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Process yield has been the most basic and common criterion used in
the manufacturing industry as a base for measuring process performance.
Boyles considered a measurement formula called Spk , which establishes the
relationship between the manufacturing specification and the actual process
performance, providing an exact (rather than approximate) measure of process yield.
Unfortunately, the sampling distribution and the associated statistical properties of
Spk are analytically intractable. In this paper, we consider the natural estimator
of the measure Spk . We investigate the accuracy of the natural estimator of
Spk computationally, using a simulation technique to find the relative bias and
the relative mean square error for some commonly used quality requirements.
Extensive simulation results are provided and analyzed, which are useful to the
engineers for factory applications in measuring process performance. Copyright c©
2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Process yield has long been a standard criterion used in the manufacturing industry as a common
measure on process performance. Process yield is currently defined as the percentage of processed
product unit passing inspection. That is, the product characteristic must fall within the manufacturing

tolerance. For product units rejected (non-conformities), additional costs would be incurred to the factory
for scrapping or repairing the product. All passed product units are equally accepted by the producer, which
incurs the factory no additional cost. For processes with two-sided manufacturing specifications, the process
yield can be calculated as Yield = F(USL) − F(LSL), where USL and LSL are the upper and the lower
specification limits, respectively, and F(·) is the cumulative distribution function of the process characteristic.
If the process characteristic is normally distributed, then the process yield can be alternatively expressed as
Yield = �[(USL − µ)/σ ] − �[(µ − LSL)/σ ], where µ is the process mean, σ is the process standard deviation
and �(·) is the cumulative distribution function of the standard normal distribution N(0, 1).
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Table I. Some Spk values and the corresponding non-conformities

Non-conformities
Spk Yield (ppm)

1.00 0.997 300 2039 2699.796
1.10 0.999 033 1517 966.848
1.20 0.999 681 7828 318.217
1.30 0.999 903 8073 96.193
1.33 0.999 933 9267 66.073
1.40 0.999 973 3085 26.691
1.50 0.999 993 2047 6.795
1.60 0.999 998 4133 1.587
1.67 0.999 999 4557 0.544
1.70 0.999 999 6603 0.340
1.80 0.999 999 9334 0.067
1.90 0.999 999 9880 0.012
2.00 0.999 999 9980 0.002

Numerous process capability indices have been proposed to measure the process yield, particularly for
processes with normally distributed characteristics. Those include Cpk (Kane1), Cpm (Chan et al.2), and Cpmk

(Pearn et al.3). These indices are defined as
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{
USL − µ

3σ
,

µ − LSL

3σ

}

Cpm = USL − LSL

6
√

σ 2 + (µ − T )2

Cpmk = min

{
USL − µ

3
√

σ 2 + (µ − T )2
,

µ − LSL

3
√

σ 2 + (µ − T )2

}

where T is the target value. These indices establish the relationship between the manufacturing specifications
and the actual process performance, which provide some lower bounds on the process yield. For example,
we may establish the relationship of Yield = F [(USL − µ)/σ ] − F [(LSL − µ)/σ ] ≥ 2�(3Cpk) − 1 or,
equivalently, an upper bound on the fraction of the non-conformities P(NC) = 1 − F [(USL − µ)/σ ] +
F [(LSL − µ)/σ ] ≤ 2�(−3Cpk). Thus, for a process with Cpk ≥ 1.00, we can assure that the process yield
is greater than or equal to 0.9973.

The statistical properties of the estimators of those indices under various process conditions have been
investigated extensively by authors including Chan et al.2, Pearn et al.3, Bordignon and Scagliarini4, Borges
and Ho5, Chang et al.6, Hoffman7, Nahar et al.8, Noorossana9, Pearn et al.10, Pearn and Lin11 and Zimmer
et al.12. Kotz and Johnson13 presented a review for the development of process capability indices in the past
ten years. Based on the above expression of process yield, Boyles14 considered the yield measure Spk , as defined
in the following:

