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Abstract—Type-2 fuzzy logic system (FLS) cascaded with neural
network, type-2 fuzzy neural network (T2FNN), is presented in
this paper to handle uncertainty with dynamical optimal learning.
A T2FNN consists of a type-2 fuzzy linguistic process as the an-
tecedent part, and the two-layer interval neural network as the
consequent part. A general T2FNN is computational-intensive due
to the complexity of type 2 to type 1 reduction. Therefore, the in-
terval T2FNN is adopted in this paper to simplify the computa-
tional process. The dynamical optimal training algorithm for the
two-layer consequent part of interval T2FNN is first developed.
The stable and optimal left and right learning rates for the interval
neural network, in the sense of maximum error reduction, can be
derived for each iteration in the training process (back propaga-
tion). It can also be shown both learning rates cannot be both nega-
tive. Further, due to variation of the initial MF parameters, i.e., the
spread level of uncertain means or deviations of interval Gaussian
MFs, the performance of back propagation training process may
be affected. To achieve better total performance, a genetic algo-
rithm (GA) is designed to search optimal spread rate for uncer-
tain means and optimal learning for the antecedent part. Several
examples are fully illustrated. Excellent results are obtained for
the truck backing-up control and the identification of nonlinear
system, which yield more improved performance than those using
type-1 FNN.

Index Terms—Back propagation, dynamic optimal learning rate,
genetic algorithm, interval type-2 FNN.

1. INTRODUCTION

URING the past decade, intelligent methodologies have

been found to possess the best potential to solve many en-
gineer problems which cannot be solved before. Especially the
fuzzy neural network (FNN) has been explored during the past
few years by many researchers to equip the intelligent method-
ologies with better learning capabilities. For instance, the FNN
has been applied successfully to control nonlinear, ill-defined
systems [1]. In particular, the back propagation (BP) of FNN
has been developed to tune the parameters of fuzzy sets and
the weighting factors of neural network in [1]. The BP algo-
rithm is applied to minimize the difference (error) between the
desired and actual outputs through iterations. For each itera-
tion, the parameters and weighting factors are adjusted by the
BP algorithm in order to reduce the error along a descent di-
rection. A reasonable learning rate should be assigned during
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the BP process. Therefore the dynamic optimization of learning
rate for type-1 FNN has been proposed to accelerate the con-
vergence of the BP algorithm [2], [3]. Moreover the analysis of
stable and optimal learning rates for type-1 FNN was also dis-
cussed rigorously in [3]. However, all of these discussion and
analyses are focused on type-1 FNN. To date, type-2 fuzzy sets
and fuzzy logic controller have been used in decision making
[4], survey processing [S]-[7], time-series forecasting [8], time-
varying channel equalization [9], [10], control of mobile robots
[11], and preprocessing of data [12]. Further genetic algorithms
(GAs) was adopted in [3] to fine-tune the Gaussian MFs in the
antecedent part of type-1 FNN. The authors in [13] also applied
GAs to search for optimal uncertain means and its extent of in-
terval type-2 Gaussian MFs for the chaotic time-series predic-
tion. Although many reasonable results have been obtained by
using BP process or GAs, the discussion of stable and optimal
learning rates has not been established in type-2 FNN (T2FNN).

Due to the learning capability of type-1 FNN [14], T2FNN
can be similarly defined. We proposed an interval T2FNN that
consists of the interval type-2 fuzzy linguistic process as the an-
tecedent part and the two-layer interval NN as the consequent
part. The two-layer interval neural network consists of left and
right weighting factors which will require left and right learning
rates during the learning process. The T2FNN is computational
intensive due to the complexity of type 2 to type 1 reduction.
Therefore, the interval T2FNN is adopted in this paper to sim-
plify the computational process. The result of type reduction
process, called type-reduced set, possesses more important in-
formation than a crisp output of type-1 FNN. The stability anal-
ysis of the left and right learning rates for this two-layer interval
NN will be discussed. A new theorem will be proposed to yield
the dynamic optimal learning rates for this two-layer interval
NN, which guarantees the maximum error reduction during the
BP process. It can also be shown that the left and right learning
rates for the interval neural network cannot both be negative. It
is not necessary that both learning rates are positive, but they
cannot be both negative. For comparison purpose, the dynam-
ical optimal learning rate for type 1 FNN should be positive [3].

Since the variations of parameters setting in the type-2 MFs,
i.e., the spread of uncertain means or deviations, will affect
total performance during the BP training process. In order to
find the optimal settings of uncertain means or deviations in
the interval T2FNN, a genetic algorithm is also proposed to-
gether with dynamical optimal BP training process to search
for optimal spread rate of MFs and optimal learning rate in an-
tecedent part simultaneously. In the meantime, the dynamic op-
timal learning rate of two-layer neural network of consequent
part also can be obtained for each iteration. The well-known ex-
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amples of truck backing-up and nonlinear system identification
will be illustrated via our new optimally trained interval T2FNN
with GAs to yield more improved performances than those using
type-1 FNN.

This paper is organized as follows. In Section II, a type-2
fuzzy neural network model will be defined. In Section III, the
dynamic optimal learning theorem with BP process will be de-
veloped to tune the interval T2FNN. Section IV describes how
to find optimal spread rate and learning rate via genetic algo-
rithm. Section V shows two applications via dynamic optimal
learning theorem with GA. The conclusions and topics for fu-
ture research are drawn in Section VL

II. INTERVAL TYPE-2 Fuzzy NEURAL NETWORK (T2FNN)

In this section, the interval type-2 fuzzy set and the inference
of type-2 fuzzy logic system will be described first. This will
lead to interval type-2 fuzzy neural network (T2FNN).

A. Type-2 Fuzzy Logic System (T2FLS)

A type-2 fuzzy set in universal set X is denoted as A which
is characterized by a type-2 membership function u 3 () in (1).
The u 5 (z) can be referred as a secondary membership function
or also referred as a secondary set, which is a type-1 fuzzy set in
[0, 1]. In (1), f.(u) is a secondary grade, which is the amplitude
of a secondary membership function; i.e., 0 < fp(u) < 1.
The domain of a secondary membership function is called the
primary membership of z. In (1), .J,, is the primary membership
of z, where u € J, C [0,1] for Vo € X;u is a fuzzy set in [0,
1], rather than a crisp point in [0, 1].

A= [ f o= [ L/ -
o 0.1 (1)

1.

When f,(u) = 1,Yu € J, C [0,1], then the secondary MFs
are interval sets such that u () in (1) can be called an interval
type-2 MF [6]. Therefore the type-2 fuzzy set A can be re-ex-
pressed as

A= [oeae )= [ UL/

Lc1. @
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(a) Interval type-2 fuzzy set with uncertain mean. (b) Three-dimensional membership function for interval type-2 fuzzy set.
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Fig. 2. Type-2 fuzzy logic system.

