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Abstract

Let my,my,...,m; be positive integers not less than 3 and let n = Zf;l m;. Then, it is proved that the complete graph
of order 2n+ 1 can be cyclically decomposed into k(2n + 1) cycles such that, for each i =1,2,...,k, the cycle of length
m; occurs exactly 2n + 1 times.
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1. Introduction

A Steiner triple system (STS) is an ordered pair (V,B), where V' is a finite nonempty set of elements, and B is a
collection of 3-element subsets of V' called triples, such that each pair of distinct elements of V' occurs together in exactly
one triple of B. The order of a Steiner triple system (¥, B) is the size of V, denoted by |V].

From “graph decomposition” point of view, the existence of a Steiner triple system of order v (STS(v)) is equivalent to
the existence of a decomposition of the complete graph K, of order v into edge-disjoint triangles, denoted by Cs. It is not
difficult to see the necessary condition for such a decomposition to exist is that v = 1 or 3 (mod 6). In fact, this condition
was proved to be sufficient around 150 years ago by Kirkman [4]. An automorphism of a STS (¥,B) is a bijection
o:V — V such that {x, y,z} € B if and only if {o(x),(y),o(z)} € B. A STS(v) is cyclic if it has an automorphism that
is a permutation consisting of a single cycle of length v, for example (1,2,3,...0).

Cyclic Steiner triple systems do exist. In 1939, Peltesohn used the so-called difference method to settle the existence
problem.

Theorem 1.1 (Peltesohn [7]). For all v=1 or 3(mod 6) except v=29, there exists a cyclic STS(v).

We move on to consider an analog of Steiner triple systems. An m-cycle system of order v is a pair (V,C), where
V =V(K,) and C is a collection of edge-disjoint m-cycles which partition the edge set of K,. Let II be an automorphism
group of the m-cycle system (V, C) (i.e., a group of permutations on v vertices leaving the collection C of cycles invariant).
If there is an automorphism 7 € I of order v, then the m-cycle system (¥, C) is said to be cyclic. For an m-cycle system
of K, the vertex set V' can be identified with Z,. It is easy to see the necessary conditions for such a decomposition are
(i) v is odd and (ii) m| (;)

The study of “existence problem” of m-cycle systems started around 40 years ago. Recently, Alspach and Gavlas [2]
and Sajna [10] proved that an m-cycle system exists as long as the above conditions are met. Thus, we have all the
m-cycle systems for each m > 3.
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Similar to a cyclic Steiner triple system, we can also consider the existence of cyclic m-cycle systems. Actually, the
earlier works on the existence of m-cycle systems give cyclic systems. The case when m = 0 (mod4) and v = 1 (mod 2m)
was obtained by Kotzig [5] and the case when m =2 (mod4) and v = 1 (mod2m) was due to Rosa [8]. Furthermore,
Rosa [9] proved that if m is odd and v = 1 (mod 2m) or if m is an odd prime and v = m (mod 2m), then K, can be
decomposed into closed trails of length m. In the case when m =35 or 7, Rosa proved that the closed trials were indeed
cycles. Therefore, cyclic 5-cycle systems and cyclic 7-cycle systems are obtained. Recently, Buratti and Del Fra [3] proved
that for each odd prime p, cyclic p-cycle system exists.

In 1981, the following problem was posed by Alspach [1].

Conjecture. Let mj,my,...,m, be positive integers not less than 3 such that Zf.':l m; = (;) for odd n (respectively,
Zle m; = (;) — n/2 for even n). Then K, (respectively, K, — F') can be decomposed into cycles Ci, Cs,...,C; such that
the length of C; is m; for i=1,2,...,h.

In this paper, we prove a special case of the conjecture, namely, we prove that if mi,m,,...,m; are positive integers
all at least 3, then the complete graph K,+1, where n = Zle m;, has a cyclic decomposition into k(2n 4 1) cycles such
that for each i = 1,2,...,k, there are exactly 2n + 1 cycles of length m;.

