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Abstract

Let X be a super-Brownian motion with a general (time-space) homogeneous branching mech-
anism. We study a relation between lifetime and compactness of range for X. Under a restricted
condition on the branching mechanism, we show that the set X survives is the same as that
the range of X is unbounded. (For a-branching super-Brownian motion, | < o <2, similar results
were obtained earlier by Iscoe (1988) and Dynkin (1991). ) We also give an interesting example
in that case X dies out in finite time, but it has an unbounded range. © 1997 Elsevier Science
B.V.
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0. Introduction

A super-Brownian motion X = (X,,P,) is a branching measure-valued Markov pro-
cess. It can be obtained as a continuous limit of branching Brownian particle systems.
Among them the most well-studied is the o-branching super-Brownian motion. Here
a, 1< <2, is the branching mechanism of X, and it is related to the distribution of
number of offspring for each particle in the particle system setting. Many deep results
have been obtained in the past decade on the sample path behavior of this process. In
particular it is easy to show that, P,-a.s., the process X dies out in finite time (which
means that there exists a finite random variable & satisfying X, =0 for all 1> .¥).
Moreover the range of X is, P,-a.s., compact. (For a=2, see Iscoe, 1988; Dynkin,
1991 for general a.)

In this paper we consider a super-Brownian motion X =(X,,F,) with a general
(time-space) homogeneous branching mechanism ¢ as given in (1.6). Our objective in
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this work is to establish a relation between lifetime and compactness of range for the
process X. In Section 1, we first recall a passage from Brownian particle systems to
super-Brownian motions, and review a relation between a super-Brownian motion and
the Cauchy problem for the corresponding p.d.e. In terms of ¥, we then estimate in
Section 2 the probability that X survives. For every bounded function (function always
means positive function) f, we study in Section 3 the asymptotic behavior of {f,X,).
(We write {f,v) for the integral of f with respect to the measure v.) In particular, we
obtain that the total mass process of X converges, a.s., to either 0 or oc. In Section
4, we show that under a restricted condition on ), the set that X survives is the same
as that X has an unbounded range. Finally, we give an interesting example in which
X has an unbounded range, even though it dies out eventually.

1. Super-Brownian motion with a general branching mechanism

A branching Brownian particle system Z ={Z,,t>0} is a probabilistic model of a
system of particles living in the space R, dying and producing at their death time and
death location random number of offspring. We assume that

(1) each particle has an exponentially distributed lifetime;

(i1) at its death time and death location, a particle is replaced by a random number
of offspring;

(ii1) during its lifetime, the law of the motion of a particle is governed by the law of
the standard Brownian motion;

(iv) all particle lifetimes, motions, and branching are independent of one another, and
the particles alive at time ¢ are indistinguishable.

For fixed ¢ > 0, Z,(B) is the number of particles at time ¢ in a set B C RY. Then, Z, is
a point measure on R? and the distribution of Z, is determined by the three parameters
g,k and . Here, ¢ is a random measure on RY describing the initial distribution of
the particle system, £ the killing rate for each particle and ¢ a generating function
describing the distribution of number of offspring. We call Z a branching Brownian
particle system with parameters (g, &, ).

Let u be a fixed finite measure on R? and write g, for the Poisson random measure
with the intensity u. If Z=(Z, F, ) is the Brownian particle system with parameters
(qu, k. @), then for every positive bounded function f, we have

Py e 20 =gl (1.1)
where u satisfies
t -
u(t,x) + IT; [/ kpu(t — s,E))ds| = [1 — e 76, (1.2)
0
Here u,(x)=u(t,x) , ¢(z)= @(1—z)—1+z and & = (&,, I1,) is a d-dimensional Brownian

motion. (We write PW for the expected value of the random variable W with respect
to the probability measure P.)