Spk = 1
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The measure Spk establishes the relationship between the manufacturing specifications and the actual process
performance, which provides an exact measure on the process yield. If Spk = c, then the process yield can
be expressed as Yield = 2�(3c) − 1. Obviously, there is a one-to-one correspondence between Spk and the
process yield. Thus, Spk provides an exact (rather than approximate) measure of the process yield. Table I
summarizes the process yield, non-conformities (in parts per million (ppm)) as a function of the measure Spk ,
for Spk = 1.00(0.1)2.00, including the most commonly-used performance requirements 1.00, 1.33, 1.50, 1.67
and 2.00. For example, if for a particular process the yield measure Spk = 1.33, then the corresponding value of
non-conformities is roughly 66 ppm.
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2. ESTIMATION OF Spk

In practice, the process parameters µ and σ are unknown and have to be estimated from the sampled data.
To estimate the yield measure Spk , we consider the following natural estimator Ŝpk , where the statistics

X̄ =
( n∑

i=1

Xi

)/
n and S =

[
(n − 1)−1

n∑
i=1

(Xi − X̄)2
]1/2

are the sample mean and the sample standard deviation of the conventional estimators of µ and σ , respectively,
which may be obtained from a well-controlled (demonstrably in statistical control) process. So

Ŝpk = 1
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The exact distribution of Ŝpk is mathematically intractable. On the other hand, Lee et al.15 obtained an
approximate distribution of Ŝpk using a Taylor expansion technique. By taking the first order of the Taylor
expansion, it is shown that the estimator Ŝpk can be expressed approximately as

Ŝpk ≈ Spk + 1
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where d = (USL − LSL)/2, and φ is the probability density function of the standard normal distribution N(0, 1).
It is easy to show that the statistic W is distributed as a normal distribution with mean 0 and variance a2 + b2,
where a and b are functions of µ and σ , defined as
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Thus, the estimator Ŝpk is approximately (asymptotically) distributed as N(Spk, [a2 + b2]{36n[φ(3Spk)]2}−1)

and the estimator Ŝpk is asymptotically unbiased.
Through a rather complicated and tedious development (Pearn et al.16), we can further obtain the following,

where Z and Y are distributed as the joint bivariate normal distribution and D1, D2, D3, D4 and D5 are functions
of (µ − m)/d , and σ/d ,

Ŝpk = Spk + D1Z + D2Y + D3Z
2 + D4ZY + D5Y
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Therefore, the distribution of Ŝpk may be approximated, alternatively, by the following polynomial combination
of the distributions of Z and Y :

Spk + D1Z + D2Y + D3Z
2 + D4ZY + D5Y

2 (Z, Y )
d−→ N((0, 0), �2)

�2 =
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1 0
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)

with the bias approximated by the term

D1Z + D2Y + D3Z
2 + D4ZY + D5Y

2
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The formulae for both approximations to the distribution of Ŝpk are rather complicated and the calculation
is cumbersome to deal with. Since the parameters a and b in the approximate formula must also be estimated
in real applications, then a great uncertainty may be introduced into the performance assessments due to the
additional sampling errors from the estimation of a and b. Further, the accuracy of the approximation has not
been investigated. Thus, the approximation would not be practically useful before those issues are resolved.
For practical purpose, in the following we investigate the accuracy of the natural estimator Ŝpk computationally,
using the simulation technique to find the relative bias and relative mean square error for some commonly used
performance requirements. The simulation results obtained are useful for practitioners/engineers in measuring
process performance for their factory applications, particularly if their processes are controlled/monitored on a
routine basis.

3. THE SIMULATION PARAMETERS

We note that the natural estimator Spk can be rewritten and expressed as a function of the parameters Cp and Ca.
The parameter Cp is defined as Cp = (USL − LSL)/6σ , which measures the overall process variation relative
to the specification tolerance and therefore only reflects process precision (consistency). The parameter Ca is
defined as Ca = 1 − |µ − m|/d (see Pearn et al.11), which measures the degree of process centering, where m =
(USL + LSL)/2 is the mid-point between the upper and the lower specification limits and d = (USL − LSL)/2 is
half of the length of the specification interval. Thus, the parameter Ca alerts the user if the process mean deviates
from its target value. In fact, a mathematical relationship among the three measurements can be established as
�(3Spk) = {�(3CpCa) + �[3Cp(2 − Ca)]}/2.
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Table II displays the simulation parameters of the process used in the simulation, covering the most commonly
used performance requirements Spk = 1.00, 1.33, 1.50, 1.67 and 2.00. Table II(a) summarizes the precision
measure Cp = 1.0(0.1)2.0, the corresponding accuracy measure Ca and (µ, σ ) for Spk = 1.00. Table II(b)
summarizes the precision measure Cp = 1.33, 1.4(0.1)2.3, the corresponding accuracy measure Ca and (µ, σ )

