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We study the pumping effects, in both the adiabatic and nonadiabatic regimes, of a pair offinite finger-gate
array(FGA) on a narrow channel. Connection between the pumping characteristics and associated mechanisms
is established. The pumping potential is generated by ac biasing the FGA pair. For a single pair(N=1) of finger
gates(FG’s), the pumping mechanism is due to the coherent inelastic scattering of the traversing electron to its
subband threshold. For a pair of FGA with pair numberN.2, the dominant pumping mechanism becomes that
of the time-dependent Bragg reflection. The contribution of the time-dependent Bragg reflection to the pump-
ing is enabled by breaking the symmetry in the electron transmission when the pumping potential is of a
predominant propagating type. This propagating wave condition can be achieved both by an appropriate choice
of the FGA pair configuration and by the monitoring of a phase differencef between the ac biases in the FGA
pair. The robustness of such a pumping mechanism is demonstrated by considering a FGA pair with only pair
numberN=4.
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I. INTRODUCTION

Quantum charge pumping(QCP) has become an active
field in recent years.1–21 This is concerned with the genera-
tion of net transport of charges across an unbiased mesos-
copic structure by cyclic deformation of two structure param-
eters. Original proposal of QCP, in the adiabatic regime, was
due to Thouless1,2 and Niu.2 They considered the current
generated by a slowly varying traveling wave in an isolated
one-dimensional system. The number of electrons trans-
ported per period was found to be quantized if the Fermi
energy lies in a gap of the spectrum of the instantaneous
Hamiltonian. Aiming at this quantized pumped charge nature
of the adiabatic pumping, Niu proposed various one-
dimensional periodic potentials for the adiabatic quantum
pumping (AQP),2 and pointed out the importance of the
quantized charge pumping in utilizing it for a direct-current
standard.2

Another way to achieve the AQP was suggested by Hek-
king and Nazarov,3 who studied the role of inelastic scatter-
ing in the quantum pumping of a double-oscillating barrier in
a one-dimensional system. Intended to stay in the adiabatic
regime, they invoked a semiclassical approximation and had
assumed that the Fermi energy«F@"V, where V is the
pumping frequency. This semiclassical treatment of the in-
elastic scattering is known to be inappropriate for the regime
when either the initial or the final states are in the vicinity of
the energy band edge. Such a regime, however, is our major
focus in this work. It is because the coherent inelastic scat-
tering becomes resonant when the traversing electron can
make transitions to its subband threshold by emitting
m"V.22,23 Depending on the system configuration, this and
another resonant inelastic scatterings will be shown to domi-
nate the pumping characteristics.10

A recent experimental confirmation of AQP has been re-
ported by Switkeset al.4 Two metal gates that defined the
shape of an open quantum dot were ac biased24 with voltages

of the same frequency but differed by a tunable phase
difference.5 DC response across the source and drain elec-
trodes is the signature of the AQP. This has prompted further
intensive studies on AQP in quantum dots,6–8 double-barrier
quantum wells,9 pumped voltage,12 noiseless AQP,13 heat
current,14 incoherent processes,15,16 quantum rings,19,20 and
interacting wires.21

An alternate experimental effort in generating AQP in-
volves surface acoustic wave(SAW).25–29 Generated by an
interdigitated SAW transducer located deep on an end-region
of a narrow channel, the SAW propagates to the other end-
region of the narrow channel while inducing a wave of elec-
trostatic potential inside the channel. Electrons trapped in the
potential minima are thus transported along the narrow chan-
nel. Both Mott-Hubbard electron-electron repulsion in each
such trap and the adiabaticity in the transport are needed to
give rise to quantization in the pumped current.26 As such,
the channel has to be operated in the pinch-off regime.27

In this work, we propose to study yet another experimen-
tal configuration for QCP in a narrow channel. The proposed
configuration consists of a pair offinite finger-gate array
(FGA), with the numberN of FG’s in each FGA being kept
to a small number. In contrast to the SAW configuration, the
FGA pair sits on top of the narrow channel, rather than lo-
cating at a distance far away from it and the most significant
QCP occurs in regimes other than the pinch-off regime. The
FG’s orient transversely and line up longitudinally with re-
spect to the narrow constriction. As is shown in Fig. 1,
pumping potential can be generated by ac biasing the FGA
pairs with the same frequency but maintaining a phase dif-
ferencef between them. Since the wave of electrostatic po-
tential induced in the narrow channel is directly from the
FG’s, rather than via the SAW, our proposed structure has the
obvious advantage that the working frequency is not re-
stricted to the frequency of the SAW,vS=2pvS/d. HerevS is
the phase velocity of the SAW, andd is the pitch in the FGA.
Furthermore, when the working frequency is different from
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vS, the contribution from SAW to the pumped current will be
negligible.