Y.-C. Sheul Stochastic Processes and their Applications 70 (1997) 129141 131

Let b € R, b =0, m a measure on [1,00), and n a measure on (0,1). We assume
further that

/ um(du) < oo
Ji

and
J
/ uzn(du) < oC.
Jo

Set ¢y =\by|, c2 =2b2 + fol w’n(du) and ¢z =m([1,2)). For every > 0. let ZI' be a
branching Brownian particle system with parameters (g, ks, ). where

|
kp=(ci + Cz)B + o3,

1 ¢ +c . b>
‘P/;:H{C3ﬁ+ 1/5 22+b1(1AZ)+<C1+F>(]z)2

20 -1 -
+ l:/ (e\u(1~z),"/5 — Dym(du)+ / (eu(l:) B l+%;_")) n(du):l } )
J 0

As (10, then Zf‘ converges to a measure-valued diffusion X;, the super-Brownian
motion. Moreover, for every positive bounded function f on RY, (1.1) and (1.2) imply
that the function

v (6,x) = — log Pe~ /X0, (1.3)

(we write P. for P; ) satisfies the integral equation

vt x) + Il [/0, Yot — s, ﬁ,v))dS] =1L (<)), (1.4)
where

Y(z)=bz + b2z + /; (e™% — 1 4 uz)n(du) + /lx (e — Dm(du). (1.5)
(For more detail, see, Dynkin, 1993.) Set a=b, - '/'I'X um(du), b=h> and /(du)=

m(du) + n(du). Then (1.5) becomes
W(z)=az + bz’ +/ (6™ — | + uz)I(du), (1.6)
0

where a € R, b=0 and fox min(u, 1> )I(du) < oc. We call X a super-Brownian motion
with parameter Y. Throughout this paper X = (X, P,) always denotes a super-Brownian
motion with the parameter  of the form (1.6) and we write

Y(z) =az + P(z), (1.7)

where

$(z)=bhz* + /x (e — 1+ uz){(du). (1.8)
Jo
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Note that it follows from (1.3) and (1.4) that

Fu(f. X)) =e" "I, f (&), (1.9)

Therefore, we say X is subcritical if @ > 0, critical if a =0, and supercritical if a < 0.
Moreover, by Jensen’s inequality and (1.9), we have the estimate

vr (1,%) < — loge VM) = e~ 1T, (&), (1.10)

If / is a bounded measurable function on R?, then v, satisfies the partial differential
equation

%:Au—tp(u) in R4 x (0, 00). (1.11)

Moreover, if f is continuous, then vy(f,x)— f(x) as ¢t 0. (In the case a>0, see
Dynkin, 1993 for a proof and with a little change, the proof there also works for the
general cases.) If /" is a constant function A, then vy (#,x) is independent of x, and we
will write v;(¢) instead of v, (¢, x).

If =0, set zo=0; otherwise, put zp = max{z > 0|y(z)=0}. (We take zy =00 if
{z > 0|y¥(z) > 0} =0.) Note that y/(z)=a + 2bz + fooo u(l — e *)(du) is strictly
increasing in z. If 0 <zy <00, Y(z) <0 for 0 <z < zy, and Y(z) > 0 for z > zy. If
zp =00, then Y(z) < 0 and Y(z) is decreasing in z.

Proposition 1.1. Assume 0<zp <oco. We have v,(t)=zy for all t=0, and if
0 < A <zp < Ay, then

Ao, (1) <zp <, (1)<Ay, VE>0.

Proof. To prove the first statement, we assume v, (%) <zo for some # > 0. Let
to = sup{t<ty,v,,(t)>2o}. We have, by assumption, 0< ¢, < fy. Therefore, v,,(¢) < zo
for all £y <1 < 1y, and v, (f) = zg. Since, v} ()= — Y(v,,(¢)) and Y(z)<0 for z < z,
v,,(2) is increasing in (%, #). Therefore, we have v,,(¢) > v,,(zp) =z for all 15 < ¢ < g.
The contradiction implies that v, (¢) >z for all £ > 0. Since v} (1) = — Y(v,,(¢)) <0,
we have v,,(¢) =zo.