Also, a Gaussian primary MF with uncertain mean and fixed
standard deviation having an interval type-2 secondary MF can
be called an interval type-2 Gaussian MF (3). Fig. 1(a) shows
a 2-D interval type-2 Gaussian MF with an uncertain mean in
[rm1,m2] and a fixed deviation . It can be stated as

uz(r) = exp [—% <x_ m)j ;. mé€ [mi,ma]. (3)

a

It is obvious that the type-2 fuzzy set is in a region, called a
footprint of uncertainty (FOU), and bounded by an upper MF
and a lower MF [6], which are denoted as @ ;(z) and u; (),
respectively. Both of them are two type-1 MFs. Hence, (2) can
be re-stated as

g:/ V 1/u|/x @)
z€X | Ju€luz(x),uz(x)]

We will make great use of upper and lower MFs for type reduc-
tion in this section and develop the dynamic optimal learning
rate algorithm in next section. Also the interval type-2 Gaussian
MF with uniform uncertainty at primary memberships of x in
Fig. 1(a)—(b) will be adopted in this paper.

A type-2 FLS in Fig. 2 is constructed by the same structure of
type-1 IF-THEN rules, which is still dependent on the knowl-
edge of experts. Expert knowledge, however, is always repre-
sented by linguistic terms and implied uncertainty, which leads
to the rules of type-2 FLSs having uncertain antecedent part
and/or consequent part; then translate into uncertain antecedent
or consequent MFs. The structure of rules in the type-2 FLS
and its inference engine is similar to those in type-1 FLS. The
inference engine combines rules and provides a mapping from
input type-2 fuzzy sets to output type-2 fuzzy sets. To achieve
this process, we must find unions and intersections of type-2
sets, as well as compositions of type-2 relations. The output of
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Fig. 3. Interval T2FNN with antecedent part and consequent part.

the type-2 inference engine is a type-2 set. Using Zadeh’s ex-
tension principle [15], type-1 defuzzification can derive a crisp
output from type-1 fuzzy set; similarly, for a higher type set as
type-2, this operation derives the type-2 sets to a type-1 set. This
process can be so called “type reduction.” The complete type-2
fuzzy logic theory with the handling of uncertainties, such as
the operations on type-2 fuzzy sets, centroid of a type-2 fuzzy
sets, type-reduction, . . ., etc., can be found in [16]-[21].

B. Type-2 Fuzzy Neuro Network

Due to the complexity of type reduction, the general type-2
FLS becomes computationally intensive. An interval type-2
FLS, whose secondary MFs are all unity, make things simpler
and easier to compute meet and join operations, which leads
finally to simplify type reduction. An interval T2FNN system
is shown on Fig. 3, which is an implementation of interval
type-2 fuzzy logic system, and some of their parameters and
components are presented by fuzzy logic terms. Like type-1
FNN, Fig. 3 is a typical FNN with four layers structure [1].
Input nodes and type-2 fuzzification nodes are drawn on layer
I and layer II, respectively. They form the antecedent part of
this T2FNN. Consequent parts are drawn on layer III and IV
which are constructed from a classical 2-layer NN with fuzzy
rule nodes and output nodes. The fuzzifier nodes in layer II
will yield type-2 membership grades. Each node at layer III
is a fuzzy rule. Layer III nodes consist of the preconditions of
the rule, i.e., the firing strength F’ ‘ from (6) as shown in the
following context. Layer IV nodes define the consequences of
the rule nodes. The links between layer III and layer IV consist
of interval weighting factors which will decide the actual
outputs of this system.
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The IF-THEN rule for interval T2FNN can be expressed as

R :1F 2 is F{ and ...,and z, is F,;

THEN y, is [w};w!,], and ... ,and yz is [wi w’,] (5)
where ¢+ = 1,2,...,M is rule number, the l:"; is
the interval type-2 fuzzy sets of antecedent part, and
[wi wi],z = 1,...,Z, is a centroid set with unity member-
ship grade (interval type-1 fuzzy set), which can be called
weighting interval set, derived from interval type-2 fuzzy set
in the consequent part [6], [17]. Both w}, and w! are treated
as weighting factors to fully connect layer III and layer IV in
our interval T2FNN structure. In practical use, both wfz and
w, can also be set at random initially in a reasonable interval.
This structure combines type-2 fuzzification in antecedent part
with a random weighting interval set in consequent part. It
cannot only totally represents a type-2 fuzzy logic relation, but
it can also process type-reduction and lead to the development
a dynamic optimal training in consequent part which will be
shown later in Section III.

C. Type Reduction

In Fig. 3, we only consider singleton input fuzzification
throughout this paper. Similar to type-1 FNN, the firing strength
F* in (6) can be obtained by the following inference process:

ZeX Lk=1

where [] is the meet operation and [] is the join operation [6].

For Gaussian interval type-2 fuzzy set as shown in Fig. 1, the
upper MF is a subset that has the maximum membership grade
and the lower MF is a subset that has the minimum membership
grade. The join operation in (6) leads to join the result from
above meet operations using supremum (i.e., maximum value),
the result F'* can be an interval type-1 set [20] as

[
r= %] 7

where

Ck U (Th). )

The center-of-sets type-reduction [6], [20] will be used in this
paper. In order to simplify the notation, we consider single
output here. Then we have the center-of-sets type reduction
method (as shown the bottom of the page) where y..s(Z) is also
an interval type-1 set determined by left and right end points
(y; and ¥,.), which can be derived from consequent centroid set

ym(f):[yhyr]:/ / / ) / )
Jutetwtwt)  Jwrtewwin Jrrerp gy Jperp g

M i g
1 Yim f'w

ey 9
Y, f
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[wi w!] and firing strengths f* € F* = [f’, f!]. The interval
set [w} wi] (i = 1,...,M) should be computed or set first
before the computation of y.os(Z). For any value y € ycos,y
can be expressed as

M [
=1

where y is a monotonic increasing function with respect to w".
Also, y; in (9) is the minimum associated only with wli, and ¥,
in (9) is the maximum associated only with wt. Note that 3 and
y, depend only on mixture of f* or f* values. Hence, left-most
point y; and right-most point 7, can be expressed as [9]

_ Ei:l flwl (11)
Y= M 4
dic1 fi
and
Yicy fiwi
Yr = S pi (12)
=1Jr

For illustrative purposes, the type-reduction algorithm for com-
puting ¥,- from ([6], P. 310-311) is listed below as Algorithm 1.

Algorithm 1. Type Reduction for Interval T2ZFNN: Without
loss of generality, assume the w’’s are arranged in ascending
order, i.e., w} < w? < ... < wM,

[Step 1]: Compute yr in (12) by initially using f;' = (f* + f*)/2 for
f and f are pre-computed by (8); and let y, = y,«
[Step 2]: Find R(1 < R < M — 1) such that wl* < ¢/ < wF*t.
[Step 3]: Compute y, in (12) with fi= i fori < Rand f} = f°
for i > R, then set
v =Y
[Step 4]: Ify! # y.., then go to Step 5. If ¥ = y.., then set y,.
and go to Step 6.

"

Yr

[Step 5]: Lety, = y,' and return to Step 2.
[Step 6]: End.

