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Comments on “A Computational Evolutionary Approach
to Evolving Game Strategies and Cooperation”

Hsu-Chih Wu and Chuen-Tsai Sun

Abstract—Azuaje offers an approach to the co-evolution of competing
virtual creatures and a model for the evolution of game strategies and their
emerging behaviors [1]. This model can be greatly simplified and optimal
solutions can be obtained more quickly and easily by using an analytical
approach. We emphasize the importance of performing a model analysis
before choosing an evolutionary or analytical approach to a problem. Fur-
thermore, Azuaje’s model is derived from the Prisoner’s Dilemma, a clas-
sical model in game theory; some results have already been discussed in the
literature. We discuss his model from the perspective of game theorists.

Index Terms—Artificial life, evolutionary computation, genetic algo-
rithm, prisoner’s dilemma.

I. INTRODUCTION

The emergence of cooperation is currently the focus of many re-
search papers in economics, biology, computer science, and sociology
[2]. In [1], Azuaje proposes an approach to the co-evolution of com-
peting virtual creatures to model the emergence of cooperation in game
strategy. According to this model, both: 1) cooperative behavior can
emerge from an evolutionary and unsupervised learning process and
2) evolving organisms are able to achieve individual success by devel-
oping strategies that are more effective than Tit-for-Tat.

In this paper, we will argue that this model can be greatly simplified
and offer an alternative analytical approach that we feel is more effi-
cient. We believe that our simplified model underscores the comple-
mentary properties of evolutionary and analytical approaches. The ro-
bustness of the evolutionary approach makes it very popular among re-
searchers in various disciplines; they find it easy to use for formulating
problems and obtaining solutions. However, two important consider-
ations are frequently overlooked by the users of the evolutionary ap-
proach: the importance of pre-run model analysis and the need to make
a conscious decision between evolutionary and analytical approaches
to individual problems based on their specific characteristics.

Furthermore, in Azuaje’s mode, interactions between two types of
organisms is a clear example of an Iterated Prisoner’s Dilemma (IPD)
game. Even though Azuaje claims that his model does not implement a
traditional Prisoner’s Dilemma system, some results of [1]’s model is
similar to the studies published by Axelrod [2], and have already been
discussed. We will extend this discussion of the model and its results
from the perspective of game theorists.

II. AN ANALYTICAL APPROACH TO THE MODEL

In [1], the artificial life model considers two kinds of organisms, X
and Y. Their individual decisions about whether or not to approach a
food source are presented in the form of an IPD game. Y is represented
by a genetic code that determines its sequence of moves against X. Y
cannot recognize individuals or store (remember) previous events. In
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TABLE 1
MOVES OF y AND X FROM ROUND 1 TO ROUND n

1 2 n

Yy S1 S2 ... Sy

X 0 S1 —es Sn-1
TABLE 1I

POTENTAIL SCORES OF y FOR EACH COMBINATION OF (ax, ay)

0.0 O (@O0 (@D

(ax, ay)

y’s score
P(ax, ay)

T S P

contrast, X is a more sophisticated organism that can perform basic
cognitive and memory functions; it acts in accordance with a standard
Tit-for-Tat strategy, mimicking each move that its opponent made in
the preceding round.

Y -type organisms evolve according to two basic genetic algorithm
(GA) operators: crossover and mutation. Even though there are two
kinds of organisms, only Y is subject to the forces of artificial selection.
X, whose primary function is to evaluate Y’s score, cannot evolve. We
therefore believe it is unnecessary to select “100 fittest individuals from
each type of organism to be included in the next generation” [1]; that
selection process can be limited to Y -type organisms.

[1]’s model can be formulated to the following problem: find an op-
timal binary string Yop¢ that maximizes F(y), where the binary string
y represents a Y -type organism; 0’s encoded in y represent “do not ap-
proach food” and 1’s represent “approach food”; and a fitness function
F(y) denotes a y score when it plays with X (the Tit-for-Tat strategy)
n times, with n equal to the length of y.

