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Abstract—It is widely accepted that using a set of cellular neural
networks (CNNs) in parallel can achieve higher level information
processing and reasoning functions either from application or bio-
logics points of views. Such an integrated CNN system can solve
more complex intelligent problems. In this paper, we propose a
novel framework for automatically constructing a multiple-CNN
integrated neural system in the form of a recurrent fuzzy neural
network. This system, called recurrent fuzzy CNN (RFCNN), can
automatically learn its proper network structure and parameters
simultaneously. The structure learning includes the fuzzy division
of the problem domain and the creation of fuzzy rules and CNNs.
The parameter learning includes the tuning of fuzzy membership
functions and CNN templates. In the RFCNN, each learned fuzzy
rule corresponds to a CNN. Hence, each CNN takes care of a fuzzily
separated problem region, and the functions of all CNNs are inte-
grated through the fuzzy inference mechanism. A new online adap-
tive independent component analysis mixture-model technique is
proposed for the structure learning of RFCNN, and the ordered-
derivative calculus is applied to derive the recurrent learning rules
of CNN templates in the parameter-learning phase. The proposed
RFCNN provides a solution to the current dilemma on the decision
of templates and/or fuzzy rules in the existing integrated (fuzzy)
CNN systems. The capability of the proposed RFCNN is demon-
strated on the real-world defect inspection problems. Experimental
results show that the proposed scheme is effective and promising.

Index Terms—Cellular neural networks (CNN) template design,
defect inspection, fuzzy clustering, fuzzy neural network (FNN),
independent component analysis (ICA), ordered derivative, recur-
rent neural network.

I. INTRODUCTION

ACELLULAR neural network (CNN) [1], [2] is a locally in-
terconnected analog processor array arranged to a regular

two-dimensional (2-D) grid. Its 2-D inputs and outputs make it
very suitable for image processing. It possesses some important
characteristics such as efficient real-time processing capability
and feasible very large-scale integration (VLSI) implementa-
tion. A CNN has a space invariant local interconnection struc-
ture associated with 19 free parameters (neighborhood within
a ). This parameter set called template exclusively
determines its dynamic behavior. The CNN has been used to
mimic the local function of biological neural circuits, especially
the human visual pathway system [3]. According to a current bi-
ological study [4], mammalian visual systems process the world
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through a set of separate parallel channels. Each subchannel can
be regarded as a unique CNN. The output of these subchannels
is then combined to form the new channel responses. As a re-
sult, it is widely accepted that using a set of CNNs in parallel
can achieve higher level information processing and reasoning
functions either from biologics or application points of views.
Such an integrated CNN system can solve more complex intel-
ligent problems.

For designing an integrated CNN system, in addition to the
determination of a set of templates, another kernel problem is
the way of integration. To solve this problem, the fuzzy in-
ference system (FIS) is gaining attention. The FIS is a pop-
ular computing framework based on the concept of fuzzy set
theory, fuzzy IF-THEN rules, and fuzzy reasoning. With crisp in-
puts and outputs, FIS implements a nonlinear mapping from its
input space to output space by a number of IF-THEN rules. It is
very useful in image processing when it is difficult to specify,
in a crisp mathematical form, the operation that is needed to
yield a satisfying result from a complex image. For example,
the boundary detection of different regions strongly depends on
a subjective decision, especially in medical image. It cannot be
clearly defined what is an edge-like and what is a noise-like pat-
tern. In many cases, both statements might be true, therefore, a
fuzzy-type linguistic description of all patterns is better than a
crisp set approach. Therefore, FIS can play an important role to
integrate a set of CNNs into a system.

To make a CNN or a set of CNNs having the ability of
reasoning functions, several fuzzy-based CNN models were
proposed [5]–[9], which are fuzzy CNN (FCNN) proposed by
Yang et al. [5] and Yang and Yang [6], and fuzzy reasoning
implemented on CNN proposed by Balsi and Voci [7], [8]. To
make a set of CNNs in parallel achieve higher level information
processing, several integrated CNN systems are proposed [4],
[9]–[11], which are cellular neuro-fuzzy networks (CNFNs)
proposed by Colodro and Torralba [9], and fuzzy-type CNN
proposed by Rekeczky et al. [10], [11] and Szatmári et al.
[4]. The common drawbacks of these approaches are that the
corresponding templates cannot be learned and the fuzzy rules
must be obtained by domain experts. Although according to
Nossek’s survey [12], the template coefficients of a CNN can
be found by design [12], [13] or by learning [12], [14], these
techniques cannot be applied to the design or learning of an
integrated CNN system directly.