This algorithm decides the point to separate two sides by the
number R, one side using lower firing strengths f*’s and another
side using upper firing strengths f*’s. Hence, the v, in (12) can
be re-expressed as

o= (£ PR T
S fwl+ M ) Flwl
EqR 1f/+ZMR+1 fi

R

=3t + S

1=R+1
= ['/D,

.fM. wk ..., wM>

s

13)

where q

M 7i
Zi=R+1f )-

The procedure to compute y; is similar to compute y,.. In
step 2, it only needs to find (1 < L < M — 1), such that

F/Deand D, = 1/(SE, F +

1465

wk <y) < wlL'H. Instep 3, let fj = f fori < Land f; = f
fors > L. y; in (11) can be also re-expressed as

Y= yl(fl""'7fTL7iL+17"'7iM7wll7"'7wl]u)
_ . M P
_Zl oY L+1J”wlZ
- M
DD LI DY i

L M
_ TN) 1,1
—E QoW + E q,w
=1

i=L+1

(14)

where g = fi/D; (SE, i+
Yitrea ).

The defuzzified crisp output from an interval type-2 FLS is
the average of y; and y,., i.e.,
Yi + Yr

y(@) ==

According to the above analysis, the defuzzified output y(Z),
i.e., actual output, is determined only by the upper and lower an-
tecedent MFs and the weighting interval set. Like type-1 FNN,
we also can use the BP method to tune all the parameters of
type-2 fuzzy MFs in T2FNN. However, the process of tuning the
parameters of interval T2FNN is more complicated than those in
type-1 FNN. We must first determine the parameters associated
wth y; and y,.. This requires comparing 2, (k = 1,...,n) to
some points associated with parameters of upper and lower an-
tecedent MFs [6]. When the input z, is located in one segment
of domain, then its corresponding MF branch is called active
branch. For instance, ' = 6 in Fig. 1(a), we have two respec-
tive active upper and lower MFs branches. Once these parame-
ters are changed due to tuning, the dependency of y; and y,- on
parameters may also be changed, i.e., the active branches may
be changed to the other branches. The tuning of the parameters
of these active branches are the same as tuning the parameters
in type-1 FNN. For instance, to tune the parameters of the active
branches located in the any upper or lower MF, we can have the
following details.

By using the back propagation method, for P input-output
training data (2 : d?),p = 1,..., P the following error func-
tion should be minimized:

@ = Sl@) - P

f /Dl and Dl =

15)

p=1,...,P (16)

To tune the mean mi of Gaussian MF in the 7th rule [6] as

. , 9eP
mi,(p +1) = mi(p) - 5;’2
:1p
=my(p) — 5a(y(@) —d?)
(Wi —yw) (L
Hi\r:l u{l (fl?k mk) X
N (mi,ai;xk)/(a};f 17)

where mi € [mim}vz] and N(m'};,a’};;xk) = [—(1/2)((zr —

mi)/(e4))?].
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Similarly, to tune standard deviation o}; and weighting factor
wj,, we have

ok(p+1) = ol(p) - §a<y<ﬂ’> — )

(18)
N (mi, oiswk)

Hk 1 Fz
19)

— dp)

where « is learning rate for tuning the parameters of MFs.
Whereas, wlr and y;,- can be w; or w,. and y; or y, respectlvely,
and uﬁi can be Ufi OF Ui The weighting factor w; or wy.
depends on which branch is active in the process calculating
left-most point y; or right-most point y, (13)-(14). Based
on both type-reduction and BP processes, a dynamic optimal
learning algorithm for tuning weighting matrices of conse-
quents will be developed to fasten the convergence of back
propagation process in the next section. An example to tune the
parameters by using back propagation process in (17)—(19) is
illustrated as follows.

Example 1: The following interval T2FNN has three rules
in which each rule has two antecedent parts and two consequent
parts (i.e., MIMO—multiple inputs and multiple outputs):

R':1F zy is Fll and x5 is FQI
THEN v is [wlll w},l] and yo is [wllz wiZ]
(20)
R%2:1F z,is }”;112 and x5 1S FQQ
THEN y; is [wy; w}y] andysis [wiy wly]
21
and
R®:1F z, is ﬁ’f’ and x5 1S F‘;’
THEN y; is [wj; w] andysis [wi, wd,].
(22)

where two antecedents are Gaussian primary MFs with uncer-
tain mean. We extend type-1 Gaussian MFs by its deviation ratio
0.5 to form interval type-2 Gaussian MFs. The original type-1
Gaussian MFs are

mi] [5.5 m3 3.0
m2 | = |45, m3 | = |6.0
m3 | | 6.2 m3 5.1
ot] [1.30 o3 1.20
o2 =|110|, |o%|=1]100
of ] |0.80 o3 1.50

The extended type-2 MFs are: (with same fixed deviations)

The weighting matrices of consequent part (20)—(22) are ini-

tially at random assumed as

mil miz_ [4.85, 6.15]
m?,  m3, 3.95, 5.05
m3, mi, | | 5.80, 6.60 |
[mi, mi, | [2.40, 3.60]
m3,  m3, 5.50, 6.50
| m3, m3, | 4.35, 5.85 |
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wh wiy | [3.4730, 5.3356 |
wf  wd | = [ 1.0210, 0.1271
wi  wi | [ 4.1400, 0.3272
wh  wiy | 8.8062, 8.9973
w2 wly | = | 5.3044, 8.4949
wi o wd, 5.4016, 1.4851
and given four pairs of training data (X : D) as
rat 4.7, 6.0
72 6.1, 3.9
X=1m 2.9, 4.2
L7 7.0, 5.5
r3.52, 4.02
543, 6.23
D= 4.95, 5.76
14.70, 4.28

For example, the interval Gaussian type-2 MFs of antecedent
part in rule R! are shown in Fig. 4(a)—(b). The interval type-1
set of weighing factors [w; w,] in consequent part for the first
output are also shown in Fig. 4(c). We examine the first training
pair 71 = [4.7 6.0] and d1; = 3.52. Given #! into this MIMO
interval T2FNN, by using product t-norm, we can obtain three
interval type-1 sets of firing strength as

=" = ugy rugy agy s ag]
= [0.5368 x 0.0111 0.9_934 X 0.13553]
— [0.0060 0.1344]

[f 2= |:qu *Upa Upo * ai“?}
= [0.7926 x 0.8825 1.000 x 1.000]
= [0.6995 1.0000]

=

=

=

PP = fups vugy g+
0.0596 x 0.5461
0.3866].