2. The main results

Throughout this paper, we shall use difference methods. The difference between two vertices x and y in the complete
graph K, with V(K,)=Z, is |x — y| or n — |x — y|, whichever is smaller. We will say that the edge xy has difference
min{|x — y|,n — |x — y|}. Thus, the set of differences possible in K, is {1,2,...,|n/2|} and each difference induces a
2-factor except the difference n/2 induces a 1-factor whenever n is even. For convenience, we shall use G[D] to denote
the subgraph of G induced by the set of differences D C {1,2,...,/}. It is easy to check that K., 1[/] is a disjoint union
of cycles of length (2/ + 1)/(2/ + 1,i), where (2 + 1,i) denotes the greatest common divisor of 2/ + 1 and i. Clearly, if
(24 + 1,i) =1, then Ky, 1[i] is a Hamiltonian cycle in Ky/4. It should be mentioned that if cycles C; (1 <i < k) have
difference sets 4; which partition {1,2,...,/}, then there exists a cyclic decomposition of K4, into cycles C;.

Notice that if H is a subgraph of K,/ such that each edge of H has a distinct difference, then the graph H +i obtained
from H by adding i (mod2/ + 1) to each vertex of H is an isomorphic copy of H. The following results are given in
[13] and will be used in the proof of Theorem 2.5.

Lemma 2.1 (Wu [13]). For positive integers b and s, there exists a cycle C of length 4s with difference set
{b,b+1,...,b+4s— 1}
in K, where n is odd with n = 2(b+4s — 1)+ 1.

Lemma 2.2 (Wu [13]). Let b and s be positive integers.

(1) There exists a cycle C of length 4s + 2 with difference set
{b,b+1,...,b+4s,b+4s+2}
in K, where n is odd with n = 2(b+4s +2)+ 1.
(2) There exists a cycle C of length 4s + 2 with difference set
{b,b+2,b+3,....b+4s +2}
in K, where n is odd with n = 2(b+4s +2)+ 1.

Note that one may use a consecutive block of integers to construct cycles of length congruent to 0 modulo 4 and/or an
even number of cycles of length congruent to 2 modulo 4. For example, if m; =45+ 2 and m, =4¢+ 2, then applying (1)
and (2) of Lemma 2.2 give cycles C; and C, of lengths m; and m, with difference sets {b,b+1,...,b + 4s,b + 45 + 2}
and {b+4s+ 1,b+4s+3,...,b+ 4s + 4t + 3}, respectively, for any positive integer b.

For convenience, in the following lemmas, we use a typical odd cycle as in Fig. 1.

Lemma 2.3. For positive integers a,b,c, and r, with ¢ = a + b and r > ¢, and a nonnegative integer s, there exists a
cycle C of length 4s+3 with difference set {a,b,c,r,r+1,...,r+4s—1} in K, where n is odd and n = 2(r +4s—1)+1.
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Proof. The proof is divided into two cases.
Case 1: Either a or b is odd, say b.
The cycle C of length 4s + 3 is defined as the following:
a a-r a+2 a+2s-2 a-r-2s5+2 a+12s
™y
o o - O o
r r+1 r+4s-4  r+4s5-32
a
0 b
C
r+d4s-1 _r+4s5-3 +1
O o o—= o1
c c+r+4s-1 c+2 c+25-2 c+r+2s+1 c+12s
An casy verification shows that the vertices of the cycle C are: for i = 0,1,...,s, va1 = a + 2i, vhy = c + 2i,

vi=a—r—2010i-1), v =c +r +4s — 2i + 1, where all indices are taken modulo 7, and the difference set is
{a,b,c,r,r +1,...,r +4s — 1}. Observe that since ¢ =a + b and b is odd, it follows that a and ¢ have opposite parity.
Thus a,a + 2,...,a + 2s and c,c + 2,...,c + 2s have opposite parity and hence are distinct. Also, ¢ + r + 4s — 1,
c+r+4s—2,...,c+r+2s+1anda—r,a—r—2,...,a—r —2s — 2 have opposite parity when considered modulo »
and thus are distinct. Therefore, the vertices of C are distinct.