An observation on the works of Colodro et al. [9], Rekeczky
et al. [10], and Szatmári et al. [4], they have two common char-
acteristics. First, they all used many CNNs in parallel to solve
a complex problem such as edge detection with impulse noise,
the detection of fuzzy boundary, and features extraction, etc.
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Fig. 1. Structure of the proposed RFCNN.

Second, they all used an FIS to make a decision. For building an
FIS, we have to specify the fuzzy sets, fuzzy operators and the
knowledge base. However, the existing methods [4], [9], [11]
all need to take the fuzzy rules manually by domain experts,
which is difficult, even for domain experts, to examine all the
input–output data from a complex system to find a number of
proper fuzzy rules. In addition, they all need to assign the corre-
sponding templates of CNNs in advance (i.e., templates cannot
be learned). To cope with these drawbacks, we propose a novel
framework for automatically constructing a multiple-CNN
integrated neural system in the form of a recurrent fuzzy neural
network (FNN). This system, called recurrent fuzzy CNN
(RFCNN), can automatically learn its proper network structure
and parameters simultaneously. The structure learning includes
the fuzzy division of the problem domain and the creation of
fuzzy rules and CNNs. The parameter learning includes the
tuning of fuzzy membership functions and CNN templates. In
the RFCNN, each learned fuzzy rule corresponds to a CNN.
Hence, each CNN takes care of a fuzzily separated problem
region, and the functions of all CNNs are integrated through
the fuzzy inference mechanism.

The RFCNN is constructed in the form of a recurrent FNN.
Two important learning tasks of a FNN are the structure
identification and the parameters identification [15]–[19]. The
structure identification is the partition of the input–output
space [20]–[23], which influences the number of generated
fuzzy rules, each corresponding to a CNN. Efficient partition
of input–output data will result in faster convergence and better
performance for FNN. In this paper, a new online adaptive
independent component analysis (ICA) mixture-model tech-

nique is proposed for the structure learning of the RFCNN.
Basically, ICA finds directions in the input space which lead
to independent components instead of just uncorrelated ones,
as principle component analysis (PCA) does [24], [25], so
it reduces not only the number of rules (i.e., CNN) but also
the number of membership functions under a pre-specified
accuracy requirement dynamically. In the parameter learning of
the RFCNN, the ordered derivative calculus is applied to derive
the recurrent learning rules due to the recurrent structure of the
RFCNN inherited from CNNs [1], [2]. The derived rules can
learn the CNN templates and other parameters in the RFCNN
efficiently. The proposed RFCNN provides a solution to the
current dilemma on the decision of templates and/or fuzzy rules
in the existing integrated (fuzzy) CNN systems. It has been
applied to solve the real-world defect inspection problems,
which contain multiple types of defects (faults) with different
features on a single image. Experimental results successfully
demonstrate that the proposed scheme is very effective and
promising.

The paper is organized as follows. Section II describes the
structure and functions of the proposed RFCNN. Section III
describes the online structure and parameters learning algo-
rithm for the RFCNN. Section IV gives experimental results
and discussions. Finally, conclusions are summarized in the
last section.

II. STRUCTURE OF THE RFCNN

In this section, the structure of the proposed RFCNN shown
in Fig. 1 is introduced. For clarity, we consider a CNN, with
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time constant , time step , and neighborhood within a
radius , which is characterized by the following templates:

(1)

where , and is the feedback template, control tem-
plate, and bias of the th CNN, respectively. By defining a CNN
as above, the six-layered RFCNN network will realize a fuzzy
model of the following form:

Rule is and is and is

is (2)

or

Rule is and is and is

is

(3)

where the current input vector is
is is

is a sigmoid function,
is a fuzzy set, and , and are consequent parameters
representing feedback template, control template, and bias of
the th CNN, respectively. The number of input dimension
of the RFCNN will be if the neighborhood of a
CNN cell is within a . As shown in (3), we focus
on uncoupled CNN cells in this paper. With this six-layered
network structure of the RFCNN, we shall define the function
of each node and use the proposed online ICA mixture model
described in the next section to construct the structure of the
RFCNN.

