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The leakage behavior of the quasi-superlattice structure has been characterized by current—voltage
measurements at room temperature and 50 K. A resonant tunnelinglike leakage characteristic is
observed at low temperature. The resonant tunneling occurs at around 2, 5.2, and 7 V under a gate
voltage swept from 0 to 10 V. A concise physical model is proposed to characterize the leakage
mechanism of tunneling for the quasi-lattice structure and suggests that the considerations of the
operating voltage for the two-bit per cell nonvolatile-memory device need to be taken into account.
© 2004 American Institute of Physic§DOI: 10.1063/1.1739514

In the age of 1960’s, due to the high cost, large volumereduced over more than five successive generations of the
and high-power consumption of the magnetic-core memoryindustry? To overcome the scaling limits of the conventional
the electronic industries urgently needed another memory dé-G  structure, two candidates are mostly mentioned,
vice to replace the magnetic-core memory. Kahng and Sz860ONOS™ and nanocrystal nonvolatile memory devie8.
developed a floating-gaté=G) nonvolatile semiconductor As for SONOS, the silicon nitride layer is used as the charge-
memory at Bell Labs in 1967To date, the stacked-gate FG trapping insulator. The intrinsic distributed storage takes ad-
device structure continues to be the most prevailingvantage of the SONOS device over the FG device, its im-
nonvolatile-memory implementation, and is widely used inproved endurance, since a single defect will not cause the
both stand alone and embedded memories. The invention Qﬁscharge of the memoFyTiwari et al® demonstrated the Si
FG memory impacts more than the replacement of magnetiqanocrystal FG memory device in the early 1990's. Also, the
core memory, and creates an era of portable electronic sygranocrystal memory device can maintain good retention
tems. The most widespread memory array organization is thgharacteristics when the tunnel oxide is thinner and the
so-called flash memory, which has a byte-selectable writgower consumption is low&r.8In our current study, a quasi-
operation combined with a sector “flash” erase. superlattice structure has been demonstrated for the two-bit

Although a huge commercial success, conventional FGer cell nonvolatile-memory deviceApparent and peculiar
devices have their limitations. The most prominent one is thenemory effects were also observed in our previous results.
limited potential for continued scaling of the device struc-Tg achieve further study on the reliability issues, it is essen-
ture. This scaling limitation stems from the extreme require+ja| to understand the leakage mechanism that operates in the
ment put on the tunnel oxide layer. On the one hand, thguasi-superlattice structure. In the present work, the leakage
tunnel oxide has to allow quick and efficient charge transfelhehavior of the quasi-superlattice stack for multilevel charge
to and from the FG. On the other hand, the tunnel oxidestorage has been demonstrated. Also, a concise model is pro-
needs to provide superior isolation under retention and disposed to deduce and explain the leakage behavior of the
turbed conditions in order to maintain information integrity uasi-superlattice stack.
over periods of up to a decade. There is, therefore, a tradeo Single-crystal, 6 in. in diametef100)-orientedp type
between speed and reliability and the thickness of the tunnelijicon wafers were used in the present study. The wafers
oxide is compromised to about 8—11 nm, which is barely,yere chemically cleaned by a standard Radio Corporation of
America cleaning, followed by a dry oxidation in an atmo-
dElectronic mail: tcchang@mail.phys.nsysu.edu.tw spheric pressure chemical vapor deposition furnace at 925 °C
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(J—-V) characteristics for both room temperature and 50 K. It

is clearly shown the leakage current at 50 K is lower than

that at room temperature as a factor of 2 orders due to the
_ . _ . alleviation of thermionic emissiolt. The leakage current at

to form a 3 nmtunnel oxide. Subsequently, silicon nitride 5 temperature, dominated by thermionic emission and
(SisN,4) and amorphous Siat Si) quasi-superlattice of tWo 55 assisted tunneling, remains low when a 10 V gate volt-
periods were deposited by low-pressure chemical vapogge is applied. Additionally, there is a negative differential

deposition (LPCVD) at 780°C and 550°C, respectively. yogistance observed at different gate biases for the measure-
Each of the four LPCVD layers was controlied to be about 2,05 of 50 K. The inset shows the local amplification of the

nm. A 10 nm thick tetraethyl orthosilical#EOS oxide was  5_y, cyrve at 50 K. The negative differential resistance oc-
deposited on the quasi-superlattice as the control oxide layeg,,rs at around 2. 5.2. and 7 V. It is inferred that theV

To densify the conotrol oxide layer, a steam densification wag,aracteristics behave like that of the resonant tunneling di-
performed at 982 °C° Via the TEOS oxide deposition and ode (RTD) at low temperatur&-14To clarify the similarity

steam densification, the twe-Si layers will be crystallizéd hepyeen RTD and our quasi-superlattice stack of insulators, a
into microcrystal or polycrystal, which depends on the grainmodel is proposed based on the energy band diagrams of

size of the Si layers. After the Al electrodes were patternequnne"ng_ Figure 3 shows the ideal energy band diagram of
and sintered, current-voltagd {V) measurements were yho quasi-superlattice stack under zero bias. The quasi-
performed. at room temperature and the IQW temperature _cguperlattice of SN, anda-Si clearly shows the band offsets
50 K to investigate the leakage behavior of the quasiyhat can easily trap electrons as the memory elements. The
superlattice memory device. The electrical measurementéndopeda_Si layers are with a wider band gap than that of

were performed using a semiconductor parameter analyzef,q gj ybstrate. In tha-Si quantum wells, discrete energy
model HP4156, and a low-temperature integrated probing,, q|s E,, E, andE, , are formed due to quantum con-
1 L LA | n»

station. _ o finement effect>® Consider the resonant tunneling between
Figure 1 shows the device structure in this work. They,o 1y a-Si layers under applied biases. As can be seen in
quasi-superlattice of §N, and a-Si, sandwiched between rig 4q) after the electrons tunnel from the channel, it is not

tunnel oxide and control oxide, is utilized as a charge storaggasy for the electrons to surmount the energy barriers of
element for a memory device instead of poly-Si FG aNgi

single layer. To investigate the leakage behavior of the quasi-

FIG. 1. The cross-sectional image of the quasi-superlattice structure.
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superlattice stack structurke;V electrical measurements are applied
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FIG. 4. (a) The energy band diagram of resonant tunneling at around 2 V
FIG. 2. Thel-V characteristics for hoth room temperature and 50 K. The hetween the tw@-Si layers(h) the hand diagram for 2 \& applied gate
inset shows the local amplification of tlle-V curve at 50 K. voltage<5.2 V.
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