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Abstract Due-date assignment (DDA) is the first
important task of shop floor control in wafer fabrica-
tion. Due-date related performance is impacted by the
quality of the DDA rules. Assigning order due dates and
timely delivering the goods to the customer will enhance
customer service and competitive advantage. A new
methodology for lead-time prediction, artificial neural
network (ANN) prediction is considered in this work.
An ANN-based DDA rule combined with simulation
technology and statistical analysis is developed. Besides,
regression-based DDA rules for wafer fabrication are
modelled as benchmarking. Whether neural networks
can outperform conventional and regression-based
DDA rules taken from the literature is examined.

From the simulation and statistical results, ANN-
based DDA rules perform a better job in due-date pre-
diction. ANN-based DDA rules have a lower tardiness
rate than the other rules. ANN-based DDA rules have
better sensitivity and variance than the other rules.
Therefore, if the wafer fab information is not difficult to
obtain, the ANN-based DDA rule can perform better
due-date prediction. The SFM_sep and JIQ in regres-
sion-based and conventional rules are better than the
others.

Keywords Due-date assignment Æ Artificial neural
network Æ Wafer fabrication Æ Simulation Æ Shop floor
control

Abbreviations

DDA due-date assignment
ANN artificial neural network
BPN back-propagation network
SFC shop floor control
AI artificial intelligence

TWK due-date prediction rule based on total amount
of works

SLK due-date prediction rule based on slack time
NOP due-date prediction rule based on number of

operations
JIQ due-date prediction rule based on current queue

length in system
JIBQ due-date prediction rule based on queue length

in bottleneck station
WIP work in process
PSP pre-shop-pool
KFM regression-based due-date prediction rule con-

sidering key factor
SFM regression-based due-date prediction rule con-

sidering significant factors

1 Introduction

A semiconductor chip is a complex device that consists
of miniaturized electronic components and their con-
nections. There are five steps in semiconductor manu-
facturing: wafer fabrication, wafer probe, device
assembly, class test and final test. Wafer fabrication is
the most technologically complex and capital-intensive
industry. Because the required capital investment is ex-
tremely large, improved shop floor control strategy
could result in a considerable increase in profit. How-
ever, it is challenging to develop SFC strategies for wafer
fabs due to the long flow time, ever-changing product
yield, re-entrant feature of the production sequence and
stochastic wafer fab characteristics including machine
failures. Due-date assignment is the first important task
in shop floor control. Due-date related performance is
impacted by the quality of the DDA rules. Assigning
exact due dates and timely delivering the goods to cus-
tomer will enhance customer service and competitive
advantage. Assigning a due date is a difficult decision.
As a jobs arrive at the shop, due dates are specified
indicating when the job is expected to be completed.

D. Y. Sha (&) Æ S. Y. Hsu
Department of Industrial Engineering and Management,
National Chiao Tung University, Hsin-Chu, Taiwan R.O.C.
E-mail: yjsha@cc.nctu.edu.tw

Int J Adv Manuf Technol (2004) 23: 768–775
DOI 10.1007/s00170-003-1644-8



This assignment is complicated by the fact that each
arriving job has processing needs on various machines in
the shop. Each machine continually experiences different
and varying levels of congestion that changes as the jobs
flow through the shop. We consider a new methodology
for lead-time prediction, namely, artificial neural net-
work (ANN) prediction. ANNs are an artificial intelli-
gence (AI) approach that has been applied to such
general problem areas as prediction, control, data
compression and surface fitting. However, to date, most
applications have been non-managerial scenarios such as
robot control, visual systems and airport bomb detec-
tion. We will try to develop an ANN-based DDA rule
combined with simulation technology and statistical
analysis. We will model some regression-based DDA
rules for wafer fabrication as benchmarking. Here, we
attempt to determine if neural networks can outperform
conventional, regression-based due-date assignment
rules in wafer fabrication. The basic methodological
approach employed is the statistical analysis of the data
generated from a simulated shop.

The remainder of this paper is organized as follows.
The second section will summarize the relevant literature
on due-date assignment and artificial neural networks.
The third section discusses the DDA methodology,
including conventional rules, regression-based rules and
ANN-based rules. The fourth section describes the
simulation model and experimental design. In the fifth
section, the statistical results are presented and the
performance of DDA rules will be discussed. The con-
clusions and suggestions for future study are included in
the last section.

2 Literature review

2.1 Due-date assignment rules

The DDA methods used in the related researches can be
classified into four categories [1]:

1. Direct procedures (conventional rule);
2. Simulation method;
3. Analytical methods;
4. Statistical analysis.

Direct procedures assign due dates using such infor-
mation such as the job characteristics, shop conditions
and dynamic shop condition [2]. This method is conve-
nient and easily computed; however, some parameters
must be pre-determined in other ways.

Initially, researchers examined due-date rules that
considered only the job characteristics. These methods
include: TWK, where the due dates are based on the
total amount of works; SLK, where the jobs are given
flow allowances that reflect equal waiting times or equal
slacks; and NOP, where the due dates are set according
to the number of operations to be performed in the job.
More recently, another class of due-date assignment
methods was proposed that includes job-characteristic

information and shop-status information. As Cheng and
Gupta [3] noted, many researchers reported improved
performance from these methods. This includes JIQ,
where the due dates are determined based on the current
queue lengths in the system [4].