Case 2: Both a and b are even.

(i) riseven: Let ey =a, el =r+4s—2, es=r+4s—1, e =c, exssa=>b, and for i =3,4,...,2s + 1, let ¢, = r +
4s —2i + 3, el =r + 2i — 6. Now, we define the vertices accordingly. Let vp =0, v = a, v} =7 + 4s — 2 and for
i=12,...,50n=a+r+4s—2i+ 1, vh=c+r+4s+2i —4, vy =a+2i, and vh, | =c+4s — 2i.

(ii) 7 is odd: In this subcase, we let ej =a, e{ =r +4s — 1, e =r +4s — 2, e, = c,ex2 = b, and for i =3,4,...,2s5 +
l,e; =r+4s —2i+2, e/ =r + 2i — 5. Then according to the differences, we define the vertices for the cycle. Let
vo=0,v=a, vi=r+4s—1,and for i=1,2,....5, vy =a+r+4s —2i, vy1 =a+2i, vhy=c+r+4s+2i—3,
and v5;,, =c+4s—2i. [

Remark. In Lemma 2.3, if ¢ =a + b &+ 2, then we can use a similar method mentioned above to construct a cycle of
length 4s + 1 with difference set {a,b,c,r,r +1,...,r +4s — 4,r + 4s — 2}. Notice that this construction will be used in
Theorem 2.5. See, for example, Fig. 2, where a =2,b=3,c=7,s =3, and r =9.
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Next, we consider cycles of length 4s + 1.
Lemma 2.4. For positive integers a,b,c, and r, with ¢ =a + b + 1 and r > ¢, and a nonnegative integer s, there
exists a cycle C of length 4s + 1 with difference set {a,b,c,r,r + 1,...,r +4s — 3} in K, where n is odd and n >
2(r +4s —3)+ 1.

Proof. Let us define the cycle C of length 4s + 1 as

a c-1 c-r-3 c+1l c+2s-5 c-r-25+1 c+2s5-1
8 O e1 O rra O r+45-6 rids-4
a
0 r+1
C
r+45-1  r+45-5  r+d5-7 r+3 r
o 0 w0 o
C c+r+4s5-3 c+2  c+r+4s5-5 cp+r+2s+1 c+25-2 cHr+ls-1

Notice that the value of a+ b is even (odd) and c is odd (even). By routine computation, it follows that the difference
set is {a,b,c,r,r+1,...,r +4s—3}, and the distinct vertices of C are: v; =a, v} =c, vy =c+2s—3, vhy=c+7r+25—2,
and for i=1,2,...,s — L, vy=c+2i—3, vy =c+r+4s—1—2i, vyy1=c—r—2i—1,and v5 ., =c+2i. [

In order to prove the main theorem, we also need to use Skolem sequences, hooked Skolem sequences, and near Skolem
sequences.

A Skolem sequence of order n is a sequence (si,s2,...,52,) such that for each j € {1,2,...,n}, there exists a unique
i€{1,2,...,2n} such that s; = s;y; = j. It is proved by Skolem [12] that such a sequence exists if and only if n = 0 or
1 (mod4).

A hooked Skolem sequence of order n is a sequence (si,s2,...,52,+1) such that s», =0 and for each j€{1,2,...,n},
there exists a unique i € {1,2,...,2n — 1,2n + 1} such that s; =s,.; = j. These sequences are known to exist if and only
if n =2, 3 (mod4) (see [6]).

An m-near Skolem sequence of order n (m < n) is a sequence (s1,52,...,52,—2) of 2n — 2 integers which satisfies for
every j€{1,2,...,n} \ {m}, there exists a unique i € {1,2,...,2n — 2} such that s; = s;1; = j. It is proved by Shalaby
[11] that an m-near Skolem sequence of order n exists if and only if either (1) m is odd and n» =0 or 1 (mod4) or (2)
m is even and n = 2 or 3 (mod 4).