The RFCNN consists of nodes, each of which has some fi-
nite “fan-in” of connections represented by weight values from
other nodes and “fan-out” of connections to other nodes. As-
sociated with the fan-in of a node is an integration function ,
which serves to combine information, activation, or evidence
from other nodes. This function provides the net input for this
node

node input

(4)

where are inputs to this node and
are the associated link weights. The

superscript in (4) indicates the layer number. This notation
will also be used in the following equations. A second action
of each node is to output an activation value as a function of its
net input

node output node input

(5)

Fig. 2. Transformation by the online ICA mixture model for the proposed
RFCNN. (a) Regions covered by the original axes. (b) Covered regions by the
independent axes obtained by the online ICA mixture model transformation.

where denotes the activation function. We shall next de-
scribe the functions of the nodes in each of the six layers of the
RFCNN, which include five feedforward layers and one feed-
back layer.

Layer 1: No computation is done in this layer. Each node in
this layer, which corresponds to one input variable, only trans-
mits input values to the next layer directly. That is

and

(6)

From the above equation, the link weight in layer one is
unity.

Layer 2: Each node in this layer corresponds to one linguistic
value (small, large, etc.) of one of the input variables in Layer
1. In other words, the membership value which specifies the
degree to which an input value belongs a fuzzy set is calculated
in Layer 2. There are many choices for the types of membership
functions for use, such as triangular, trapezoidal, or Gaussian
ones. In this paper, the membership functions are determined by
the online ICA mixture model, which are either super-Gaussian
function or sub-Gaussian function. It is noted that the output
from Layer 1 is projected into the independent axes obtained by
the online ICA mixture model (as shown in Fig. 2) such that

(7)

where is the basis matrix determined by the online ICA mix-
ture model, , and is the number of clusters.
That is, if the input data are classified into clusters, the number
of rules will be .

With the choice of non-Gaussian membership function, the
operation performed in this layer is

where

for super-Guassian

for sub-Gaussian

and

(8)

where is the transformed value of the th term of the th input
variable . The transformation can be regarded as a change of
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input coordinates, where the parameters of each membership
function are kept unchanged, i.e., the center and the width of
each membership function on the new coordinate axes are the
same as the old ones.

Layer 3: A node in this layer represents one fuzzy logic rule
and performs precondition matching of a rule. Here, we use the
following AND operation for each Layer-3 node

and

(9)

The link weight in the Layer is unity. The output of a
Layer-3 node represents the firing strength of the corresponding
fuzzy rule.

Layer 4: This layer is called the consequent layer. Different
nodes in Layer 3 may be connected to the same node in Layer 4,
meaning that the same consequent fuzzy set is specified for dif-
ferent rules. One of the inputs to each node is the output deliv-
ered from Layer 3 (firing strength) and the other inputs are CNN
related inputs , which are the output of feedback term node.
The feedback term node will be described in the feedback layer
part in this section. Combining the two kinds of inputs in Layer
4, we obtain the whole function performed by this layer as

and

(10)

where is the feedback template, control template, bias
of the th CNN, respectively, as defined in (1), and
is a sigmoid function, as defined in (13).