0.3886 x 0.9960]
0.0325

After firing the consequent part, we have upper and lower
interval type-1 sets, which form interval type-2 fuzzy sets.
Fig. 4(d) shows the three-dimensional (3-D) view of these
interval type-2 fuzzy sets. The type-reduction procedure in
Algorithm 1 can be applied to find the right-most point y,
from these fired type-2 interval sets in Fig. 4(d). Similarly the
left-most point ¥; can also be found. Then the type-reduced
set [y; yr] for this pair training data is [1.1328 5.8514]. As a
result, we have y(#') = 3.4921 as shown in Fig. 4(e). By using
fixed learning rate « = 0.2 in (17)— (19), after 15 iterations, we
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Fig. 4. Two interval type-2 Gaussian MFs of antecedent part for rule R' are shown in (a) and (b). The weighing interval sets and corresponding fired interval
type-2 sets for first output are shown in (c). The 3-D view of interval type-2 sets is shown in (d). The result y(7') = 3.4921 shown in (e).

have the final means, standard deviations, weighting matrices

and actual output as
- |-

mi; mi, [5.0969, 6.0139]
m2, m3, 4.0881, 5.1321
myy mi, | | 5.7985, 6.9088 |
(mi, mi, | [2.7441, 3.6038]
m3, m3, 5.6162, 6.4427
|m3, m3, | | 4.6381, 6.2564 |

ot [1.8127 o3 1.2716

ol 1.1720 o2 | = 10.9567

of ]  ]0.7055 o3 0.6086
wh  wh | [3.1776,  5.5488
wh  wh 0.9235, —0.1359
w  wp | [4.1174,  0.6569
wl  wl, ] [8.3457, 9.5789
w2 w’, 5.3613, 8.1266
wi wd, | 5.3898, 1.5516
r3.4348, 4.1999
" 5.5248, 6.2312
Y@ =1 50183 5.7612
[ 4.6845, 4.2916

Then the trajectory of total squared errors J is plotted in

Fig. 5.

We only apply back-propagation algorithm in Example 1 with
fixed learning rate. Better training results using dynamic op-
timal learning rates can be seen in the next section.

04
120 ¥ 0.3919 |
Total 0,3.‘\“
Squared . |
Error |
02+
J \
015 |
'\ 3.3524¢-03
0.05 - N \,
I A I

Fig.5. Total squared error J versus iteration ¢ for a fixed learning rate « =0.2.

III. DYNAMIC OPTIMAL LEARNING RATE OF INTERVAL TYPE-2
Fuzzy NEURAL NETWORK

According to [3], authors have developed the dynamic
optimal learning rate theorem to speed up the convergence of
tuning weighting factors of consequent part in type-1 FNN.
From the type-reduction process in Algorithm 1 with (13)—(14),
we have

M
i
E ¢, wy;; and

i=L+1

M
E i, 1
W,

1=R+1

L
y = Z T wi +
=1

R
v = _ g+
=1
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In:

Type-Reduction

Fig. 6. Detailed look of the consequent part in Fig. 3.

Then it is obvious that we can interpret the above equations as
an interval NN which is shown in layers IIT and IV of Fig. 3
and is presented in more details in Fig. 6. The goal is then to
find the dynamic optimal training for tuning weighting interval
sets [w} wt] in Fig. 6. The i th node input of layer Il is firing
strength F'* from layer II. Once all firing strengths enter into
the type-reduction process, 7., gi, gé, and g in (13)—(14) can
be determined via Algorithm 1 to find ; and ¥,.. A dynamic
optimal learning algorithm for T2FNN will be developed in this
section to guarantee maximum error reduction during the back
propagation process in previous section, where

F = [F17 F2 F]\[]
[ M 2X M
=l M €
the firing strength matrix (23)
W Wiy, Wiz Wiz c R2XMxZ
u_)"rl u-;r2 U—;TZ
the weighting matrix (24)
B = [wh, wh o wl]" e nM
the zth left weighting vector (25)
Wy, = [wim wzz T waj“\/zI]T € §RM
the zth right weighting vector (26)
T
,jl:[q;, S A el gfﬂ e jM
the left firing strength vector (27)
T
T [2;7 QbR (15-1-1 qé”] c jpM
the right firing strength vector (28)
¥=1[y, v yz]" € R?
the actual output vector (29)
d=[d, do dz)T e ®%
the desired output vector (30)

and “T” denotes matrix transpose, “— denotes vector.
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To derive the actual output, we need first to compute its
left-most (14) and right-most (13) output as

L M
v =Y qowi+ Y qiwj =gl 31)
i=1 i=L+1
and
R M
i=1 i=R+1
Therefore, the actual output y. can be obtained as
1
Y. = _(ylz + yrz>~ (33)

2

Then, we have ¥ = [y1 y2 ---
puts.

Given P training vectors, its actual output Y, and the desired
output D as

yz])T as (29) by union all out-

Ql — I:q—»ll q—»IQ q—;P] € %]\JXP
the left firing strength matrix  (34)
Q=0 @ q] e RIXT
the right firing strength matrix  (35)
Wi = [win e i z) € RM*
the left weighting factor matrix (36)
W’r‘ = [wrl lU’r‘Z w’r‘Z] € %A[XZ
the right weighting factor matrix (37)
Y=[h ijp]" € RPXZ
the actual output matrix (38)
D=[d d dp]" € R
the desired output matrix. (39)
From (33), the actual output matrix Y can be expressed as
1 1
Y = E(Yl + Yr) = 5 (QZTWI + Q;Wr) . (40)
The total squared error (16) can be expressed as
1 P Z
J=-—" P dr)?. 41
57 20 (W —d) 1)

p=1z2=1

By using matrix notation to re-organize J, first we define error
function F as

1
E=Y D= (¥i+Y,)-D

1
=5 (QIWi =D+ QI W, - D) (42)
then we have
1 T
To tune weighting factors using chain rule, we have
aJ 1
141 1t — Bt oW, 1t ﬂl’tZPZQl +
(44)
oJ 1
Wr :WT_T‘_:WT_T‘—’I"E'
41 Jt ﬂ,t oW, ) Jt ﬂ’tZPZQ t
(45)
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After training, assuming zero error, we should have
D =Y = (172)(QTW; + QTW,). The learning rate
for each iteration during the back propagation process is
different, i.e., the learning rates are not fixed [3]. To find such
the optimal learning rate for 5; and (., we have the following
theorem.

Theorem 1: The optimal learning rates 3; and (3, defined in
(44) and (45) can be found from the minimum of a quadratic
polynomial A3} + BB2 + CBiB, + Ffi + Gfr < 0, where
A>0,B>0and F < 0,G < 0 can be obtained from the left
firing strength ); and right firing strength Q,., desired output D
and the weighting factors W; and W,..