for Spk = 1.33. Table II(c) summarizes the precision measure Cp = 1.5(0.1)2.5, the corresponding accuracy
measure Ca and (µ, σ ) for Spk = 1.50. Table II(d) summarizes the precision measure Cp = 1.67, 1.7(0.1)2.6,
the corresponding accuracy measure Ca and (µ, σ ) for Spk = 1.67. Table II(e) summarizes the precision measure
Cp = 2.0(0.1)3.0, the corresponding accuracy measure Ca and (µ, σ ) for Spk = 2.00. Those combinations of
(Cp, Ca), or (µ, σ ), cover a wide range of underlying distributions resulting in the same value of Spk , providing
critical information regarding the sensitivity of the estimation error.

To analyze the accuracy of the natural estimator Ŝpk , we investigate the relative bias defined as

BIASR(Ŝpk) = [E(Ŝpk) − Spk]/Spk = E(Ŝpk/Spk) − 1

which measures the average relative (percentage) deviation of Ŝpk from the true Spk . We also investigate the
relative mean square error defined as MSER(Ŝpk) = E[(Ŝpk − Spk)/Spk]2 = E[(Ŝpk/Spk) − 1]2 which measures
the average of the squared relative deviation of Ŝpk from the true Spk . We further consider the statistic
[MSER(Ŝpk)]1/2, the square root of the relative mean square error, which is a more direct measurement of
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Table II. Various combinations of Cp and Ca for (a) Spk = 1.00, (b) Spk = 1.33; (c) Spk = 1.50; (d) Spk = 1.67;
(e) Spk = 2.00

Cp Ca µ σ Cp Ca µ σ

(a) (d)
1.0 1.000 000 000 15.000 000 00 1.666 666667 1.67 1.000 000 000 15.000 000 00 1.000 000 000
1.1 0.845 650 984 15.771 745 08 1.515 151515 1.7 0.960 124 663 15.199 376 69 0.980 392 157
1.2 0.772 993 431 16.135 032 85 1.388 888889 1.8 0.902 865 766 15.485 671 17 0.925 925 926
1.3 0.713 386 252 16.433 068 74 1.282 051282 1.9 0.855 248 895 15.723 755 53 0.877 192 982
1.4 0.662 422 888 16.687 885 56 1.190 476190 2.0 0.812 484 428 15.937 577 86 0.833 333 333
1.5 0.618 261 111 16.908 694 45 1.111 111111 2.1 0.773 794 664 16.131 026 68 0.793 650 794
1.6 0.579 619 785 17.101 901 08 1.041 666667 2.2 0.738 622 179 16.306 889 11 0.757 575 758
1.7 0.545 524 504 17.272 377 48 0.980 392157 2.3 0.706 508 171 16.467 459 15 0.724 637 681
1.8 0.515 217 587 17.423 912 07 0.925 925926 2.4 0.677 070 331 16.614 648 35 0.694 444 444
1.9 0.488 100 872 17.559 495 64 0.877 192982 2.5 0.649 987 517 16.750 062 42 0.666 666 667
2.0 0.463 695 828 17.681 520 86 0.833 333333 2.6 0.624 987 997 16.875 060 02 0.641 025 641

(b) (e)
1.33 1.000 000 000 15.000 000 00 1.250 000 000 2.0 1.000 000 000 15.000 000 00 0.833 333 333
1.4 0.912 324 580 15.438 377 10 1.190 476 190 2.1 0.934 480 725 15.327 596 38 0.793 650 794
1.5 0.849 520 868 15.752 395 66 1.111 111 111 2.2 0.891 884 461 15.540 5777 0.757 575 758
1.6 0.796 341 133 16.018 294 34 1.041 666 667 2.3 0.853 105 312 15.734 473 44 0.724 637 681
1.7 0.749 494 830 16.252 525 85 0.980 392 157 2.4 0.817 559 242 15.912 203 79 0.694 444 444
1.8 0.707 856 167 16.460 719 17 0.925 925 926 2.5 0.784 856 872 16.075 715 64 0.666 666 667
1.9 0.670 600 579 16.646 997 11 0.877 192 982 2.6 0.754 670 069 16.226 649 66 0.641 025 641
2.0 0.637 070 550 16.814 647 25 0.833 333 333 2.7 0.726 719 326 16.366 403 37 0.617 283 951
2.1 0.606 733 857 16.966 330 72 0.793 650 794 2.8 0.700 765 064 16.496 174 68 0.595 238 095
2.2 0.579 155 045 17.104 224 78 0.757 575 758 2.9 0.676 600 752 16.616 996 24 0.574 712 644
2.3 0.553 974 391 17.230 128 05 0.724 637 681 3.0 0.654 047 393 16.729 763 04 0.555 555 556