Assume that 0 < A; <zp < 4. Note that (1.9) implies that P,{X,#0} > 0 for all
t and u. On {X,#0}, we have (i, X;) < (z0,X;) < (42,X;). Combining with (1.3)
gives v;, () < zo < v,,(t). Moreover, the fact that Y(z) <0 for z<zy and (1.4) imply
that A; <v,,(¢). Similar arguments imply that v,,(1)</A;. O

2. Survival probability of X

We first study the total mass process (1,X,). For every ¢ > 0, the function
ve(t) = — log Pe™ (&%), (2.1)
satisfies the ODE

V(t) + Y(e(£))=0 for all £ >0, (2.2)
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and v.(0)=c. (The study of the total mass process via the ODE (2.2) goes back to
Kawazu and Watanabe, 1991.) Clearly, for every ¢ > 0, the function v.(¢) is increasing
in ¢ and so the limit vy, () = lim._, . v.(f) exists. If zg =20, then Y(z) < 0 for all z,
and thus v/.(1) > 0 for all # > 0. In that case we have v..(1)=cc.

Proposition 2.1. Assume 0<zy < oc. Then v (t)=2>c for all t >0 if and only if
satisfies the following condition

S|
/: 1//_(21_) du=o00, Vz >z, (2.3)

Proof. Assume ¢ > zg. Dividing both sides of (2.2) by ¥(v.(¢)) gives

velt)

1=0.
Y(ve(1)) *

Integrating from 0 to ¢, we have

/Orw%ds—l—tzo. (2.4)
Put v.(s)=u and v/(s)ds=du. Then (2.4) becomes
e
/C l/,(u)dqut:O. (2.3)

To prove the sufficiency, we assume  satisfies the condition (2.3) and t..(5p) < x
for some # > 0. By Proposition 1.1, we have v (%) > zo. Letting ¢ T oc in (2.5) gives

U lo}
——du+1,=0, (2.6)
./x Y(u) 0

which contradicts the assumption. Therefore, v..(t)=oc for every ¢ > 0.
To prove the necessity, we assume that v, (t)=oc for all >0 and 2=
jjc 1/Y(u)du < oc for some c; > z,. It follows from (2.5) that

¢ 1 0 1
0<2c2:/ dus/ ——du  for all ¢ > z. (2.7)
v.{2¢2) l//(u) v (2¢2) l/’(”) 0

Since v (2¢3) =oc, we can pick up a constant ¢ > z such that v.(2¢2) =¢;. Then we
have, by (2.7), that

Bt |
205 < du = c».
“ / v

We get a contradiction and thus f, > ?/;(17) du=o0 for all z >z, O

Proposition 2.2. If  does not satisfy condition (2.3), then v,.(t) converges to zy as
t goes to <.

Proof. Assume ¢ > zp. Since v.(t) > zo for all 1 > 0, we get v/(t)= — Y(v.(1)) < 0.
Therefore, v.(¢) is decreasing in ¢ and s0 is v (#). Set z; = limy_ o v (¢). Clearly, we
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have z; 2zy. Letting ¢ — oo in (2.5) gives

o0 1
t= —— du,
/ux(t) Y(u)

and thus

oo:/ZIOO J/%u—)du'

Since ¥ does not satisfy condition (2.3), we have z; =z5. O

Lemma 2.3. Let g(u) be a continuous function. Assume that g(u)>0 for all u>=z; >0
and there exist two constant ¢) >0 and ¢y, ¢ Zzy, such that g(u)=1/cyu for all u=c;.
Then for every z >z, we have

|
—— du=o0c,
/Z g(u)

if and only if

<
/Z g(u)Jrudu_OO

Proof. For u>c¢,, we have 1>=g(u)/(g(u) + u) and, by assumption,

gy 11

g(u)+u—1+g(iu)/l+cl

>0.

The conclusion follows from the comparison test for integral. [J

Definition 1. A function g:[0,00) — [0,00) is said to satisfy the condition (L) if for
every z>0,

<]

Proposition 2.4. Assume 0<zg<oco. The function ¢ satisfies the condition (L) if and
only if the function y satisfies the condition (2.3).