Proof: First, we must find the stable range for 3; and S,..
To do so, we define the Lyapunov function as

V=J? (46)

where J is defined in (41). The change of the Lyapunov function
is AV = JZ, — J2 Itis well known that if AV < 0, the
response of the system is guaranteed to be stable. For AV < 0,
we have

Jop1 — Jy < 0. A7)

Consider all the P firing strengths as @Q; = [q} ¢7 - §7] €
RMX*P and Q, = [§* @2 --- GT] € RM*T the firing strengths
remain the same but their order may change according to the
order of weighting factors during the training process. Then, we
have J;41 from (43) as

Jis1 = (2PZ) ' Tr (B 1 B )

= (2PZ)~'T'r [(% (QT W1+ QF Wyii) — D)
(5 (@ Wi + QW) - D) T]
= erzy e |5 (oF (W 3o
N (P~Z)1Q1Et>
+Qr (Wm — Shnu(P Z)lQTEt)) - D}
<[5 (@ (Wi - joar - 27 @)
+Qr <Wm ~ (P Z)‘lQrEt» - Dr}
— (2PZ)"\Tr { [Et _ i (Bua(P - 2) QT QuE,
+B,u(P-2)7QLQ, ) }
<[ = L (e ) BT QF Q)
6,4(P - 2)7 ETQTQ,) } }

1
=J— Zﬂl’t(PZ)_zTr [QlTQlEtEtT]

— 0ed(PZ) T [QTQ, B,
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o (P2) T {[5,QF QuE L QT Q
+ ﬂz,tQZQrEtE?Qer]

+ [ﬁl,tﬂr,thQlEtEfoQr
+ ﬁ,vtﬂ”QerEtEtTQ;le]} .

Hence
Jry1 — Jo = AB} + BB+ COIB. + FB+ GB. (48)
where
= (P2 T QT QEETQTQ) @9
= L2 Tr[QFQEEIQIQ)  50)
C = 1—16(PZ>‘3T7~ [QF QUEET Q7 Q,] (51)
F = —i(PZ)_ZTr [Ef Qf Qi E}] (52)
G = —i(PZ)’QTr [Ef QT Q. E] . (53)

It is obvious that A and B in (49) and (50) and F and G in
(52) and (53) contain quadratic matrices. Therefore the A and
B should be positive; F' and G should be negative. However, C
in (51) can be either positive or negative.

Therefore we have

Jigr — Jy = AB} + BB+ CBiB. + FB + GB, < 0.

In type-1 FNN [3], authors similarly defined J;y; — J; < 0
to guarantee the NN to be stable and the one-variable quadratic
polynomial J;;1 — J; = A18% + Fi8 < 0 was derived for
A1 > 0and Fy < 0. Therefore, the optimal learning rate 3opt =
—F1/2A; can be derived to make A, ﬂgpt + F1Bopt at its min-
imum in type-1 FNN. Similarly the determination of the min-
imum values of two-variable quadratic function H = J;1 — J;
can be found as follows:

Let H = Jiy1 — Ji¢ < 0, we have the first order partial
derivatives of H as
oOH
S 948 +Ch+F =0 (54)
By
OH
=2BG,.+CB+G=0. (55)
b,
The second partial derivatives of H are
0’H 0’H
93108 0B,
0’H
= 2B.
96,05, 0

From partial derivatives theorem [22] and (56), if C? < 4AB
and A > 0, B > 0 then there forms a quadratic parabolic func-
tion and has a local minimum value at a critical point (3, 3,).
Therefore, by solving (54) and (55), we can find the left-end and
right-end optimal learning rate as

Bropt = (CG — 2BF)/(4AB — C?) (57)
and

Bropt = (CF — 2AG)/(4AB — C?). (58)
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To prove C? < 4AB, we firstlet QF Q1 Ey = [L;j], QT Q. Ey =
[Rij]. From (49)—~(51), we have

P Z
_ 1 -3 2
A= (PZ) Z Z L (59)
=1 5=1
1 P Z
_ -3 2
B=(PZ) Z Z RZ; (60)
=1 j=1
1 P z
— -3 R
C = E(PZ) ZZL”RU. (61)
=1 j=1
According to Cauchy inequality [22] we have
P z 2 P Z P Zz
D> Lk | <\ DD LE) (DR
=1 j5=1 =1 j=1 =1 j=1
(62)
Therefore, by using (59)—(62), we can obtain
1 P z 2
2 _ -3 LR
C?= | £(P2) ;;LUR”
1 P Z
4| =(P2)3 L2
<4 | 5(P2) ;; Y
1 P z
-3 2 | _
x | 55(P2) ;;Rﬁ =4AB. (63)
Q.E.D.

By inspecting (42) and (48)—(53), it is obvious that the stable
range of (3;, (3,)isafunctionof Q;, @, D, W; and W,..In com-
parison with the positive optimal learning rate in type-1 FNN,
the following Theorem 2 shows that the stable optimal learning
rates in interval T2FNN can be positive or negative, but cannot
be negative simultaneously.

Theorem 2: For the two-layer NN of consequent part, both
stable optimal learning rate 3; op¢ and 3, opt cannot be negative
simultaneously.

Proof: Suppose both learning rates in (57)—(58) are both
negative, i.e.,

Bropt = (CG —2BF)/(4AB — C?) < 0
and
Br.opt = (CF —2AG)/(4AB — C?) < 0.

Since (4AB — C?) > 0, therefore CG — 2BF < 0 and CF —
2AG < 0. Therefore we have

CG < 2BF (64)

and

CF < 2AG. (65)

In Theorem 1, we know that A > 0,B > 0, F < 0and G < 0,
but C' can be positive or negative. If C' is negative then C'G in
(64) will be positive. So (64) cannot be true due to 2BF < 0.
Similarly, (65) cannot be true if C is negative. As a result, both
learning rates are all positive if C' < 0.
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Fig. 7. Quadratic parabolic trajectories of J; 1 — J; versus 3; and 3, in (a).
Three cases of 3;,opt and 3, opt are shown on (b), (c), and (d) while C' > 0. (b)
Shows both 3; op¢ and 3. opt are >0. (¢) Shows F; ope < 0 but 3, ope > 0.
(d) Shows the case when 3; opt > 0 and 3, op¢ < 0. (e) Shows both 3; opt
and (3, op¢ are >0 when C' < 0.

If C is positive, multiply (64) by (F'/G), we have

CF < 2BF*/G <0 (66)
and
CF < 2AG < 0. (67)
Combining (66) and (67), we have
C?F? > 4ABF?. (68)

Deleting F'2 from (68), we can yield C? > 4AB. This violates
(63), i.e., C? < 4AB. Therefore we know that both optimal
learning rates should not be negative simultaneously. Q.E.D.

According to the Theorem 2, it is obvious that the two lines
(on the plane of [; versus [3,.]) defined in (54) and (55) may
have an intersecting point located on one of the first, second
and fourth quadrant respectively. Fig. 7(a) shows a 3-D view of
the intersections. Fig. 7(b) and (e) show the cases when both
optimal learning rates 31,5 > 0 and B, opt > 0. Fig. 7(b)
shows the case for C' > 0 and Fig. 7(e) is for C' < 0. Fig. 7(c)
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shows the case when (3 opt < 0 and B, opt > 0. Fig. 7(d) is for
ﬁl,opt > 0 and /Br,opt < 0.
Consequently, the algorithm of tuning process in this two-
layer interval NN is stated as the following Algorithm 2.
Algorithm 2. Dynamic Optimal Learning Rates for Conse-
quent Part of T2ZFNN:

[Step 1]: Given the initial weighting matrices Wy and W, firing
matrices ; and ()., and

desired output D, find the initial actual output Y (40) and op-
timal learning rate

B10,0pt and Bro,0pt. Then, set initial iteration ¢ = 0 and start the
back propagation training process.
[Step 2]: Check if the desired output D and actual output Y; are close
enough (i.e., threshold

limit) or if the maximize number of iteration is achieved? If Yes,
Go to Step 6.
[Step 3]: Update the weighting matrices to obtain [W; 1 Wy ¢11]
(44), (45).
[Step 4]: Find the optimal learning rate 3 opt,t+1 and 3, ops,t41 for
the next iteration.
[Step ]5: Sett =t + 1. Go to step 2.
[Step 6]: End.