Lety = $15283...8,.y ’s moves from round 1 to round » are
expressed as

51,82,53,...,50—1,5n.

Since X simply repeats its opponent’s preceding moves, its moves
are expressed as
05 81,52 ...,82,-2,Sn—1.
Moves of y and X from round 1 to round » are shown in Table I.

The interaction between y and X during a single round is represented
as

(aXs aY)

where ax stands for X’s move, and ay stands for y’s move. There
are four possible combinations for (ax, ay ). For each combination, y
receives a score (in IPD terminology, a payoff) P(ax,ay ). Possible
scores are listed in Table II.

In Table I, [R, S, T, P] denotes four IPD payoff values. The payoff
matrix and value constraints for IPD game is listed in Table III. In [1]’s
model, [R, S, T, P] = [3,0,5,1].
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TABLE 1II
PAYOFF MATRIX AND VALUE CONSTRAINTS FOR IPD MODEL

Myself\Oppoent Cooperation Defection
Cooperation R\R S\T
Defection TS \P

Note: T >R >P > S,and2R >S4+ T.

An interaction history of y and X moves from round 1 to round n is
denoted as a sequence of (ax, ay) pairs

(0751)7(51752)3(52753)3(53754)7--

The problem can be reformulated as follows. Find a binary string
Yy = s15283...S,, t0O maximize

n
Z P(S‘nz—l 7sm)

m=1

. (Sn—lv Sn ).

where sp =0

P(0.0) =3
P(0,1)=5
P(1,0) =0
P(0,0) =1.

To solve this problem, define B,,, as a pattern with m consecutive
1’s sandwiched between two 0’s, that is
B, =010
B, =0110

B,—i =011...10, with (n — 1)1's.

The longest pattern is represented as B, 1. Since n is the length
of y, after adding s at the beginning of y, the maximum number of
consecutive 1’s must be (n — 1) in order to satisfy the constraint that
it starts and ends with 0.

Let the number of By,Bs,...,B,_y patterns in y be
bi,ba,...,br—1. Most strings with a random combination of
0’s and 1’s can be represented as the bi,bs,..., and b,—; of
Bi,Bs,... and B,,_1 patterns connected by arbitrary numbers of 0’s

(Fig. 1). Strings that start or end with 1 cannot be represented in this
form. These cases will be addressed later in this section.

The reason for choosing B,,, patterns to represent binary strings is
to compute y’s score. In cases of consecutive 0’s, the y score will be
the sum of consecutive R’s. At the appearance of the first 1, the score
of that round changes from R to T, since (ax, ay) is (0, 1). The score
of subsequent round will be S if that 1 is followed by a 0 and P if it
is followed by another 1. B,,, pattern scores for m = 1 to (n — 1) are
listed in Table IV. They can be formulated as

PP(B,,) = (T + (m — 1)P + 5).

¥’s score can be computed by adding the scores of consecutive 0’s
plus the summation of B,,, patterns’ scores from m = 1 to (n — 1).
However, this kind of representation does not work when the string
ends with 1. Therefore, two cases must be considered.

Case 1) Strings that end with 0 whose regular expression is
0{1,0}"0.

Case 2) Strings that end with 2 number of consecutive 1’s, whose
regular expression is

0{1,0}"1".
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0‘0 1... 10|O 0|0 l... 10‘0 0|O 1... 10|0
B; B; Bx

Fig. 1. String combinations can be represented as B,,, patterns connected by
consecutive 0’s.