Proof. If >0, it is clear that neither i satisfies (2.3) nor ¢ satisfies condition
(L). Therefore, we consider the case b=0. Without loss of generality, we can as-
sume |a| =1. Note that (¢(z)/z)=c>0 for z sufficiently large (see (4.5)). If a=1,
our result follows from Lemma 2.3. Assume a= — 1. The necessity is clear. To
prove the sufficiency, we assume f:c édu:oo. Set g(z)=y¥(z)=¢(z) — z. In this
case (¢(z)/z)=c>1 (see, e.g., Sheu, 1994, Lemma 4.2), g satisfies the conditions in
Lemma 2.3. Lemma 2.3 implies that ¢(z) =g(z) + z satisfies condition (L). J

Let % = sup{r=0, X, # 0} be the lifetime of the super-Brownian motion X. We
say X survives if & = oo.
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Theorem 2.5. Let p be a finite measure on RY and assume 0<zo<oc. If ¢ satisfies
condition (L), then X survives, P, — a.s.; otherwise, we have

B [Xsurvives| =1 — e a0, (2.8)
Proof. Note that

PUIX, £ 01 =1 = RLX, = 0] = 1 — e~
and

P, [Xsurvives] = 1[an P,LX, #0).
Our conclusion follows from Propositions 2.1, 2.2 and 2.4. O

It is clear from a similar argument as above that if zp = oc, then X survives, F-a.s.

In that case it is easy to see that the range of X is unbounded a.s. Therefore, from this
point on, we consider only the case 0<zy <oc. The following result is of independent
interest. It was first obtained by Evans and O’Connell (1994) in the case y(z) = az+hz’.
Theorem 2.6. Assume ¢ does not satisfy condition (L) and a<0Q. Then the super-
Brownian motion X conditioned on extinction has the same law as super-Brownian

motion with parameter l/;(z), where t/}(z): Yz +20).

Proof. The proof is the same in spirit as that of Evans and O’Connell’s (1994). For
every positive bounded function f, we have

_ g 1 iV )
Ple™ VN2 <o0] = P& <] Ple™ ) Py <o)l
[ <«

ool —(F+z0.X)
;CM ">PN€ f+z0.X)
_ e7<l,‘H:”([l*_‘.‘.[L>

where v/ (1)(x)=v;,,(t,x) satisfies the integral equation
4
U/#J»(t-x) + nx l:/ l//(v_er:u(t -9, E\))ds:‘ = nxf(it) + Zo. (29)
0
Set u(t,x) =1vy4-(t,x) — zo. Then u satisfies

u(t,x) + Il [/ lut - s, é\‘))dS:I =11 f(<). (2.10)
0

Our result follows from the uniqueness of the solutions of (2.10). [

3. Asymptotic behavior of (f, X;)

We first study the asymptotic behavior of the total mass Y, = (1, X)) of X.
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Proposition 3.1. For every finite measure y, Yoo = limy_, o ¥, exists Py-a.s.
Proof. By the Markov property, we have

Ble V| F] =Pye M =e 0L, G.1)

where v(t) =v;(¢). If a0, the Eq. (2.2) implies that v(¢)<1 and thus, by (3.1), e~ "
is a submartingale. If 0<zy<oo, similar arguments as above show that e=%% is a
martingale. Our claim now follows from the martingale convergence theorem. LI

Theorem 3.2. For every finite measure u, we have B,J0<Y,, <o0]=0 and

BlYoo =0]=1—P[Vp = oo]=e 2{H, (3.2)
Proof. For every 1>z, set w;(x) = — log P.e *'>_ It follows from the Markov prop-
erty that

wi(x)=— longP)(,e“"‘Y"" =— longe‘<W"’X'>.

Since w, <4, wy(x) satisfies the p.d.e.
15
a—’: = Aw — Y(w). (3.3)

Since w; is independent of ¢ and x, (3.3) implies that ¥(w;)=0. For every A>zp, we
have, by Proposition 1.1, w; >z and thus, w; =zp. For every 4>z, write

e7 W =p e~ = P Y, =0]+Ble”">=,0< Y,y <o0]. (3.4)

If Ay>A; >z, we have e %7~ >e %= on the set {0<Y,, <oo}. Thus, we obtain
from (3.4) that £,[0 <Y <oc]=0. Moreover, we have
B[Ys =0]= lim Be He=eow [
SO0

Theorem 3.3. For every positive bounded nonzero function f, {f, X,) converges
weakly to Yo.. Moreover, if a=0, it converges to 0 a.s.