Below we shall show how the ac biased FGA pair plays a
subtle role in the generation of QCP. In Sec. II, we present
our theoretical model for the FGA pair calculation of the
pumped current generated by the FGA pair configuration. In
Sec. III, we present the pumping characteristics and demon-
strate that resonant coherent inelastic scatterings are the un-
derlying pumping mechanisms. Finally, in Sec. IV, we
present our discussion and summary.

II. FGA PAIR MODEL

The potentialVsx,td in a narrow constriction induced by a
FGA pair is represented by

Vsx,td = o
i=1

N

V1isxdcossVtd + V2isxdcossVt + fd, s1d

whereN is the number of FG’s per FGA. We assume that the
ac biased FGA pair are localized, respectively, at positionsxi
and xi +dxi, namely, that V1isxd=V1dsx−xid and V2isxd
=V2dsx−xi −dxd with a relative phase differencef. These
FG’s are evenly spaced, with a pitchd, and are located at
xi =si −1dd for one FGA andxi +dx for the other. The relative
shift between the FGA pair isdx=a d, where the fractional
shift 0,a,1. In the following, we consider the case of the
same modulation amplitudeV1=V2=V0. Depending on the
choice of the values forf anda, Vsx,td will either be pre-
dominantly of a propagating or a standing wave type. A sen-
sible choice can be made from considering the lowest order
Fourier component ofVsx,td, given by

V1 =
2V0

d
hcosKx cosVt + cosfKsx − dxdgcossVt + fdj,

s2d

whereK=2p /d. For our purposes in this work, an optimal
choice isf=p /2 anda=1/4, in which Vsx,td is a predomi-
nant left-going wave.

The Hamiltonian of the system isH=Hy+Hxstd, in which
Hy=−]2/]y2+vy

2y2 contains a transverse confinement, lead-

ing to subband energies«n=s2n+1dvy. The time-dependent
part of the HamiltonianHxstd is of the dimensionless form
Hxstd=−]2/]x2+Vsx,td. Here appropriate units have been
used such that all physical quantities presented are in dimen-
sionless form.24

In the QCP regime, the chemical potentialm is the same
in all reservoirs. Thus the pumped current, at zero tempera-
ture, can be expressed as10

I = −
2e

h
E

0

m

dE fT→sEd − T←sEdg. s3d

Here the total current transmission coefficients include the
contributions by electrons with incident energyE in incident
subbandn, which may absorb or emitmV to energyEm=E
+mV by the FG pumping potentials, given by

T→s←dsEd = o
n=0

NS−1

o
m=−`

`

Tn→s←dsEm,Ed, s4d

whereNS stands for the number of occupied subbands. The
summations are over all the propagating components of the
transmitted electrons, and includes both the subband indexn
and the sideband indexm. The subscripted arrow in the total
current transmission coefficient indicates the incident direc-
tion. These coefficients are calculated numerically by a time-
dependent scattering-matrix method.10,30,31

III. NUMERICAL RESULTS

In this section we present the numerical results for the
pumping characteristics of either a single FG pairsN=1d or a
finite FGA pairsN.2d. In these two cases the pumping char-
acteristics are due to different resonant inelastic scattering
processes. For definiteness, the parameter values in our nu-
merical results are taken from the FaAs-AlxGa1−xAs based
heterostructure. The values that we choose for our configu-
ration parameters arevy=0.007, subband level spacingD«
=2vys.0.13 meVd, d=40 s.0.32mmd, and V0=0.04
s.28.7 meV Åd. From the value ofV0, and the assumed
FG width ,0.05mm, the amplitude of the potential in-
duced by a FG is,0.057 mV.