TABLE IV
B, SCORES FOR m = 1 TO (n — 1)

Bm Bl BZ B3 Bn-l
Encoding 010 0110 01110 011...10
0,1),
(0,1), D
(0,1, (LD,
Interaction  (0,1), (1) (1,1),
History (1,0) T (LD, o
’ (1,0) (LD,
(1,0)
(1,0)
Score T+S T+P+S T+2P+S T+(n-2)P+S

Note that the cases that strings start with 1 are skipped since so = 0
in our problem formulation.
The y score: ZZL: L Plsm—1 ,Sm ) can be accumulated as follows.
Case 1) The string is divided into two parts: the B, to B,,_; patterns
and the consecutive 0’s that connect them. Thus

Z P(Sm—1,5m)

m=1
= Z (Bito By,—1score) + Z (Consecutive 0's score)

n—1

ni(PP(Bm)x bm)—i—<<77— D (24(m = 1)) x bm> ><R>

m=1 m=1

(T+S)xbi +(T+P+8)xbs+ (T+2P+S5) x by
+- -+ (T+({(n—1)—1)P+S5) X br—1
+((n=2(b14+bz+---+by-1)
—(b2+2bs+---+(n=—1-=1)b,_1)) x R

n—1 n—1
=nxR+(T+S—2R) x » bu+(P=R) > ((m—1)xby).

m=1
Case 2) The string includes an additional section consisting of the
last = consecutive 1’s, where > 1. Thus

n
Z P(Sm,fl Sm )
m=1

= Z (B, to B,,_1 score) + Z (Consecutive 0's score)

m=2

+ Z (Last consecutive 1's score)

n—1 n—1
= Z(PP(B,,L) X b,,L)+<<7l—x—Z ((2Hm—-1))x bm> XR)

m=1 m=1
+(T+(x—-1)x5)
=(T+5S)xbi+(T+P+S)xbo+(T+2P+5) xbs
++ T+ ((n=1)=1)P+5) X bn
+((n—2=2(br+bs+ - +bn_1)
— (b2 +2b3+---+(n—1-1)bp—1)) XR
+T+(x—-1)xS
n—1
=nXR+(T+S—2R) x> bu+(P=R)Y_ ((m —1) X by)
m=1

+(T+(x—1)xS—2xR).

n—1

m=2
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Based on constraint of IPD: 2R > T'+ S and R > P, maximizing

n—1 n—1

(T+S5=2R)x Y bu+(P=R)> ((m—1)xbyp)

m=1 m=2

requires that by, b, ..., and b, be 0. The result is as follows.
Casel) >0 | P(sm—1.,5m) =n X R.
Case2) >0 | P(Sm—1,8m) =nxR+(T+(x—1)xS—xzxR).

In Case 2, since [R, S, T, P] = [3,0,5, 1]
(T+(zx-1)xS—zxR)y=5-3=2

which is greater than 0 if # < 5/3. Since « > 1, the optimal yopt is
obtained when x = 1

Yope = 0000...... 001

with a score of

> P(sm-15m) =nx R+ (T - R).

m=1

If n = 30, then
Yopt = 000000000 000000000000 000000001

with a score of

D P(sy—1:5m) = (30 x 34 (5 - 3)) = 92.

m=1

This result is exactly the same as that produced by [1]’s evolutionary
approach. The mathematical procedure implemented to obtain optimal
v score: Y o _ P(Sm—1,5m) is shown in Fig. 2.

m=1

III. DISCUSSION

Our approach emphasizes an important question: What should
be done before using evolutionary approach to solve a problem?
We believe that too many researchers overlook the importance of
model analysis. The model in the current example is complex on the
surface because it contains two kinds of organisms. However, since X
cannot evolve, it only serves as an evaluation tool for Y—that is, the
problem actually addresses only one kind of organism. When using an
evolutionary approach, only Y organisms need to be selected for the
next generation, cutting the number of artificial selection operations
in half and drastically reducing computation time. Our main point
here is that pre-run analytical work can increase one’s understanding
of problem scope, reduce model complexity, and help in the search
for appropriate parameters—in short, increase the efficiency of a
search for appropriate solutions.