Layer 5: Each node in this layer corresponds to one output
variable. The node integrates all the actions recommended by
Layer 4 and acts as a defuzzifier with

and

(11)

Feedback Layer: As shown as Fig. 1, this self-feedback layer
characterizes the consequents of the RFCNN as a CNN tem-
plate. Two types of nodes are used in this layer, the square node
named as context node and the circle node named as feedback
term node, where each context node is associated with a feed-
back term node. The number of context nodes (and thus the
number of feedback term nodes) is the same as that of output
term nodes in layer 4. The inputs to a context node are from
its corresponding output term nodes , the input variables
from Layer 1 , and template
bias . The output of its associated feedback term node is
fed to the original node in layer 4. The context node functions
as the state (the summation of input part) of the th CNN

(12)

As to the feedback term node, the membership function
is used to approximate piecewise-linear

Fig. 3. Learning algorithm for the proposed RFCNN.

function used in CNN. With this choice, the feedback term
node evaluates the output by

(13)

This output is connected to its corresponding node in layer 4,
which characterizes the consequents of the RFCNN as a CNN
template.

III. LEARNING ALGORITHMS FOR RFCNN

Two types of learning, structure and parameter learning,
are used concurrently for the RFCNN. The structure learning
includes both the precondition and consequent structure iden-
tification of a fuzzy IF-THEN rule. In the RFCNN, the structure
learning includes the fuzzy division of the problem domain
(precondition structure identification), and the creation of
fuzzy rules and CNNs (consequent structure identification).
The precondition structure identification corresponds to the
input–space partitioning and can be formulated as a combina-
tional optimization problem with the following two objectives:
to reduce the number of rules generated and to reduce the
number of fuzzy sets on the universe of discourse of each input
variable. As to the consequent structure identification, the main
task is to decide when to generate a new consequent term (or a
new CNN) for the output variable. In our system, we propose
an online ICA mixture model to realize the precondition and
consequent structure identification part of the RFCNN.

For the parameter learning, the parameters of each CNN tem-
plate in the consequent parts are adjusted by the ordered deriva-
tive algorithm to minimize a given cost function. The parameters
in the precondition part are adjusted by the online ICA mixture
model algorithm. The RFCNN can be used for normal opera-
tion at any time during the learning process without repeated
training on the input–output patterns when online operation is
required. There are no rules (i.e., no nodes in the network except
the input–output nodes) in this network initially. They are cre-
ated dynamically as learning proceeds upon receiving online in-
coming training data by performing the following learning pro-
cesses simultaneously (see Fig. 3).

As shown in Fig. 3, learning processes (1) and (2) belong to
the structure learning phase and (3) belongs to the parameter
learning phase. The details of these learning processes are de-
scribed in the rest of this section.
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Fig. 4. Fuzzy partitions of 2-D input space. (a) Grid-based partitioning. (b) IF-THEN rules based on grid-based partitioning. (c) Clustering-based partitioning.
(d) IF-THEN rules based on clustering-based partitioning.

A. Input–Output Space Partitioning

Efficient partition of input–output data will result in faster
convergence and better performance for the RFCNN. The most
direct way is to partition the input space into grid types and each
grid represents a fuzzy IF-THEN rule [see Fig. 4(a)]. This is called
grid-based partitioning. The major problem of such kind of par-
tition is that the number of fuzzy rules (and thus, the number
of CNNs) increases exponentially if the number of input vari-
ables or that of partition increases. A flexible partition method,
the clustering-based approach, which clusters the input training
vectors in the input space, will reduce the rule and CNN num-
bers [20]–[23]. In fact, by observing the projected membership
functions in Fig. 4(c), although the number of membership func-
tions in Fig. 4(d) is more than that in Fig. 4(b), there are only
five rules in Fig. 4(d); however, there are nine rules in Fig. 4(b).
By observing the projected membership functions in Fig. 4(c),
we find that some membership functions projected from dif-
ferent clusters have high similarity degrees. These highly sim-
ilar membership functions can be checked and merged by sim-
ilarity measure. In this paper, we propose a clustering method
based on a new online ICA mixture model to provide a better
partition of the input–output space for the proposed RFCNN.
The background and algorithm of the proposed online ICA mix-
ture model for clustering will be described in the following
subsections.