Remark that a Skolem sequence (si,s2,...,52,) of order n gives a partition of {1,2,...,3n} into triples {j,n+in+i+
jlsi=sir;=j} for j=1,2,...,n. Similarly, a hooked Skolem sequence gives a partition of {1,2,...,3n — 1,3n+ 1} into
triples {J,s;,;} satisfying j+s;,=¢; (1 < j < n) and an m-near Skolem sequence gives a partition of {1,2,...,3n—=2}\{m}
into triples {j,s;,#;} satisfying j +s; =¢; for each j€{1,2,...,n} \ {m}.

Now, we are ready for the proof of our main result.

Theorem 2.5. Let my,ma,...,my; be positive integers not less than 3 such that n = Efle m;. Then there exists a cyclic
(mi,my,...,myp)-cycle system of order 2n + 1.

Proof. For convenience, let mi,ms,...,m; denote the integers which are congruent to 3 modulo 4, m; 11, mi+2,...,m,
denote the integers which are congruent to 1 modulo 4, mj, 1, mi,42,...,m; denote the integers which are congruent to
0 modulo 4, and thus mj, 1, mi;42,...,m; will be the integers which are congruent to 2 modulo 4. It suffices to partition
the set {1,2,...,n} into sets 41,42,...,A; such that:

|4i| = m; for each i with 1 <i<k;

e cach of the sets 4y,4s,...,4; satisfies the conditions for the difference set given in Lemma 2.3;

e cach of the sets 4 41,4, +2,...,4;, satisfies the conditions for the difference set given in Lemma 2.4 or the remark after
Lemma 2.3;

e cach of the sets 4;,+1,4i,42,...,4;, satisfies the conditions for the difference set given in Lemma 2.1; and

e cach of the sets Aj,i1,4i;12,...,4; satisfies the conditions for the difference set given in either (1) or (2) in

Lemma 2.2.
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Case 1: Suppose that i =0, 1 (mod 4). Clearly, if i, =0, then it is easy to define the sets A1, 4>,...,A4x by choosing
the differences for the cycles of length congruent to 0 modulo 4 first followed by choosing the differences for those cycles
of length congruent to 2 modulo 4 last, using n + 1 for n as necessary. In fact, after defining the sets 41,4>,...,4,,
if we left with a set {b,b + 1,...,n} for some positive integer b, then we can easily choose the differences for sets
A1, 4iy 12, A

Since i» = 0, 1 (mod4), there exists a Skolem sequence of order i» such that the set {1,2,...,3i»} can be partitioned
into triples {i,s;,#} with i +s;, = for i = 1,2,...,i>. Suppose first that i, =i so that there are no cycles of length
congruent to 1 modulo 4. Then, the sets 4;,4>,...,4; are defined as follows:

o 1, 51,11 €4y,
® 2, 5, €A,

® i, Siys til 6/4,‘1, and
e starting with 37; + 1, assign the next m; — 3 consecutive integers to A, the next m, — 3 consecutive integers to 4, and
so on until assigning m;, — 3 consecutive integers to 4;,.

Observe that the differences left are Z?:] mi+1, Zj‘zl m;+2,...,n, and as remarked earlier, the sets 4;,1,4i,+2,...,4x
are easily found.
Now suppose that i> > i;. Suppose first that i — i; is even. Define the sets 41, 4>,...,4;, as follows:

e 1,51, 1 €41,
® 2, 5, hEA,

e iy, siy, tiy €A4iy,
® i1 +2, 841, tij+1 €441,
o i1+ 1, 8i42, tiir2 €A 42,

® i, Sip1, tih—1 €A1,

° iz — 1, Siys tiz EA[Z, and

e starting with 37, + 1, assign the next m; — 3 consecutive integers to A, the next m, — 3 consecutive integers to 4> and
so on until assigning m;, — 3 consecutive integers to A4;,.