(c)
1.5 1.000 000 000 15.000 000 00 1.111 111 111
1.6 0.906 849 563 15.465 752 19 1.041 666 667
1.7 0.853 029 665 15.734 851 68 0.980 392 157
1.8 0.805 624 734 15.971 876 33 0.925 925 926
1.9 0.763 223 120 16.183 884 40 0.877 192 982
2.0 0.725 061 959 16.374 690 21 0.833 333 333
2.1 0.690 535 199 16.547 324 01 0.793 650 794
2.2 0.659 147 235 16.704 263 83 0.757 575 758
2.3 0.630 488 660 16.847 556 70 0.724 637 681
2.4 0.604 218 299 16.978 908 51 0.694 444 444
2.5 0.580 049 567 17.099 752 17 0.666 666 667

the relative deviation (percentage of the deviation). Note that either explicit or implicit mathematical formulae
for both BIASR(Ŝpk) and MSER(Ŝpk) are analytically intractable. The simulation approach seems to be the
best alternative for the accuracy study. The simulation was carried out using SAS programming software, for
the commonly used performance requirements Spk = 1.00, 1.33, 1.50, 1.67 and 2.00. Each combination of the
precision measure Cp, the accuracy measure Ca and the corresponding (µ, σ ) pair is first set in the SAS program
to generate random normal samples of size n. The sample data is then calculated to obtain the estimator Ŝpk .
A total of N = 10 000 replications are carried out for each sample size of n = 5(5)100, then the average value
E(Ŝpk) is computed and compared with the preset true Spk to obtain the relative bias. The simulation error is
also examined, showing no greater value than 5 × 10−3.

4. SIMULATION RESULTS

For the case of Spk = 1.00, the simulation results indicate that for a sample size n = 85, the relative bias of the
estimator is 0.3% for Cp = 1.0, 0.6% for Cp = 1.1, 1.3, 0.7% for Cp = 1.2, 1.4, 1.5, 1.6, 1.7, 1.9, 2.0 and 0.8%
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Figure 1. Surface plot of BIASR(Ŝpk) for Spk = 1.00, with Cp = 1.0(0.1)2.0 and sample size n = 5(5)100

Figure 2. Surface plot of [MSER]1/2 for Spk = 1.00, with Cp = 1.0(0.1)2.0 and sample size n = 5(5)100

for Cp = 1.8. For a sample size n = 100 the relative bias of the estimator is 0.3% for Cp = 1.0 and 0.5–0.6%
for all other values of Cp. We note that for n = 100, [MSER(Ŝpk)]1/2 is 7.0–7.1% for all values of Cp except for
Cp = 1.0 where [MSER(Ŝpk)]1/2 = 7.3%. Thus, for the case of Spk = 1.00, the estimation error of Ŝpk is stable
for sample sizes n ≥ 100. Figure 1 presents a surface plot of BIASR(Ŝpk) for Spk = 1.00, as a function of Cp and
the sample size n. Figure 2 presents the surface plot of [MSER(Ŝpk)]1/2 for Spk = 1.00 as a function of Cp
and the sample size n.

For the case of Spk = 1.33, the simulation results indicate that for a sample size n = 85, the relative bias of
the estimator is 0.3% for Cp = 1.33, 0.4% for Cp = 1.4, 0.5% for Cp = 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 and 0.6%
for Cp = 2.2, 2.3. For a sample size n = 100, the relative bias of the estimator is 0.2% for Cp = 1.33 and 0.3–
0.4% for all other values of Cp, except Cp = 2.1 where the relative bias is 0.6%. We note that for n = 100,
[MSER(Ŝpk)]1/2 is 7.0–7.2% for all values of Cp. Thus, for the case of Spk = 1.33, the estimation error of Ŝpk is
stable for sample sizes n ≥ 100. Figure 3 presents a surface plot of BIASR(Ŝpk) for Spk = 1.33, as a function of
Cp and the sample size n. Figure 4 presents the surface plot of [MSER(Ŝpk)]1/2 for Spk = 1.33, as a function
of Cp and the sample size n.