1) ICA Mixture Model: Several methods for input space
partition have been proposed to cluster the input training vectors

in the input space, such as Kohonen learning rule, hyperbox
method, product–space partitioning, fuzzy -mean method,
electromagentic algorithm, etc., [26]–[29]. Those methods are
usually based on Gaussian membership functions. In general,
the observed data can be categorized into several mutually
exclusive classes [30]. When the data in each class are modeled
as multivariate Gaussian, it is called a Gaussian mixture model
(GMM) which is widely used throughout the fields of machine
learning and statistics. One major drawback of GMMs is that
if the dimension of the problem space increases, the size of
each covariance matrix, , becomes prohibitively large. This
problem has been solved by Tipping and Bishop [31] who
replaced each Gaussian with a probabilistic principal compo-
nent analysis (PCA) model. This allowed the dimensionality
of each covariance to be effectively reduced while maintaining
the richness of the model class. ICA [24] is a technique that
exploits higher-order statistical structure of the data, which has
recently gained attention due to its successful applications to
signal processing problems including speech enhancement, dis-
crete signal processing and image processing, etc. The goal of
ICA is to linearly transform the data such that the transformed
variables are as statistically independent from each other as
possible. Basically, it finds direction in the input space which
lead to independent components instead of just uncorrelated
ones as PCA does, so it can be used to reduce not only the
number of rules but also the number of membership functions
under a pre-specified accuracy requirement dynamically.
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Another drawback of GMMs is that it is based on Gaussian
function. In some situation, it could not be separated from each
other. It is generalized by assuming the data in each class are
generated by a linear combination of independent non-Gaussian
source [33]. This model is called the ICA mixture model. This
allows modeling of classes with non-Gaussian structure such as
platykurtic or leptokurtic probability density functions, and the
model uses the gradient ascent method to maximize the log-like-
lihood function. In previous applications, this approach showed
improved performance in data classification problems [34] and
learning efficient codes for representing different types of im-
ages [25]. The advantage of this model is that the input data with
increasing numbers of classes can provide greater flexibility in
modeling structure and in finding more features compared with
GMMs or standard ICA algorithms. Although the ICA mixture
model has many advantages, its cluster number should be given
beforehand and the learning scheme is only suitable for off-line
instead of online operation. Therefore, in the following section,
we shall propose an online ICA mixture model to provide better
dynamic partitioning of the input–output space for the proposed
RFCNN.

2) Online ICA Mixture Model for Dynamic Clustering: The
proposed online ICA mixture model is derived from the con-
ventional ICA mixture model. To enable the online operation,
we will define a criterion to determine whether the number of
clusters should be increased or not for any incoming training
pattern. For each incoming pattern to the RFCNN, the resulting
firing strength of a fuzzy rule can be interpreted as the degree
that the incoming pattern belongs to the corresponding cluster.
This likelihood can be represented as

(14)

where denotes the incoming pattern at time , and
is the log likelihood value indicating the degree

that the input data, , belongs to the th cluster for .
Now, we assume that the number of clusters at time is .

Then, the total probability at time is

(15)

Therefore, the posterior probability is

(16)

where is the prior probability at preceding time, which
can be obtained by former calculation result of the th cluster.
Hence, the probability at this moment can be calculated
by the following:

(17)

Then, the posterior probability in (16) can be
obtained.

Based on the above derivation, we can obtain the following
criterion for the generation of a new fuzzy rule (i.e., a new
CNN). Let be the newly incoming pattern at time . Defining

(18)

If , then, a new rule is generated, where is
a pre-specified threshold value that decays during the learning
process. Once a new rule is generated, the next step is to as-
sign initial values of the corresponding membership functions.
If , a new incoming data is added to an existed
cluster and we have to update the parameters of each cluster such
as mean , covariance matrix , and the criterion of
data distribution that determines if the distribution of data
is super-Gaussian or sub-Gaussian with the previous calculation
results. They are defined in (19)–(21), shown at the bottom of
the next page. In these, the function is defined as the
function of criterion which allows for automatic switching be-
tween super-Gaussian and sub-Gaussian models and (21) can
be further derived as

(22)

where

(23)

Finally, the independent axes , representing the axis of
the th cluster, can be obtained by the following formulations:

(24)

and

(25)

In (24), the function is called component-wise non-
linearity function. If the distribution of data is appearing
the super-Gaussian distribution, then it will be defined as

. Otherwise, if the distribution of data is
appearing the sub-Gaussian distribution, then it will be defined
as .