Given the same case of Example 1, the following example
illustrates the major concept in this section.

Example 2: The weighting factors of the consequent part in
Example 1 will be tuned by using dynamic optimal learning al-
gorithm as stated in Algorithm 2. We also allow 15 iterations
for this dynamical optimal tuning so that we can compare the
tuning results with those in Example 1. The firing strength ma-
trices F' from this MIMO T2FNN (4 inputs and two outputs
(P=4,7Z =2,M = 3)) can be found from Example 1 as

e 0.0060, 0.6695 0.0325
“110.1344, 1.0000 0.3866 b1

0.2884, 0.0050 0.3533
0.9692, 0.1763 0.9560 b2
0.0143, 0.0105 0.0000
0.2865, 0.2724 0.0014 p=3
0.0091, 0.0130 0.2420
0.2306, 0.2078 0.8825 p—d '

During the dynamical optimal training process, the weighting
intervals will be tuned to reduce maximum error after each it-
eration. The initial J in (41) can be obtained as 0.3919. The
optimal learning rates are used to update the weighting matrix
W . The trajectory of total squared error J is listed in Table I and
shown in Fig. 8(a). Fig. 8(a) also shows the trajectory .J for fixed
learning rate & = 0.2 as shown in Fig. 5. It is obvious that the
total squared error .J is decreased as expected in decent direction
and converged faster than that in Fig. 5. Fig. 8(b) shows that both
Br,opt and B, opt cannot be negative simultaneously, which is in
accordance with Theorem 2. Note that the tunings in Example 1
include the mean, standard deviation and weighting factors, all
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TABLE 1
OPTIMAL LEARNING RATES AND TOTAL SQUARED ERROR
t ﬁ[.opi Br,upz J
1 4.2601 16.6882 0.083449
2 16.4054 22.7456 0.023489
3 26.5350 -2.7640 0.007165
13 -26.5641 39.4360 5.0038e-4
14 20.8115 38.6545 4.7584e-4
15 -25.2773 38.2233 4.5096¢e-4

using fixed learning rate « = 0.2. After 15 iterations, we have
the final weighting matrices W;, W,. and output as
Mol

wl, wh 3.3994, 5.8865 ]

W, = |wl, w)|=]|10985 —0.5992

wi, wh 3.7988, 2.6076 |

[wl, wl, 8.8049, 11.1911]

W, = |w?, w? | = 53116, 8.0365

L w, wd, 5.0397, 2.6247 |
£3.5199, 3.9927
. 5.4328, 6.1792
y(@) = 4.9471, 5.7872
[ 4.7015, 4.3360

IV. TUNNING INTERVAL T2FNN USING A
GENETIC ALGORITHM

Authors in [20], [23] used a reasonable spread rate by stan-
dard deviation ratios, — Ao and Ao, to set the uncertain means
as

[miy, mis] = [mi, — Aoy, mj, + Aoy] (69)
where both the mean m}, and the standard deviation o}, are pa-
rameters of the kth primary MF in the ith fuzzy rules in (5);
and ) is a spread rate. By doing so, all interval type-2 fuzzy
sets can be constructed and yield better performance than that
in type-1 FLS. However the optimal selection of spread rate A
for type-2 FLS can be done via GA-based approach in [13].
For the overall tunings of T2FNN, we need to find the optimal
learning rate cqp, in (17) and (18) (for means and standard devi-
ations), the optimal spread rate Aop¢, and the optimal weighting
matrices for consequent part. However, due to the dynamical
optimal training algorithm derived in previous section, it is ob-
vious that we do not have to rely on the genetic search algorithm
to find the optimal weighting matrices. We only have to design a
GA-based algorithm to search the optimal spread rate Aop¢ and
optimal learning rate ¢ for means and standard deviations.
The fitness function ¢(.J) (J is the total squared error) in the
GA-based search algorithm can be defined as [24]

1oL if v < 0
o(J) = p(¥107) = o) 101—1/;/10 .
10~ +W/ 1f’720
(70)

where J = 1107, 1 < ¢ < 10. The above (70) finds a larger fit-
ness value for smaller .J. We randomly encode the parameters A
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0.35

Total
Squared
Err()r 0.25
J 0.2

0.15

0.1

0.05

Iteration t

Fig. 8.

Iteration t

Case a: Optimal learning for consequent part only. Case b: Example 1, « = 0.2.(b) 3;,0p¢ and 3, op¢ cannot be negative simultaneously.

TABLE II
PARAMETERS FOR GA AND THE RESULTS FOR Agp,¢ AND Qropt

Chromosome
size (bits)

Pop_size | Max_gen

(44,1

Threshold A o,

[o,,] ot oot

14 16 32

[0.01 1]

[0.011]] 046 |0.7258

and « to form a chromosome in a population for each iteration.
The chromosome with larger fitness value has a larger proba-
bility of selection. Then, a new population is formed by selecting
the better-fit chromosomes. Some members of the new popula-
tion undergo transformation by means of genetic operators to
form new solutions. The crossover operation combines the fea-
tures of two parent chromosomes to form two similar children
by swapping corresponding segments of their parents. The pa-
rameters defining the crossover operation are the probability of
crossover P, and the crossover position. Mutation is the process
of occasional alternation of some gene values in a chromosome
by a random change with a probability less than the mutation
rate P,,.

Therefore, based on this GA design, we can combine the
dynamic optimal learning algorithm (Algorithm 2) to perform
some desired iterations under the back propagation training
process. Because every new population consists of better-fit
chromosomes, the search then can be continued to obtain the
optimal spread rate A,p¢ and the optimal learning rate aopt
such that the total squared error .J is a minimum. The overall
search algorithm, which summarizes the whole concept, is
listed as follows.

Algorithm 3. Tuning FNN Via Genetic Algorithm With Op-
timal Learning: Given P input-output training sample pairs
(ZP : dP),p = 1,..., P, we wish to tune the all parameters in
antecedent and consequent part so that (46) can be minimized
for T iterations.

Step 1: Initialize weighting matrices Wy and W,.¢ randomly. Define
range intervals for

spread rate [\, Ay] and learning rate [, aw].  Set
Pop _size, Max _gen, Iteration and
Threshold.