Proof. In the cases @ =0 the result follows easily from Theorem 3.2. We consider the
case a <0. For every />0, we have

e @ = lim Pyfe™/*), Yoo =0] < liminf B/ 4
— 00 — 0

< lim SupP,le‘)‘(f’X’) = lim sup e"(”//(t)sl‘)
—oc t—00

—Timy_, o inf {"Er 1)

<o {limco inf™/ 1)

—e (3.5)

If Asup, f(x)<zo, v;r(t,x)<v,(t,x)=2p and therefore as 1 — oo, v;,(fx) converges
to zg. (See, e.g. Aronson and Weinberger, 1978, Corollary 3.1.) Then (3.5) implies
that for A sufficiently small, we have

lim Be*/X) = g=zolli), (3.6)

{—o0
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For any 4 > 4o > 0, we have
e M < lim Pe™ VU4 < lim Pem 0l (3.7)

1—oC t—ox

Our result follows by taking A sufficiently small in (3.7) and then by (3.6). J

4. Finite lifetime and compactness of range

The range # of the super-Brownian motion X is the smallest closed set in RY
satisfying S,C# for every ¢ >0, where S, is the support of X,.

Definition 2. A function ¢:[0,00)— [0,00) is said to satisfy the condition (R) if for
every z>0,

e 1
(R) [ m du = oc.

The following is quoted from Sheu (1994).

Theorem 4.1. Let p be a finite measure. If ¢ satisfies condition (R), then P-a.s, the
range R is not compact, otherwise, we have

P# is compact]=e {0 (4.1

In view of Theorems 2.5 and 4.1 it is interesting to compare condition (L) with
condition (R).

Proposition 4.2. (A) If ¢ satisfies condition (L), then it also satisfies condition (R).
(B) If ¢ satisfies condition (R) and fol ul(du) <oo, then ¢ also satisfies condition
(L)

Proof. (A) Assume ¢ satisfies condition (L). Since ¢(¢) is increasing in 1, we get

f(; ¢(s)ds <tp(2). To show ¢ satisfies condition (R), it suffices to verify that for every
z>0, we have

bt 1

Note that
¢s) _ [ls)
V3e(s) s

) ey / el T LUy, (4.3)
S 0 S
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By the comparison theorem for integrals, it suffices to check that liminf, .. @(s)/s =
¢>0. This is trivial in the case b>0. Assume b =0. Then for any £>0, we have

d(s) [T e™ —1+tus o0 1

= /OO ul(du) — %1([8,00)). (4.4)

Choosing £>0 such that /([e,00))>0 and letting s — oc gives liminf,_ . ¢(s)/s>0.
(B) Assume ¢ satisfies condition (R). Clearly, the condition (R) implies b= 0. Then,
by P'Hépital’s rule,

2
S d $
RO I O LU (4.5)

e ) Tk ) e 2(s)

Since
x> o0
lim ¢'(s)= lim / u(l — e *)(du)= / ul(du) < oo,
S0 S§—C 0 0
the comparison theorem implies that ¢ satisfies condition (L). [0

Theorem 4.3. (A) If ¢ satisfies condition (L), then
B[ X survives] = B[ is not compact] = 1.
(B) If ¢ does not satisfy condition (L} and fox ul(du) < oo, then we have
{X survives} ={# is not compact}, B, — as.
Proof. (A) follows easily from Theorems 2.5, 4.1 and 4.2. To prove (B), we set
E ={X survives},
F ={# is not compact}.

First, we check that £,(G)=0, where G=E\F. Suppose that F,(G)>0. Then there
exists a ball B, centered at 0 with radius » such that

B[ACB,,L=00]>0. (4.6)
Take f = 1p. Then we have, by Theorem 3.3 and then by (4.6),

e lbm — zli{gc pﬂe“(f’XJ e ol 4 PRCB,,L=cc] > el

The contradiction gives B,(G)=0. Since F(E)=F(F)=1— e~#(L#) an elementary
reasoning shows that F,(G)=0 implies that (£ A F)=0. [

If ¢ satisfies condition (L) and fol ul(du) < oc, then the range of X is the total space
R?. In fact, we prove a much stronger result. We write S, for the support of X;.
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Theorem 4.4. If ¢ satisfies condition (L) and j;)] ul(du)y<oc, then for everv t >0, we
have, Pia.s.. S; =R (cf. Theorem 9. in Bertoin et al., 1996).