Since the algorithm of online ICA mixture model can auto-
matically determine the number of clusters according to new in-
coming data, it solves the problem of conventional ICA mixture
model that the number of clusters has to be given beforehand.



1030 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 5, MAY 2004

B. Structure Learning Algorithm of RFCNN With On-Line ICA
Mixture Model

The way the input space is partitioned determines the number
of rules extracted from training data as well as the number of
fuzzy sets on the universal of discourse of each input variable.
We will define a criterion to determine whether a new cluster
(i.e., a new fuzzy rule or a new CNN) should be added or not. Let

of cluster be the newly incoming pattern at time . Defining

(26)

where is the log likelihood value indi-
cating the degree that input data, , belongs to the th cluster,
and the superscript is a maximum log likelihood value
among all log likelihood values. If , the number
of cluster is not increased, where is a pre-specified threshold
value that decays during the learning process. In this case, the
new incoming pattern is added to an existed cluster and the pa-
rameters of this cluster will be updated properly. Oppositely, if

, the number of cluster will be increased. The
threshold value is determined by experiments.

The whole algorithm for the generation of new fuzzy rules
as well as fuzzy sets in each input variable is shown in Fig. 5
step by step. In PART 2 of Fig. 5, the threshold determines
how many rules will be generated, where should be nega-
tive since it is taken in natural log. For a lower value of ,
more rules will be generated. Similarly, determines how
many output clusters will be generated and a lower value of
will result in more output clusters. For the output space parti-
tioning, the same approach in (14) is used. The generation of a
new output cluster corresponds to the generation of a new CNN.

Fig. 5. Algorithm of input space partitioning.

Suppose a new input cluster is formed after the presentation of
the current input–output training pair ; then, the conse-
quent part is constructed by the algorithms shown in Fig. 6.

The above algorithm is based on the fact that different pre-
condition of different rules may be mapped to the same conse-
quent term, i.e., CNN. Since only the center of each output mem-
bership function is used for defuzzification, the consequent part
of each rule may simply be regarded as a singleton. Compared
to the general fuzzy rule-based models with singleton output
where each rule has its own individual singleton value, fewer
parameters are needed in the consequent part of the RFCNN,
especially for the case with a large number of rules.

(19)

(20)

(21)
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Fig. 6. Algorithm of output space partitioning.

C. Parameter Learning Algorithm of RFCNN by Ordered
Derivative Calculus

After the network structure is adjusted according to the cur-
rent training pattern, the network then enters the parameter iden-
tification phase to adjust the parameters of the network opti-
mally based on the same training pattern. Notice that the fol-
lowing parameter learning is performed on the whole network
after structure learning; no matter whether the nodes (links) are
newly added or are existent originally. Since the RFCNN is a dy-
namic system with feedback connections, the backpropagation
learning algorithm cannot be applied to it directly. Also, due to
the online learning property of the RFCNN, the off-line learning
algorithms for the recurrent neural networks, like backpropaga-
tion through time and time-dependent recurrent backpropaga-
tion [17], cannot be applied here. Instead, the ordered derivative
[34], which is a partial derivative whose constant and varying
terms are defined using an ordered set of equations, is used to
derive our learning algorithm. The ordered set of equations, de-
scribed in Section II in each layer, is summarized in (28)–(33).
Our goal is to minimize the error function

(27)

where is the desired output, is the cur-
rent output, and is . For each
training data set, starting at the input nodes, a forward pass is
used to compute the activity levels of all the nodes in the net-
work to obtain the current output . In the followings,
dependency on time will be omitted unless emphasis on tem-
poral relationships is required.

Summarizing the node functions defined in Section II, the
function performed by the network is

(28)

(29)

where

(30)

(31)

(32)

and (1) is redefined as the following equation for clarity:

(33)

With the above formula and the error function defined in (27),
we can derive the update rules for the free parameters in the
RFCNN as follows.