Step 2: Initialize population Pop = {Aj,a;}, A € (A, Au), a5 €
(ar,m),j = 1,..., Pop_size.
For generation = 1 : Max_gen
Forj = 1: Pop_size
Get ith A and «. Use X to initialize uncertain means

Fort = 1 : Iteration
Forp =1:P
Apply training sample «?, and compute the total firing
strength for each
rule in (8).
Compute y;, y- and its defuzzified output (y; + y-)/2 in
(15).
Use back propagation to tune the parameters of active
branches.
End
Compute new firing strength matrices ¢); and ).
While |J¢ min — Ji—2,min|/Ji=2,min > Threshold
Compute matrix E in (42), and find 57 opt,+ and Br ope,¢
(Theorem 1).
Compute matrices W, (41 and W, ;41 in (44)—(45), and
Jf,.l,.] ,min in (43)
End
End
Put jth Jiy1,min (and/or any other CPI factors) into fitness
vector.
End
Perform selection, crossover, and mutation for next generation.
End
Optimal spread rate Aop and optimal learning rate aop¢ are found.
For antecedent part: uncertain means [mfﬂ, "”22] and deviation
&% are found
For consequent part: Wi sy1, Wi 11, B1,0pt, Bropt and Jepi1 min
are found.

Example 3: Given the same Example 1, we extend the
same primary type-1 Gaussian MFs by using the spread rate
A in (69). Then we use the Algorithm 3 to tune this MIMO
interval T2FNN. Table II shows all parameters in the GAs
process and the final results for optimal spread rate Aop¢ and
optimal learning rate c,p¢. To increase the efficiency, we define
mutation rate P, and crossover rate P. [3] as

P, = exp(0.0Sk/lVTax_gen) -1 (71)
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TABLE III
OPTIMAL LEARNING RATE & TOTAL SQUARED ERROR
Optimal rate 4, and o, Fixed rate (A=0.5, 0=0.2)
t ﬂ 1,opt ﬁ ropt J ﬁ 1Lopt ﬁ r.opt J
1 7.8055 13.7388 0.0039257 27.1541 -6.4351 0.0176966
2 11.4009 3.8154 1.7371e-8 -1.1137 24.9637 4.9332e-3
3 16.6235 39.3156 1.5162¢-8 9.4266 112.2790 6.9830e-4
4 4.4307 18.0355 4.7117e-9 -13.0602 26.2662 5.7282e-5
5 11.6018 40.9221 3.0365¢-9 6.5622 90.5961 1.9310¢e-6
04 x=10,4=90"
0.35 ;
Total 03
Squared y
Error 025
J 0.2
015
0.1
0.05 @< (x,)
y 4
0 3 4 5 C g
Iteration t
x=0 x=20

Fig. 9. Performance comparisons. Case a: Optimal spread rate A,,¢ and
learning rate <, with dynamical optimal learning rates 3; op¢ and 3, ope.
Case b: A = 0.5, a = 0.2 with dynamical optimal learning rates 3; op¢ and

Broopt-

(—k/Max_gen)

P.=exp (72)

where k denotes the kth generation. After 5 iterations, we have
the final tuned weighting factors

[w),, w) 3.2758,  5.0332
W= |wh, wh|=|12275, —0.5806
| wi,  wiy 3.9290,  0.4600
[wl, wl, 8.5219, 11.649
W, = | w2, w2 | =|4.6719, 7.4445
Lwdy, wd, 5.0558, 3.7278

In comparison with fixed spread rate and optimal learning
rate, we also combine Example 1 with Algorithm 2 to tune the

overall T2FNN. Therefore we have the output results as

r3.5200, 4.0200

. 5.4301, 6.2300
Y rope o = | 404099 57599 | 209

[ 4.7001, 4.2801

r3.5206, 4.0215

. 5.4324, 6.2328

Y(@)r=05.0=02 = 4.9496, 5.7591

| 4.7002, 4.2764

The total squared errors vs. iterations are listed in Table III, and
the results are plotted in Fig. 9. Fig. 9 also shows the trajectory .J
for the tuning results of using fixed rates in antecedent part (i.e.,
A = 0.5 and o = 0.2), and optimal learning rates 3 op¢ and
Br,opt in consequent part. By inspecting the results in this ex-
ample, it is obvious that the actual output of GA-based approach

Fig. 10. Diagram of simulated truck and loading zone.

is closer to desired output and convergence is much faster than
those results from fixed rate, or even Examples 1 and 2.

V. EXAMPLES

Based on the above GAs design for the interval T2FNN, two
popular examples will be fully illustrated in this section. Ex-
ample 4 is the truck back up control problem. Example 5 is non-
linear system identification.

Example 4: Truck Back Up Control Problem: The
well-known nonlinear problem of backing up a truck into
a loading dock via the FNN controller [25], [26], will be
controlled by using interval T2FNN. Fig. 10 shows the truck
and loading zone. The truck position is located by three state
variables z, y, and ¢, where ¢ is the angle of the truck with the
horizontal axis z. Steering angle # is used to control the truck.
The truck moves backward by a fixed unit distance every step.
We assume enough clearance between the truck and the loading
zone, therefore y does not have to be considered. Hence the
system has two inputs, i.e., —115° < ¢ < 295° & 0 < = < 20,
and one output § within [—40°, 40°]. The final states (z ¢, ¢)
will be equal or close to (10,90°). In this simulation, steering
angle 6 will be normalized into [0, 1].

A reasonable numbers of training data pairs must
be first generated as desired input-output pairs so
that it can cover whole situation. The following
14 initial states are wused to generate such pairs:
($07¢0) = (1700)7(17900)7(17_900)7(7700)7(77900)7
(7,180°), (7,—90°), (13,0°), (13,90°), (13, 180°), (13, 270°),
(19,90°),(19,180°), and (19,270°). The following

?

approximate kinematics is used to simulate the truck path as

Tpt1 = Tt + cos(Py + ;) + sin(¢py) sin(6y) (73)
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Ye+1 = Y¢ +sin(¢y + 0) — sin(¢) sin(6y) (74)
bry1 = ¢y —sin! <2S%(9t)> (75)

where [ is the length of the truck, we assume [ = 4. Equations
(73)—(75) will be used to derive the next state when present state
and control are given. Since y is not considered, (74) will be
discarded.

In this application, we compare the performances by using
two different FNNS, i.e., singleton type-1 FNN (T1FNN) and
interval T2FNN. We use a single rate to identify the spread of
uncertain means of interval Gaussian MF by its deviation ratio in
(69),1i.e., — Ao and 4+ Ao ; then all parameters of interval T2FNN
can be obtained. The weighting factors w; and w,. can also be
set randomly in [0, 1].

Figs. 11(a) and (b) show the two antecedents initial type-1
MFs of TIFNN, where Sn means small level, CE means center
and Bn means big level. By using spread rate to extend from
type-1 MFs, we have two corresponding antecedents initial
type-2 MFs of interval T2FNN shown in Figs. 11(c) and (d).
For steering angle 6, we let the T’s be the its fuzzy MF. The
centers of T1, T2, T3, T4, TS5, T6, and T7 are —40°, —20°, —7°,
0°, 7°, 20°, and 40°, respectively.

