 iu2/ /~(du)= Ilogull~du, ( l o g u = v ,  du eCdr) 

• 0 .~,c 
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Note that 

]0, l ]0 ull~(du ) = = v ~ dv = oo. 

Put @3(z)= fol(e -"z - 1 + uz)l~(du).  Then 

/o @~(z) = (e -uz - 1 + uz)u  -2 Ilog ul/~ du 

= k! uk-2[l°gull~du 
k = 2  

= e~(k-l)lvl~dv 
k! 

k = 2  oe 

~ e - S  

k! (k - 1)lJ+l ds 
k = 2  

o~ ( -  1 )~z k 
- r(l~ + 1 ) ~  k ! ~ + ,  

k=2 

( _ l ) k + l ?  
: F ( B +  1 ) z ~  ( k +  l)!k~ +~' 

k = l  

(5.1) 

where F(f l  + 1 ) = J'o ~ e-Ss  ~ ds. Applying l'H6pital's rule repeatedly fl + 1 times gives 

k = l  

(--1)k+lzk ) 1 ~ (-1)k+lzk 
( k +  1)!k~ +l / ( l °gz )~+l  =zli--na~ ( f l+  1)! ( k +  1)! 

k = l  

1 lira l ( e - Z -  1 + z )  
(p + 1)! z ~  z 

t 

(/~ + 1)! 

Therefore, (5.1) and (5.2) imply that 

@~(z)~z(logz) l~+t as z---+ oo. 

(5.2) 

(5.3) 

(We write f ( z ) ~ g ( z )  as z--+ o~ if there exist two constant, 0<c j  < c  2 <0(3, such that 
ci <_f(z) /g(z)<~c2 for z sufficiently large.) It follows from (5.3) that ~0(z) satisfies 
condition (L) and @~, fl = 1,2 . . . . .  does not satisfy condition (L). To check condition 
(R), notice that 

lim z(l°gz)(l~+l)/2-- :- lim z2(l°gz)/~+J 

= lim 2z(l°gz)l~+l + (fl + 1)z(l°gz)13 = c > 0. (5.4) 
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Therefore, ~q~(x) satisfies condition (R) if and only if z(Iogz) t[~+l)'2 satisfies condition 
(L). Thus, ~b/~(z) satisfies condition (R) if and only if [$ = 0 or 1. 

Remark. The function ~bl(Z) satisfies condition (R), but it does not satisfy condition 
(L). It follows from Theorem 2.5 and 4.1 that the super-Brownian motion with param- 
eter ~b~ does have unbounded range, even though it dies out eventually. 
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