Update rule of (the parameter of feedback template of the
th CNN) is

(34)

(35)

where

(36)

and

(37)

where

(38)

and

(39)

Hence, the parameter is updated by

(40)

Similarly, the parameter (the parameters of control tem-
plate of the th CNN) is updated by

(41)

and the parameter (the bias of the th CNN) is updated by

(42)

As shown in (37) to (39), the update rules are in recursive
form. The value is equal to zero initially. For the
rest free parameters in the RFCNN, they are obtained during
the structure-learning phase by the online ICA mixture model
algorithm proposed in the last section. Notice that according to
the real-time recurrent learning (RTRL) scheme [35], we can
also obtain the same parameter learning rules for the RFCNN.
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Fig. 7. Training images. (a) Input image. (b) Desired output.

Of course, other existing online learning algorithms [36], [37]
for tuning the weights of recurrent neural networks can be pos-
sibly adopted for tuning the RFCNN, too.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The capability of the proposed RFCNN is demonstrated on
the real-world defect inspection problems. Automatic defect in-
spection systems are becoming more and more important in in-
dustrial production lines. Especially in the electronics industry,
an attempt is often made to achieve almost 100% quality con-
trol of all components and final goods. Here, we are interested in
the defect inspection of color filter, which is one of components
in thin film transistor liquid crystal display (TFT-LCD) module
and gives each pixel of LCD its own color. The difficulties in the
defect inspection of color filter are its complex texture and need
for high-speed processing. For high-speed processing, the CNN
is a good way to achieve defect inspection. Besides, different
kinds of defects in color filter need different CNN templates
and some complex defects cannot be detected by a single CNN.
Therefore, the proposed RFCNN is a good alternative to detect
defect of color filter images. To train the RFCNN, we use a 3 3
window to get the system inputs and set the whole image as the
inputs of the RFCNN. The 3 3 window covers the central pixel
and its eight connected neighbors. The training image and cor-
responding desired output are shown in Fig. 7(a) and (b). We set
the threshold and learning rate as
for the clustering algorithm. As mentioned in Section III, there
are no rules (and no CNNs) in the RFCNN initially. They are
created dynamically as learning proceeds upon receiving online
incoming training data by performing the learning processes
shown in Fig. 3. When the learning processes are done, three
clusters (three fuzzy rules and CNN templates) were obtained.
For an example of color filter, it takes about 1 min to learn the
structure (interconnection set) and 2 minutes to learn the param-
eters with a Pentium IV 2.0-GHz PC. However, the training can
be done off-line, so it is not a problem for the online processing
of CNN, which causes just little time.

Fig. 8 shows the outputs of Layer 3, 4, and feedback layer
for the training image. Fig. 8(a) to (c) shows the outputs of the
three Layer-4 nodes, respectively, i.e., the outputs of the three
CNNs in the feedback layer multiplied by the outputs of the
three Layer-3 nodes (i.e., firing strength of each rule), respec-
tively. Fig. 8(d) to (f) shows the outputs of the three CNNs in the
feedback layer, respectively. Fig. 8(g) to (i) shows the outputs
of the three Layer-3 nodes, respectively, (firing strength of each
rule). The sum of the outputs of the three Layer-4 nodes [i.e.,
Fig. 8(a) to (c)] forms the RFCNN final output. From Fig. 8(a)
to (c), we can see that CNN 1 takes care of the defect texture in
the right side of the training image, and CNNs 2 and 3 mainly

Fig. 8. Outputs of Layer 3, 4, and feedback layer for the training image.
(a)–(c) Outputs of the three Layer-4 nodes, respectively. (d)–(f) Outputs of the
three CNNs in the Feedback Layer, respectively. (g)–(i) Outputs of the three
Layer-3 nodes, respectively (firing strength of each rule).

take care of the defect textures in the left side of the training
image. The template of each learned CNN is given as follows:

Based on the learned structure and parameters of the RFCNN,
we test three images as shown in Fig. 9. Fig. 9(a), (c), and 9(e)
shows the testing images and Fig. 9(b), (d), and 9(f) shows the
corresponding results of defect inspection. From Fig. 9(a) to
(f), we can see that the learned structure and CNN templates
of the RFCNN are well suited to detect the defects of color filer
images. It has also been tested that detection results are still good
if the images are shifted, that is because that the RFCNN only
considers the central pixel and its eight connected neighbors and
they are still regular patterns after images are shifted. Therefore,
if the images are shifted, we need not reteach the network.