For the case of Spk = 1.50, the simulation results indicate that for a sample size n = 85, the relative bias
of the estimator is 0.4% for Cp = 1.5, 0.7% for Cp = 2.5, 0.8% for Cp = 1.6, 1.7, 2.1, 2.3, 2.4 and 0.9% for
Cp = 1.9, 2.2. For a sample size n = 100 the relative bias of the estimator is 0.3% for Cp = 1.5 and 0.6–0.8%
for all other values of Cp. We note that for n = 100, [MSER(Ŝpk)]1/2 is 7.1–7.2% for all values of Cp. Thus, for
the case of Spk = 1.50, the estimation error of Ŝpk is stable for sample size n ≥ 100. Figure 5 presents a surface
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Figure 3. Surface plot of BIASR(Ŝpk) for Spk = 1.33, with Cp = 1.33, 1.4(0.1)2.3 and sample size n = 5(5)100

Figure 4. Surface plot of [MSER]1/2 for Spk = 1.33, with Cp = 1.33, 1.4(0.1)2.3 and sample size n = 5(5)100

Figure 5. Surface plot of BIASR(Ŝpk) for Spk = 1.50, with Cp = 1.5(0.1)2.5 and sample size n = 5(5)100

plot of BIASR(Ŝpk) for Spk = 1.50, as a function of Cp and the sample size n. Figure 6 presents the surface plot
of [MSER(Ŝpk)]1/2 for Spk = 1.50, as a function of Cp and the sample size n.

For the case of Spk = 1.67, the simulation results indicate that for a sample size n = 85, the relative bias of
the estimator is 0.3% for Cp = 1.67, 0.6% for Cp = 1.7 and 0.8–0.9% for all other values of Cp, except Cp = 2.4
where the relative bias is 1%. For a sample size n = 100, the relative bias of the estimator is 0.2% for Cp = 1.67,
0.6% for Cp = 1.7 and 0.8–0.9% for all other values of Cp. We note that for n = 100, [MSER(Ŝpk)]1/2 is 7.1–
7.2% for all values of Cp, except for Cp = 1.7, 1.8 where the relative bias is 7.3%. Thus, for the case Spk = 1.67,

Copyright c© 2004 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2004; 20:305–316
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Figure 6. Surface plot of [MSER]1/2 for Spk = 1.50, with Cp = 1.5(0.1)2.5 and sample size n = 5(5)100

Figure 7. Surface plot of BIASR(Ŝpk) for Spk = 1.67, with Cp = 1.67, 1.7(0.1)2.6 and sample size n = 5(5)100

Figure 8. Surface plot of [MSER]1/2 for Spk = 1.67, with Cp = 1.67, 1.7(0.1)2.6 and sample size n = 5(5)100

the estimation error of Ŝpk is stable for sample sizes n ≥ 100. Figure 7 presents a surface plot of BIASR(Ŝpk) for
Spk = 1.67, as a function of Cp and the sample size n. Figure 8 presents the surface plot of [MSER(Ŝpk)]1/2

for Spk = 1.67, as a function of Cp and the sample size n.
For the case of Spk = 2.00, the simulation results indicate that for a sample size n = 85, the relative bias

of the estimator is 0.5% for Cp = 2.0 and 0.8–0.9% for all other values of Cp, except Cp = 2.5 where the
relative bias is 1%. For a sample size n = 100, the relative bias of the estimator is 0.3% for Cp = 2.0 and is
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Figure 9. Surface plot of BIASR(Ŝpk) for Spk = 2.00, with Cp = 2.0(0.1)3.0 and sample size n = 5(5)100

Figure 10. Surface plot of [MSER]1/2 for Spk = 2.00, with Cp = 2.0(0.1)3.0 and sample size n = 5(5)100

0.6–0.7% for all other values of Cp, except Cp = 2.7 where the relative bias is 0.8%. We note that for n = 100,
[MSER(Ŝpk)]1/2 is 7.1–7.3% for all values of Cp. Thus, for the case of Spk = 2.00, the estimation error of Ŝpk is
stable for sample sizes n ≥ 100. Figure 9 presents a surface plot of BIASR(Ŝpk) for Spk = 2.00, as a function of
Cp and the sample size n. Figure 10 presents the surface plot of [MSER(Ŝpk)]1/2 for Spk = 2.00, as a function
of Cp and the sample size n.