A. Single FG pair case

In this subsection we investigate the pumping character-
istics for the case of a single FG pair. Figure 2 presents the
dependence of the total current transmission coefficients on
the incident electron energym. We replace the chemical po-
tential m by

Xm =
m

D«
+

1

2
, s5d

which integral value corresponds to the number of propagat-
ing subbandsNS in the narrow channel. The pumping fre-
quency is higher in Fig. 2(a), with V=0.6D«sV /2p
.18 GHzd, than that in Fig. 2(b), whereV=0.1D«sV /2p
.3 GHzd. We select the phase shiftf=p /2 anda=1/4.

FIG. 1. (Color online) Top view of the proposed system struc-
ture for the case of pair numberN=4. A FGA pair is located on top

of a narrow channel.Ṽi denotes the amplitude of the potential en-
ergy, andf is the phase difference.
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At integral values ofXm, the total current transmission
coefficientsT→ s←dsXmd exhibit abrupt changes. This is due
to the changes in the number of propagating subbands in the
narrow channel. Between integralXm values,T→ s←d both
show dip structures. The dip structures are located atXdip

=NS+0.6 in Fig. 2(a), and atXdip=NS+0.1 in Fig. 2(b).
These dip structure locations are the same for bothT→ and
T←, and are resonant structures associated with inelastic scat-
tering that causes an electron to jump into a quasibound state
(QBS) just beneath a subband bottom.22 The peak structures
in T← of Fig. 2(b), and atXm=NS+0.2, are 2V resonant
structures.

In Fig. 2, we can see thatT←sXmd does not equal to
T→sXmd, this allows the occurrence of the pumped current.
Moreover, between integralXm values,T←.T→ on the left
region of a dip structure, whileT←,T→ on the right region
of the dip structure. This has an important bearing on the
dependence of the pumped current onm, as is shown in Fig.
3. The pumped current rises, and drops, on the left, and right,
region of aXdip, respectively, in accordance with the relative
changes inT→ andT← about the sameXdip. Hence the peaks
of the pumped current depend on the pumping frequency, at

Xm
speakd = NS +

V

D«
, s6d

reassuring us that the pumping is dominated by the afore-
mentioned resonant inelastic process.

Besides the trend that the pumped current in Fig. 3 drops
with the pumping frequency, we would like to remark on a
more interesting result: that both the adiabatic and nonadia-
batic behaviors can be found in the same curve. Since the
adiabatic condition is given bym@V, the curve for V
=0.1D« in the regionsNs+V /D«,XmøNs+1 corresponds
to the adiabatic regimes, while the otherXm regions are nona-
diabatic regimes. This is checked also with our other calcu-
lation, which is not shown here, using the Brouwer
expression.5 For the higher pumping frequency,V=0.6D«,
the adiabatic condition is not satisfied in the entireXm region,
even though the pumping characteristics resemble that of the
adiabatic one in the regionsNs+V /D«,XmøNs+1.

B. Finite FGA case

In this subsection we present the numerical results for the
pumping characteristics of afinite FGA pair. QCP for two
prominent modes of tuning the system are considered. These
are (i) tuning of the electron density by theback-gatetech-
nique, and(ii ) tuning of the channel width bysplit-gatetech-
nique.

1. Tuning back-gate

We present the numerical results for the pumping charac-
teristics of a FGA pair withN=4 that is realized by the
back-gate technique. The dependence of the total current
transmission coefficients onXm is shown in Fig. 4, in which
the pumping frequencies are(a) V=0.6D« and (b) V
=0.1D«. The choice of the parametersd, f, and a is the
same as in the previous subsection, but the latter two param-
eters give rise here to an equivalent left-going wave in the
pumping potentialVsx,td.

The curves in Fig. 4 show additional structures, other than
the dip structures that has been discussed in the last subsec-
tion. These additional structures are valley structures that
occur at differentXm values forT→sXmd andT←. In a region

FIG. 2. Total current transmission coefficient versusXm for a
pair of FG; (a) V=0.6D« and (b) V=0.1D«. The transmission of
the right-going(left-going) electrons are represented by the solid
(dotted) curve. The subband level spacing isD«. Parametersa
=1/4 andf=p /2 are chosen to meet the optimal condition.