Our result was the same as that of [1], but our analytical approach
was faster and simpler. In this model, our approach is appropriate in
cases with different Y lengths, but the constraints of the evolutionary
approach dictate that a GA must be run for each change in the length
of Y. We are not claiming that an analytical approach is always supe-
rior to an evolutionary approach, since they clearly have complemen-
tary advantages and disadvantages. An analytical approach is much less
effective than an evolutionary approach when problem spaces exceed
a certain size or complexity threshold. This was not the case in the
example of [1].

Next, we discuss the model results from a game theorists’ perspec-
tive. In [1], Azuaje states that Y was able to achieve individual suc-
cess “by learning to approach the source at the end of a contest.” This
strategy was more successful than Tit-for-Tat. He also makes the claim
that “information about the length of the games was not provided to

1571

define B,, patterns

.

interpret string v as B,, patterns
connected by consecutive 0°s

'

derive the score function of B,, patterns

and consecutive 0's separately

'

sum the two score functions to

obtain ¥’s score function

'

apply the Prisoner’s Dilemma constraint and
the length of ¥ to ¥*s score function, and obtain

the optimal y score for a particular y-length

Fig. 2. Mathematical procedure for obtaining optimal y score.

the creature.” We believe game length was implied in Y’s encoding,
since n is the length of Y and Y always plays with X n times. Thus,
the important “shadow of the future” assumption of stable cooperation
no longer holds [2]; in Axelrod’s words, “if you are unlikely to meet
the other person again, or if you care little about future payoffs, then
you might as well defect now and not worry about the consequences
for the future” [2]. The behavior of an evolved solution for [1]’s model
has already been discussed and verified in the literature [2].

Azuaje also wrote that “the emergence of cooperation did not require
special assumptions about the individuals and the game environment.”
We suggest that the emergence of cooperation is actually determined by
the X organism, which uses the Tit-for-Tat strategy in his model. The
strategy encourages the evolution of Y toward a strategy that is equal to
or better than Tit-for-Tat, which in turn encourages mutual cooperation.
Assuming that X follows an “always defect” strategy (ALLD), then Y
will also defect, and cooperative behavior will not emerge.

Furthermore, it is generally accepted that no evolutionarily stable
strategy (ESS) exists for traditional IPD games, meaning that no preva-
lent strategy exists for extended IPD interactions [3]. Game theorists
are less concerned with finding a dominant IPD strategy than with
investigating relationships among strategies [5] and identifying con-
ditions under which strategies become evolutionarily stable [4]. The
model in [1] would be very interesting if X used more than one strategy
or if X were also capable of evolving. Either case would result in com-
plex evolutionary dynamics, underscoring the weaknesses of the an-
alytical approach and emphasizing the strengths of the evolutionary
approach.

IV. CONCLUSION

Our analytical approach to the problem described in [1] is a faster
and easier alternative to the evolutionary approach. In this paper, we
also emphasized two important considerations that are frequently over-
looked by users of the evolutionary approach: the importance of pre-run
model analysis and the need to make a conscious decision between
an evolutionary or analytical approach to solving a problem. We also
addressed some game theory considerations regarding the Prisoner’s
Dilemma and other two-person matrix games.

Our approach can be expanded in order to solve more sophisticated
problems. For example, in cases where X-type organisms use other
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kinds of strategies, y’s score function may change; at a certain level
of sophistication for X and y encoding, interactions between them
may become too complex to be represented as a string. In such cases,
a finite state machine representation may be useful for representing
interactions between the two strategies [5]. Furthermore, our approach
can be applied to other form of two-person matrix games (e.g., chicken
games), and Prisoner’s Dilemma derivatives (e.g., N-person and
N-choice Prisoner’s Dilemma). It is also important to investigate the
extent to which the analytical approach is useful for nondeterministic
strategies (strategies with slight chances of deviations in moves). For
those sophisticated models, we believe a combination of analytical
and evolutionary approaches may be more efficient than relying
on either one alone. Further investigation is required to clarify the
complementary properties of the two approaches.
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