The simulation results clearly indicate that the estimator Ŝpk overestimates the true value of Spk in all the cases
we investigated. The magnitude of the overestimation, in terms of the relative bias, BIASR(Ŝpk), appears to be
increasing in Cp at the beginning then remains stable roughly after Cp > Spk + 0.2. This is true, in particular, for
n > 15 in all cases. After the sample size n > 15, the fluctuation of BIASR(Ŝpk) is no greater than 0.5% and is no
greater than 0.1–0.2% for n > 60. The pattern is also apparent in [MSER(Ŝpk)]1/2. In most cases, the magnitude
of the deviation is increasing in Cp at the beginning, then becomes stable roughly after Cp > Spk + 0.1, in
particular, for n > 20.

For practical purposes, we may take the maximal values of BIASR(Ŝpk) and [MSER(Ŝpk)]1/2 to obtain
bounds (fairly close to the actual values) on the error of the estimation for reliability purpose. Table III
displays max{BIASR(Ŝpk)} and max{[MSER]1/2} of Ŝpk for Spk = 1.00, 1.33, 1.50, 1.67, 2.00 and n = 5(5)100.
Figure 11 plots max{BIASR(Ŝpk)} for Spk = 1.00, 1.33, 1.50, 1.67, 2.00 versus the sample size n. Figure 12 plots
max{BIASR(Ŝpk)} for Spk = 1.00, 1.33, 1.50, 1.67, 2.00 versus the sample size n. Thus, for an in-control process
which runs under stable conditions, for Spk = 1.33 and a sample size n = 80, we expect that the relative bias of
Ŝpk calculated from the sample, on average, would not exceed 0.9% and the average relative error of Ŝpk would
not exceed 8.1% of the true Spk .
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Table III. max{BIASR} and max{[MSER]1/2} of Ŝpk for Spk = 1.00, 1.33, 1.50, 1.67, 2.00 and n = 5(5)100

n 1.00 1.33 1.50 1.67 2.00

5 0.165 0.462 0.232 0.678 0.250 0.737 0.250 0.711 0.252 0.709
10 0.085 0.295 0.090 0.302 0.094 0.311 0.094 0.310 0.092 0.307
15 0.056 0.224 0.054 0.220 0.058 0.223 0.061 0.224 0.059 0.223
20 0.039 0.181 0.039 0.182 0.041 0.183 0.046 0.189 0.045 0.184
25 0.029 0.156 0.030 0.157 0.034 0.159 0.035 0.160 0.033 0.159
30 0.025 0.140 0.025 0.141 0.029 0.142 0.030 0.143 0.028 0.143
35 0.021 0.128 0.021 0.129 0.023 0.130 0.025 0.130 0.023 0.130
40 0.019 0.118 0.017 0.119 0.021 0.121 0.022 0.120 0.020 0.119
45 0.016 0.111 0.015 0.112 0.018 0.112 0.020 0.113 0.018 0.112
50 0.014 0.104 0.013 0.104 0.017 0.105 0.018 0.107 0.016 0.106
55 0.013 0.099 0.012 0.099 0.017 0.100 0.017 0.101 0.014 0.100
60 0.013 0.094 0.012 0.096 0.013 0.096 0.016 0.097 0.014 0.096
65 0.011 0.091 0.011 0.091 0.013 0.091 0.015 0.092 0.013 0.092
70 0.010 0.087 0.010 0.087 0.011 0.088 0.015 0.089 0.011 0.088
75 0.009 0.083 0.010 0.084 0.011 0.085 0.014 0.086 0.010 0.085
80 0.008 0.081 0.009 0.081 0.010 0.082 0.013 0.082 0.010 0.082
85 0.008 0.079 0.008 0.079 0.010 0.079 0.012 0.080 0.010 0.079
90 0.007 0.077 0.008 0.076 0.009 0.077 0.011 0.077 0.009 0.077
95 0.007 0.073 0.008 0.075 0.008 0.075 0.011 0.074 0.008 0.074