FIG. 3. The pumped currents versusXm with the same param-
eters used in Fig. 2. The solid and dashed curves correspond, re-
spectively, toV=0.6D« andV=0.1D«.
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between two integral values ofXm, the valley structure of
T→sXmd occurs at a lowerXm. This shows clearly the break-
ing of the transmission symmetry by the pumping potential.
Furthermore, the valleys are separated byDXm=V /D«. This
can be understood from resonant coupling conditions«k
=«k−K−V and «k+K=«k−V for, respectively, the right-going
and the left-goingk. From these conditions, the valley loca-
tions are at

k±
2 = FK

2
S1 7

V

K2DG2

, s7d

where the upper sign is for positive, or right-going,k. These
locations, expressed in terms ofXm, are given by

Xm = NS +
k±

2

D«
, s8d

and are atXm51.19, 1.79, 2.19, 2.79, 3.19, and 3.79 for the
case of Fig. 4(a), andXm51.39, 1.49, 2.39, 2.49, 3.39, and
3.49 for the case of Fig. 4(b). The matching between these
numbers and our numerical results in Fig. 4 is remarkable. In
addition, energy gaps open up at thesek±

2 locations, causing
the drop in the transmission and the formation of the valley
structures.10 All these results reassure us that the time-

dependent Bragg’s reflection is the dominant resonant inelas-
tic scattering in our FGA pair structure.

On the other hand, the adiabatic condition is here given
by «gap@V, where «gap is the effectiveenergy gap of the
instantaneousHamiltonian.2 Since «gap is given by the
widths of the valley structures, therefore contributions of the
valleys to the pumped current is nonadiabatic in Fig. 4(a),
because the valleys are well separated, and adiabatic in Fig.
4(b), because the valleys overlap.

In Fig. 5, we present theXm dependence of the pumped
current for the cases in Fig. 4. The pumped current peaks at
Xm that lies in the middle between a valley inT→sXmd and the
corresponding valley inT←sXmd. The locations are around

Xm = NS +
K2

4D«
S1 +

V2

K4D , s9d

which depend on both the pitchd and the pumping frequency
V. The peaks have flat tops for the solid curve, whenV
=0.6D«. Comparing with the total current transmission
curves in Fig. 4(a), we see that the flat-topped peak profile is
associated with the complete separation between the valleys
in T→ and T←. This is in the nonadiabatic regime. In con-
trast, for the case when the valleys overlap, such as in Fig.
4(b), the pumped current peaks no longer carry a flat-top
profile, as is shown by the dashed curve in Fig. 5. This is in
the adiabatic regime. Meanwhile, their peak values are low-
ered. It is because cancellation sets in when the valleys over-
lap. We note that the pumped currents are of order nA.

The robustness of the time-dependent Bragg reflection, on
the other hand, is demonstrated most convincingly by the
number of charge pumped per cycle at the maximumIMax of
the pumped current. In the dashed curve of Fig. 5, the
pumped charge per cycle per spin stateQP
=s2p /VdIMax/2e=0.495, where IMax=0.48 nA and V
=0.1D«=3.03 GHz. To get a unity, or quantized, charge
pumped per cycle per spin state, one can fix the pumping
frequencyV=0.1D«, N=4, f=p /2, andd=40, then tune the

FIG. 4. Total current transmission coefficient versusXm for N
=4; (a) V=0.6D« and(b) V=0.1D«. The transmission of the right-
going (left-going) electrons are represented by the solid(dotted)
curve. The parametersa=1/4 andf=p /2.

FIG. 5. Pumped current versusXm. The choices of parameters
are the same as in Fig. 4. The solid and dashed curves correspond,
respectively, toV=0.6D« andV=0.1D«.
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other pumping parametersV0=0.09 anda=0.15 to obtain
QP=0.992 atXm=3.465(not shown here). In this frequency
regime, the pumping would be expected to be adiabatic, ac-
cording to Thouless1 and Niu2 when «gap@V. However, in
our case here, the energy gap is at best only partially opened,
as we can see from the nonzero transmission in Fig. 4(b),
because we have onlyN=4 FG pairs. Thus our result shows
that the condition of occurrence of the AQP is less stringent
than we would have expected originally.2 In other words, the
pumping effect of our FGA configuration is robust.