Each FNN system has 35 rules which come from 7 MFs in the
first antecedent by five MFs in the second antecedent. We use
32 bits to form the chromosome, 16 bits for spread rate A and
16 bits for optimal learning rate a. The chromosome will be
mapped into real values in the ranges of [A;, A,] and [«;, ],
respectively. The mutation rate P,, and crossover rate P. are
defined as in Example 3. To guarantee the performance of con-
trol process, the term of settling time (or settling steps) is also
taken as a control performance criteria (CPI) for deriving op-
timal spread and learning rate in GA searching process. The re-
sults of simulation show that the smaller settling time (or settling
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Two antecedents initial MFs of TIFNN in (a) and (b), and the two corresponding antecedents initial MFs of interval T2FNN in (c) and (d).

steps) and smaller squared error can lead better performance in
this interval type-2 FNN case. The best settling steps from two
initial states (0, 0°) and (20, 180°) are 19 and 28 steps, respec-
tively.

Given the same training pairs, we also train the type-1 FNN
with dynamic optimal learning for consequent part. For com-
parison purpose, the following TSK model in [27] and [28]

R :TF zy is F,and x5 is F¥,
THEN y; = ¢f + ciz1 + chay  (76)

where ¢ = 1,..., M (=35). With more trainable parameters
in the consequent part will be tuned to compare their perfor-
mance with TIFNN and T2FNN. The TSK model, in fact, can
be treated as TIFNN (T1FNN-TSK) and trained with optimal
learning algorithm [3].

Each case under this application is run for five iterations.
Fig. 12(a) shows the performance comparsion with T1FNN,
T1FNN-TSK and interval T2FNN. Fig. 12(b) shows the times
for the truck to arrive target position in ten different initial
conditions, and their first five trajectories are plotted in Fig. 13.
Table IV shows the number of design parameters for these
three models. The total squared errors of all cases are shown
in Table V. From Figs. 12 and 13, it is obvious that the perfor-
mances of interval T2FNN is better than those in T1FNN. It
not only takes less steps to reach target position using interval
T2FNN, but it also shows smoother trajectories. However, due
to more parameters included, the performances of TIFNN-TSK
is still better than T1FNN in Fig. 12.

The TSK model was also similarly defined as a Type-3 fuzzy
reasoning in adaptive network-based inference system (ANFIS)
in [29]. The T2FNN with dynamic optimal training and more
trainable parameters can achieve desired performance in fewer
iterations, whereas ANFIS with least square estimation needs
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TABLE 1V
NUMBER OF DESIGN PARAMETERS FOR DIFFERENT MODEL, WHERE n = 2, M = 35

T1FNN

T1FNN-TSK T2FNN

Number of parameters Qnt1)M=175

(2nt3)M=245 (3n+2)M=280

TABLE V
TOTAL SQUARED ERROR J FOR FIVE ITERATIONS

T1FNN

TIFNN-TSK

T2FNN

Iter.
Bo J Boy

J :BI,npz ﬂ ropt J

40.9681 | 0.006984 | 53.6074

0.006023

179.8414 | 60.6627 | 0.005491

63.0143 | 0.006108

51.2676

0.005514

303.9327

73.1634

0.005250

32.0096 | 0.005738

40.3804

0.005318

197.6248

39.5050

0.005036

36.6070 | 0.005597

41.8190

0.005185

569.5179

161.1721

0.004722

DB |(Ww | —

37.6215 | 0.005489 | 42.9906

0.005090

316.1715 | 25.2515 | 0.004597

more iterations in its proposed model [29]. It is obvious that
the improvement of dynamic optimal training in Theorem 1 of
T2FNN and T1FNN [3] can yield faster convergence.

Example 5: Nonlinear System Identification Second Order
System: The plant to be identified is described by the following
second-order difference:

y(k +1) = gly(k), y(k — 1)] + u(k) (T7)

where

y(k)y(k = Dly(k) +2.5]

gly(k), y(k —1)] = 1+2(k) +y2(k - 1)

A series-parallel FNN identifier [25] described by the following
equation

gk +1) = fly(k), y(k = D] + u(k)

will be adopted, where f[y(k),y(k — 1)] is the form of (10)
with two fuzzy variables y(k) and y(k — 1). Training data
of 500 pairs are generated from plant model, assuming a
random input signal w(k) uniformly distributed in [—2,2].
The data are used to build fuzzy model for 3. We follow
(69) to allocate type-1 MFs for these two variakbes y(k) and
y(k—1)asmp = [-1 0 1.5 3],mg2 = [-1 0 1.5 3], and
1 = [0.5 0.3 0.4 06,602 = [0.5 0.3 0.4 0.6]. Then we
extend above MFs to type-2 interval MFs by using spread rate,
where its optimal value will be found through Algorithm 3. The

(78)
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Fig. 14. (a) Shows the results of total squared error vs iterations in TIFNN (dashed line) and T2FNN (solid line). (b) Shows outputs of the plant y (solid line)

and the identification model ¢ (dashed line).

TABLE VI
TOTAL SQUARED ERROR J FOR TEN ITERATIONS

I T1FNN T2FNN

ter.
e ﬁ opt J p Lopt B r.opt J
1 12.0116 0.014861 14.6116 8.3728 0.007153
2 6.8172 0.007348 83.2264 52.9716 0.002609
3 12.5323 0.004160 -29.5359 53.0753 0.001778
8 39.2183 1.1420e-3 36.5806 1.0250 1.0098e-3
9 33.8319 1.0595¢e-3 35.2905 -4.4031 9.5119¢-4
10 20.8053 1.0063e-3 32.1227 -8.6364 8.9176e-4

mutation rate P,, and crossover rate P, are defined the same
as in Example 3. The initial value of .J is 1.8803. Fig. 14(a)
shows the performance comparsion with TIFNN and interval
T2FNN. It is obvious that faster convergence is also obtained
via interval T2FNN. After the training process is finished, the
FNN model is tested by applying a sinusoidal input signal
u(k) = sin(2wk/25). Fig. 14(b) shows the outputs of both
FNN model and actual model. The total squared error J using
120 testing data items is 0.0020. This example shows excellent
results are obtained via interval T2FNN. Table VI shows total
squared error J for 10 iterations.

VI. CONCLUSION

The interval type-2 FLS with type reduction was extended
with interval neural network to construct an interval T2FNN
in this paper. The consequent part of this interval T2FNN is
also an interval neural network. The dynamical optimal training
for this interval neural network is also developed to guarantee
maximum error reduction during the training process. A multi-
input, multi-output FNN model is adopted to illustrate all the
properties of this T2FNN with dynamical optimal training in
its consequent part. This dynamical optimal training algorithm
can be combined into a GA-based approach to find the op-
timal spread rate and learning rate for antecedent part. The op-
timal weighting factors in the consequent part of this T2FNN
can be directly found from the dynamical optimal training al-
gorithm with global searching. This interval T2FNN with dy-
namic optimal learning algorithm is applied to control the truck
backing-up system and nonlinear system identification. All the

simulation results by using the interval T2ZFNN show better per-
formances than those using T1FNN.
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