The differences remaining are 2?:1 m; + 1, 212:1 m; +2,...,n and the sets 4;,11,4i,+2,...,A, are easily found.

Now assume that i — i; is odd. Then, by [11], there exists a 1-near Skolem sequence of order i, so that the set
{2,3,...,3i> — 2} can be partitioned into triples {i,s;,#} with i +s; =# for i =2,...,i,. If there are no cycles of length
congruent to 2 modulo 4, then we define 41,4s,...,4;, as follows:

® 2,5, heA,
o 3, 53, 13 EAy,

o it + 1, siy41, liv1 €4iy,
® i1+ 3, Sij42, tiit2 €Ai 41,
® i1 +2, 843, tiit3 €Ai 42,

o ir — 1, 8, ti, €4i,—1,

e I,n—1,n+1€4;,, and

e starting with 37, — 1, assign the next m; — 3 consecutive integers to A4, the next m, — 3 consecutive integers to 4, and
so on until assigning m;, — 3 consecutive integers to 4;,.



272 H.-L. Fu, S.-L. Wul Discrete Mathematics 282 (2004) 267-273

(Note that if i1 + 1 =i, then 1, n — 1,n + 1 €4,,.) If there are cycles of length congruent to 2 modulo 4, then we
define the sets A1, A4s,...,4;,,Ai,+1 as follows:

2, 52, b €A1,
3, 53, s €A,

o it + 1, siy41, tiv1 €4iy,
® i1 + 3, Sijt2, tij+2 €441,
® i1 +2, 843, tiit3 €Ai 42,

i —1, 84, ty €A4i,—1,

1,3i—1,3 +1€4,,

Ai3+1 = {3i2,3i2 +2,3i + 3,...,30 + miz + 1}, and

starting with 3i> 4+ m;, 41 + 1, assign the next m; — 3 consecutive integers to 4;, the next m; — 3 consecutive integers
to A> and so on until assigning m;, — 3 consecutive integers to A;,.

In either case, the differences remaining form a set of consecutive integers, and the sets 4,41, Aiy4+2, . - ., Ais—1,diy+1, . ., Ak
are easily found.

Now, we have completed the partition of {1,2,...,n} into the sets 41,4>,...,4;. By Lemmas 2.1-2.4, we are able to
obtain a cyclic cycle decomposition for K,+1. This concludes the proof of the case when i =0 or 1 (mod 4).

Case 2: Suppose that i» =2, 3 (mod4). The proof can be obtained by using a procedure similar to those in Case 1,
and so we omit the details. [

For clearness, we present two examples to show the idea of partition.
Example 1. n=51. (mi,ma,...,mo)=(3,3,7,5,9,4,4,4,6,6), ir=>5. A1 ={1,6,7}, A,={2,12,14}, 43={3,8,11,16,17,
18,19}, Aq = {5,9,13,20,21}, A5 = {4,10,15,22,23,24,25,26,27}, As = {28,29,30,31}, 47 = {32,33,34,35}, As =
{36,37,38,39}, A9 = {40,41,42,43,44,46}, and 4,0 = {45,47,48,49,50,51}.
Example 2. n =51. (mi,ma,...,m) = (3,3,3,7,5,5,9,4,6,6), in =7. 41 = {1,8,9}, 4> = {3,14,17}, 43 = {4,11,15},
As = {5,13,18,22,23,24,25}, As = {7,10,16,26,27}, As = {6,12,19,28,29}, A; = {2,20,21,30,31,32,33,34,35}, As =
{36,37,38,39}, A9 = {40,41,42,43,44,46}, and 40 = {45,47,48,49,50,51}.

With the theorem we proved, the following known result can be obtained easily.
Corollary 2.6. For each m =3 there exists a cyclic m-cycle system of order v =1 (mod 2m).

Proof. Since v=2km + 1 for some integer k£ > 1, by Theorem 2.5 where we choose n=mk, we conclude the proof. [

Remark. By an independent effort, we can also obtain the consequence, that is, for each odd prime p, there exists a
cyclic p-cycle system.
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