The conventional methods using CNN for defect inspection
[38]–[41] are using one or a set of CNN templates, which can
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Fig. 9. Experimental (Testing) results of the learned RFCNN. (a), (c), and (e)
are input testing images. (b), (d), and (f) are corresponding detection results.

Fig. 10. Training images by GA. (a) and (c) are input images. (b) and (d) are
corresponding desired outputs.

be obtained by experiential engineers or learned by examples,
to detect defect. To compare the RFCNN with conventional
methods, we performed some experiments using a single CNN
whose template is learned by the genetic algorithm (GA).
We find that the training image, shown in Fig. 7(a), cannot
be learned well by using only a single CNN. However, if we
have the training images and corresponding desired outputs as
shown in Fig. 10(a) to (d), the CNN template can be learned
well by GA. This fact implies that different kinds of defects
in color filter need different CNN templates. That is, we can
first identify the categories of defects and make each CNN
template of defect category learned by GA. However, this will
cause related questions as follows. First, how many defect
categories, which determine how many CNN templates, should
be classified? Second, how can we be sure which defects belong
to the same category? In other words, what is the corresponding
desired output for the uncategorized defects of color filter?
Therefore it is difficult to manually use the divide-and-conquer
principle to learn the templates of CNNs by GA. For the
dilemma mentioned above, the proposed RFCNN provides a
good alternative to solve this kind of problem.

To make the RFCNN converge more quickly during learning,
GA can be used to learn some CNN templates to initialize the
consequent part of the RFCNN. Though this experiment focuses
on defect inspection of color filter, the proposed RFCNN can be
also applied to those images with regular pattern, such as texture
webs.

The main idea of the proposed RFCNN is an integrated
system of FIS and CNNs, which can construct fuzzy rules
and CNN templates automatically. The example for the defect
inspection of color filter has been demonstrated to verify the
capability of the RFCNN. In addition to the defect inspection
of color filter, we believe such an integrated CNN system, the
RFCNN, has potential to solve more complex intelligent prob-
lems such as biological phenomena or other applications. Since
CNN bears the characteristic of high-speed processing based
on analog circuit realization, it will be very useful to realize
the RFCNN by analog circuits. As studied in [7], [11], the
elementary fuzzy-logic computations, such as the ,
and fuzzification operator in a fixed neighborhood, have
already been designed in CNN. Therefore, it is very promising
and feasible to implement the RFCNN in the future work. An
implementation scheme to realize the RFCNN includes the
following two steps. First, use the RFCNN to learn the fuzzy
rules and CNN templates. Second, construct a FIS based on the
learned fuzzy rules and CNN templates.

For taking into account the nonidealities or mismatch due to
the manufacturing, there are some ways can be done as follows:

1) We may add constraints with upper bound and lower
bound to the learned parameter in learning algorithm.

2) The interval parameter learning is also available in [42]
such that a tolerant range of parameters (weights) devia-
tion can be achieved.

3) Since the proposed RFCNN can learn the structure and
parameters automatically, we can increase the number of
CNN and other nodes automatically to achieve the re-
quired accuracy if the target accuracy has not been sat-
isfied.

V. CONCLUSION

In this paper, we propose a novel framework, called RFCNN,
for automatically constructing a multiple-CNN integrated
neural system. This CNN-based FNN can automatically learn
its proper network structure and parameters simultaneously.
The structure learning includes the creation of fuzzy rules
and CNNs with a new online adaptive ICA mixture-model
technique. The parameter learning includes the tuning of
fuzzy membership functions and CNN templates based on the
ordered derivative calculus. The proposed RFCNN provides a
solution to the current dilemma on the decision of templates
and/or fuzzy rules in the existing integrated (fuzzy) CNN
systems. In order to verify the capability of the RFCNN, a
real-world defect inspection problem has been demonstrated.
The experimental results show that the proposed scheme is
effective and promising. Our future work includes extending
the RFCNN to include the coupled CNNs and finding more
application examples.
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