Proof. If ¢ satisfies condition (L), then b= 0. Moreover, we have

Y(z) = az + / (e™ — 1 + uz)l(du)
Jo

< <a+ / ul(du))z*cz, (4.7)
Jo

where ¢ =a+ ] ul(du). Note that for every bounded continuous function 7, we have

PIf.X)=0]= lim Be "/ = lim e ("% (4.8)

7= 0C

where v; /(1. x) satisfies the Eq. (1.11) with v; (¢, \)—>/f(x) as t | 0. We consider first
the case that 0. Set w; ,(f,x)=All, f(g,) where ¢, is a Brownian motion with the
constant killing rate ¢. Then w; , satisfies

% =Aw—cw in R* x RY,

(!
with w; ,(£,x) — Af as t | 0. It follows from the comparison principle (see. e.g., Dynkin,
1992) that v;(t,x)=w; (t,x). Clearly, w; (t,x)Toc, as 77 >0 and so is v, (t.x). If
a<0, then v;,>u;,, where u;, is the unique solution of

% — Au— ¢p(u) in BT x R,

with u; (t,x)— Af(x) as t| 0. In the previous case we obtained that u;, — >c, and
thus v;, — oo as A—o0. Therefore, it follows from (4.8) that A,[{f,X;)=0]=0
for all bounded continuous function f. This implies that for every y € R?, we have
PIS N {y}#01=1 and thus S, =R¢, Pi-as. [

Remark. If X is a 2-branching super-stable process (which means the underlying
process is a symmetric stable process of index f€(0,2)), then Perkins (1990) ob-
served that S, # ) implies that S, = R",R,—a.s., for all 1>0. Also see Evans and Perkins
(1991) for much more general cases than just stable spatial motion and finite variance
branching.

5. Examples

For every nonnegative integer f, set [g(du) = lo<,<)(u)u” llog ul/’ du. We first es-
timate [01 1 ly(du). For f=0,1,2,..., we have

Y I
/ W lp(du) = / logul|f du, (logu=rv, du=-e'dr)
Jo Jo

(O " OC
= / efu)f dv = / e wldw <.
2 40
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Note that

1 1 1 00
/ ul/;(du):/ —llogulﬁdu:/ ¥ dv=o0
0 o U 0

Put Y4(z)= [, (e™ — 1 + uz)ls(du). Then

1
z///;(z):/ (€™ — 1 4+ uz)u?|log uj/‘ du
0

20
1Yk !
=1 /uk_zllogulﬁdu
0
k0
(—1)2/ &= 1p1P dp
—oC

(— 1)k /°° A
o G

H

o0 —l)k k
ZZ Kk — 1)+

=r+ )ZZ(kJrl)!kﬁ*" -1
k=1

where I'(f+1)= fooo e~*s¥ ds. Applying ’Hépital’s rule repeatedly f+ 1 times gives

) ( 1)k+1 k Bl B 1 ( 1)k+l k
Jim, <§W/U°gz)+ = Hm, (ﬁ+1)’z (k+ D

1 1
. lim (e -1
Griam ze +2)

1
RCE

(5.2)

Therefore, (5.1) and (5.2) imply that
Yp(z) ~z(logz) ™ as z— oo, (5.3)

(We write f(z)~g(z) as z — oo if there exist two constant, 0 <c¢| <c¢y <00, such that
c1 < f(z)/g(z)<cy for z sufficiently large.) It follows from (5.3) that yp(z) satisfies
condition (L) and ¥y, f=1,2,..., does not satisty condition (L). To check condition
(R), notice that

2
lim Z(logz)(ﬁ“)"z  lim Z(Ing)/H—l

= lim —=2"21
" Jo ws(s)ds ] 77 Jo (s)ds

2z(log z)P*! + (B + 1)z(logz)#
= lIim
2—00 1}[/,;(2)

=¢>0. (5.4)
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Therefore, yj3(x) satisfies condition (R) if and only if z(logz)#*!? satisfies condition
(L). Thus, yu(z) satisfies condition (R) if and only if f=0 or 1.

Remark. The function ¥y(z) satisfies condition (R), but it does not satisfy condition
(L). It follows from Theorem 2.5 and 4.1 that the super-Brownian motion with param-
eter Yn does have unbounded range, cven though it dies out eventually.
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