100 0.006 0.071 0.006 0.072 0.008 0.072 0.010 0.073 0.008 0.073

Figure 11. Surface plot of max{BIASR} for Spk = 1.00, 1,33, 1.50, 1.67, 2.00 and sample size n = 5(5)100

Figure 12. Surface plot of max{[MSER]1/2} for Spk = 1.00, 1,33, 1.50, 1.67, 2.00 and sample size n = 5(5)100
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Table IV. A total of 80 sample observations

13.23 13.19 13.22 13.19 13.18
13.20 13.20 13.22 13.19 13.17
13.21 13.21 13.20 13.20 13.20
13.19 13.19 13.22 13.20 13.21
13.23 13.19 13.19 13.21 13.21
13.19 13.19 13.19 13.19 13.20
13.21 13.21 13.21 13.22 13.21
13.20 13.20 13.21 13.20 13.19
13.22 13.20 13.19 13.19 13.20
13.19 13.22 13.20 13.19 13.21
13.21 13.20 13.21 13.19 13.21
13.20 13.22 13.21 13.21 13.18
13.19 13.19 13.19 13.19 13.21
13.20 13.20 13.20 13.20 13.20
13.19 13.20 13.21 13.22 13.19
13.20 13.19 13.21 13.19 13.17

Table V. The 20 consecutive days Ŝpk

1.33 1.34 1.38 1.23
1.25 1.20 1.25 1.41
1.31 1.29 1.33 1.20
1.26 1.17 1.29 1.45
1.33 1.21 1.39 1.19

5. AN APPLICATION EXAMPLE

Consider the following example involving a factory manufacturing pistons, which are one of the most critical
components for the oil-hydraulic cylinders. When the oil goes through the oil-hydraulic cylinder, it exerts
pressure making the piston move. Two grooves on the piston must fit with the U-shaped oil seal to prevent
the oil from leaking when the piston is in motion. If the oil leaks, it affects the efficiency and performance of the
oil-hydraulic cylinder. The prominent parts of the piston hold the two U-shaped oil seals to make them assume
the pressure from the oil-hydraulic cylinder. It is the U-shaped oil seals, not the main body of the piston, which
is in direct contact with the tube of the oil-hydraulic cylinder. Thus, it is essential to make the piston grooves
comply with the required manufacturing specifications.

The manufacturing specifications for the grooves of a particular type of piston are: USL = 13.25 mm,
LSL = 13.15 mm, target T = 13.2 mm. Historical data based on routine process monitoring shows that the
process is under statistical control and the process distribution is justified and is shown to be fairly close to
the normal distribution. A sample data collection procedure is implemented in the factory on a daily basis to
monitor/control process quality. The factory production resource and schedule allows the data collection plan
be implemented with a sample size n ≤ 80. The collected sample data (a total of 80 observations), in a specific
day, are displayed in Table IV.

The calculated estimation Ŝpk is 1.36. A simple approach to determine the true value (rather than a lower
confidence bound) of Spk is to perform the sampling on a routine basis consecutively for a number of, say,
20 days. The calculated values of single-day Ŝpk for 20 consecutive days are displayed in Table V. The average
Ŝpk value for the 20 days is obtained as E(Ŝpk) = 1.23. Checking Table III for max{BIASR(Ŝpk)}, we find the
upper bound on the error in relative bias, for sample size n = 80 is max{|E(Ŝpk) − Spk|} = 1.3%. Therefore,
the true value of Spk can be determined as 1.23/(1 + 1.3%) = 1.21. The error of the approximation becomes
negligibly small over time.

6. CONCLUSION

Process yield is the most common and standard criteria used in the manufacturing industry for measuring
process performance. Boyles 1 considered a measure, called Spk to calculate the yield for processes with normal
distributions. The capability measure Spk establishes the relationship between the manufacturing specifications
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and the actual process performance, which provides an exact measure for process yield. The statistical properties
of the natural estimator of Spk are mathematically intractable and the existing approximations are rather
complicated and difficult to apply. In this paper, we investigated the accuracy of the natural estimator of Spk

computationally, using the standard simulation technique to find the relative bias and the relative mean square
error for some commonly used quality requirements. Extensive simulation results are tabulated and analyzed to
provide the practitioners/engineers with critical information regarding the true value of Spk , which is useful in
determining the process performance.
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