It is also worth pointing out that the pumped currents are
positive in Fig. 5, showing that the net number flux of the
pumped electrons is from right to left. This is consistent with
the propagation direction of the electrostatic wave in
Vsx,td.10

2. Tuning split-gate

Thus far, we have explored the dependence of the FGA
pair’s QCP characteristics onXm by the use of theback-gate
technique. Another way of tuning the QCP characteristics is
via the modulation of the channel width(or subband level
spacingD«). This can be realized experimentally by the use
of the so-calledsplit-gate technique. Hence we present, in
Fig. 6, the transverse confinement dependence of both the
total current transmission coefficients and the pumped cur-

rent. The transverse confinement is depicted by

Xg =
m

D«
+

1

2
, s10d

which is linearly related to the effective channel width, and
that its integral value corresponds to the number of propa-
gating subbands in the channel. In this mode of tuning the
QCP characteristics,m is kept fixed.

In Fig. 6(a), except form, which is fixed at 0.049, andvy,
which varies withXg, other parameters such asV=0.0084,
f=p /2, anda=1/4 are thesame as in Fig. 4(a). The solid
(dashed) curve is forT→ (T←). Both the QBS and the time-
dependent Bragg reflection features are found. The expected
locations of the QBS, given by the expression

Xg =
1

2
+ Sn +

1

2
D m

m − V
, s11d

are at 1.1, 2.3, and 3.5, and they match the QBS locations in
Fig. 6(a) perfectly. Heren is the subband index. The ex-
pected locations of the valleys, associated with the time-
dependent Bragg reflection, are given by the expression

Xg =
1

2
+ Sn +

1

2
D m

m − k±
2 , s12d

thus they should be atXg51.03,2.1,3.14 forT→sXgd, and at
Xg51.15,2.4,3.73 forT←sXgd. Again, they match the valley
locations in Fig. 6(a) remarkably.

Besides, there are in Fig. 6(a) two additional valley struc-
tures, indicated by arrows, at whichT→sXgd andT←sXgd fall
one on top of the other. These structures do not contribute to
the pumped current, and they are due to the time-dependent
Bragg reflection from the second order Fourier component of
Vsx,td. The second Fourier component ofVsx,td is in the
form of a standing wave, given by coss2KxdfcosVt
+sin Vtg. That both of the additional valleys all appear in
T→sXgd and T←sXgd can be understood from the fact that
more resonant coupling conditions come into play for the
case of standing wave. The resonant coupling conditions are
«k=«k±2K±V, and «k=«k±2K7V. As such, the valley loca-
tions are given by the expression

Xg =
1

2
F1 +

m

m − e±
G s13d

for n=0, and fore±=fKs17V / s2Kd2dg2. Accordingly, these
2K time-dependent Bragg reflection valley locations are ex-
pected to be at 1.36 and 1.73, which coincide with the two
additional valleys in Fig. 6(a), and are indicated by arrows.
We note, in passing, that contributions from higher Fourier
components diminish, as is seen by comparing the valleys
from the first and the second Fourier components ofVsx,td.

The Xg dependence of the pumped current for the case in
Fig. 6(a) is represented by the solid curve in Fig. 6(b). The
peaks have flat tops because the valleys in the corresponding
T→sXgd, T←sXgd are well separated. The pumped current for
V=0.0014, the same frequency as in the case of Fig. 4(b), is
depicted by the dotted curve in Fig. 6(b). The peaks are not
flat-topped and the magnitudes are much smaller because the

FIG. 6. The dependence on subband level spacingD« of (a) the
total current transmission coefficient, and(b) the pumped current.
The abscissa is depicted by Eq.(10) where m=0.049 andN=4.
Pumping frequencyV=0.0084 in all curves except for the dotted
curve in(b), whereV=0.0014. Parametersf=p /2 anda=1/4 for
all curves except for the dashed curve in(b), wherea=1/5. In (a),
the solid(dashed) curve is forT→sXgdfT←sXgdg, and contributions
from the second Fourier component ofVsx,td are indicated by
arrows.
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transmission valleys overlap. For comparison, we also
present the case when parameter values differ slightly from
that of the optimal choice. As is shown by the dashed curve
in Fig. 6(b), where all parameters are the same as for the
solid curve except thata is changed from 1/4 to 1/5, the
basic pumped current peaks in the solid curve remain intact.
This demonstrates the robustness of the QCP against the de-
viation in values of the configuration parameters from the
optimal choice.

Interestingly, there are two additional features in the
dashed curve of Fig. 6(b): namely, an additional pumped
current peak atXg=1.5, and an increase in the peak value for
the pumped current nearXg=3.5. That both of these features
are found to arise from the second Fourier component of
Vsx,td is supported by the outcome of our analysis per-
formed upon the Fourier component ofVsx,td. This method
of analysis has thus far been successful in providing us in-
sights on the pumping characteristics presented in this work.
Them-th Fourier component ofVsx,td, apart from a constant
factor, is given by the form

Vm = hfcossmpad − sinsmpadgcosfmKx8 − Vt − p/4g

+ fcossmpad + sinsmpadgcosfmKx8 + Vt + p/4gj,

s14d

wherex8=x−dx/2. Vm consists, in general, of waves propa-
gating in both left and right directions. But whena=1/4, as
we have discussed before,V1 becomes a pure left-going
wave andV2 becomes a pure standing wave. The case ofa
=1/5, however, have bothV1 andV2 consisting of waves in
opposite propagation directions. Therefore, in contrast with
the a=1/4 result, additional contributions from the 2K
Bragg reflection are expected for the casea=1/5. This ad-
ditional contribution should peak at the mid-point between
two transmission valleys for the 2K Bragg reflections, and
the expression forXg is given by

Xg =
1

2
+ Sn +

1

2
D m

m − eM
, s15d

whereeM =K2+sV /2Kd2. For the case of the dashed curve in
Fig. 6(b), the values ofXg 5 1.54 and 3.6 are shown to
match the locations of the additional features nicely. Finally,
we can extract information of the sensitivity of the pumped
current characteristics toa by looking at the coefficients of
the left-going and right-going waves inVm. For a=1/5, the
coefficients ofV1 for, respectively, the right-going and the

left-going waves are 0.22 and 1.4. This shows thatV1 is still
dominated by the left-going wave and thus explains the tiny
modifications to the pumped current peaks atXg=1.1, and
2.3. But for V2, the coefficients for, respectively, the right-
going and the left-going waves are −0.95 and 1.57. This
shows thatV2 deviates quite significantly from that of a
standing wave, and so explains that the additional peaks
from the 2K Bragg reflections are quite large.

IV. DISCUSSION AND SUMMARY

It is interesting to note in passing that our proposal of the
FGA pair configuration is different, in three aspects, from the
voltage lead pattern proposed earlier by Niu.2 First of all, the
pumping mechanisms to which the configurations are cater-
ing to are different. It is the mechanism of translating the
Wannier functions in a given Bloch band in Ref. 2, while it is
the mechanism of the time-dependent Bragg reflection in this
work. The former mechanism is adiabatic by nature but the
latter mechanism is shown, in this work, to hold in both the
adiabatic and non-adiabatic regimes.

Second, the configurations are different in the number of
sets of voltage leads invoked. A third set of voltage leads was
instituted by Niu to fix the Fermi energy at the middle of the
instantaneous energy gapin order to maintain the adiabatic-
ity of the pumping. Since our interest here is on the general
pumping characteristics, including, in particular, their depen-
dence on the Fermi energy, it suffices us to consider a sim-
pler configuration—the FGA pair configuration. Third, the
number of voltage lead expected, and needed, in a voltage
lead set is different. Our results demonstrate the resonant
nature of the time-dependent Bragg reflection, and that the
pumping characteristic is robust—requiring only a FGA pair
with smallN. Hence the FGA pair configuration proposed in
this work should be more accessible experimentally.

In conclusion, we have proposed a finger-gate array pair
configuration for the generation of quantum charge pumping.
Detail pumping characteristics have been analyzed, the ro-
bustness of the time-dependent Bragg reflection in QCP has
been demonstrated, and the pumping mechanism is under-
stood.
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