Computer technology advances have made simula-
tions to be one of the public methods used in due-date
assignment research. Vig and Dooley [5], Weeks [6],
Kaplan and Unal [7] adopted simulations in their re-
search. Simulations allow evaluating the effects of dif-
ferent polices without actual execution.

Analytical methods, based on queuing theory, esti-
mate the mean and standard derivation of order flow
time [8]. Because analytical method assumptions usually
conflict with the conditions of the real world, analytical
method applications are restricted.

Statistical analysis uses the regression method [9] and
relation analysis [7] to find the relations between order
flow times and other variables. The deficiency in statistical
analysis is that past trends may not exist in the future.

Chung et al. [1] used both the simulation method and
queuing theory to estimate flow time and establish
control parameters for flow time. They tried to assign an
achievable due date for an order. Their method used
queuing theory to estimate system status, such as WIP
and throughput.

In recent years, many artificial intelligent and soft
computing methods have been used for decision support
and forecasting. Philipoom et al. [10] considered a new
procedure for internally setting due dates, namely,
neural network prediction, in a simple flow shop.

2.2 Artificial neural networks

Artificial neural networks (ANN) are computing sys-
tems that incorporate a simplified model of the human
neuron, organized into networks similar to those found
in the human brain. ANNs are computer simulations of
biological neurons. They are not programmed; rather,
they learn by example. Neural networks are composed
of processing elements (nodes) and connections. Each
processing element has an output signal that fans out
along the connections to the other processing elements.
Each connection is assigned a relative weight. A node’s
output depends on the specified threshold and the
transfer function. ANNs are used in pattern recognition,
speech recognition, group technology, scheduling, pre-
diction, optimisation, etc. An ANN is characterized by
its architecture, activation function and learning meth-
od. There are many different types of ANNs that model
how the human brain uses thought to learn. These ANN
types include the Hopfied, Brain-State-in-a-Box, Bi-
directional Associative Memory, Boltzmann, Adaptive
Resonance Theory, Hamming, and Hamming and Spa-
tion-temporal Networks (p. 7 in [11]).

ANNs are becoming better well known and have
been successfully implemented in manufacturing [12].
For instance, Philipoom et al. [10] used neural network
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models to forecast the order due-date in a simple flow
shop manufacturing system. The neural network model
yields better forecasting results than conventional due-
date assignment approaches [10]. Their research pointed
out that neural networks could outperform conven-
tional, regression-based due-date assignment rules. They
concluded that neural networks are worthy of further
experimentation as the methodology of choice in due-
date prediction. However, order due dates in a flow shop
are stable and the system deviation is smaller than that
in a job shop.

Huang et al. [13] constructed an ANN model to
predict production performance for a wafer fabrication
factory. They used a three-layer back-propagation neu-
ral network. It allowed more accurate prediction of the
WIP level and move volume in the next time period for
each wafer fabrication operation stage [14]. Using neural
network models to predict wafer fabrication production
performance has the following merits.

1. Neural networks can obtain a probable result even if
the input data are incomplete or noisy.

2. A well-trained neural network model can provide a
real time forecasting result.

3. Creating a neural network model does not necessitate
understanding the complex relationship among the
input variables.

Back-propagation neural networks (BPN) are widely
used and produce good results in prediction and pattern
recognition. This work constructed BPN model for or-
der due-date prediction in wafer fabrication. We inte-
grated the artificial neural network, simulations and
statistical tools for modelling an ANN based due-date
assignment rule in wafer fabrication.

3 DDA methodology

In general, the internally set due-dates can be repre-
sented using the following Eq. 1 [15]:

di ¼ ri þ pi þ qi ð1Þ

di: internally-set due-date of order i
ri: arrival time of order i
pi: total processing time for order i
qi: total queuing time in the system for order i

In Eq. 1,ri and pi are the known nearly constants after
order i arrives. The total queuing time for order (qi) is
the only variable that needs to be estimated for pre-
dicting di in Eq. 1. Hence, the manager must establish an
applicable prediction model for qi to precisely predict the
due-date for an order.

The total queuing time in the system for an order (qi)
consists of two major parts (Eq. 2). First, qpsp is the time
from order acceptance to order release into the shop (i.e.

the queuing time in the pre-shop pool). qs is the total
queuing time in the shop (from order released into shop
to order finished). To provide an exact customer due-
date, the manager must establish precise prediction
models for qpsp and qs. Most researchers used regression-
based rules to predict the due-date. One or more factors,
including job characteristics or system status, are con-
sidered in building a regression model for due-date
prediction, such as TWK, NOP and JIQ. Regression-
based and ANN-based rules are used to predict the due-
date (di) in this research.

qi ¼ qpsp þ qs ð2Þ

qpsp: total queue time in the pre-shop pool for order i.
qs: total queue time in the shop of order i.

3.1 Conventional DDA rules

Most of the conventional DDA rules consider only one
factor related job characteristic or system status. We will
compare some of these rules with the regression-based
and ANN-based rules. In conventional DDA models,
TWK, JIQ, and JIBQ are public and adapted in our
research. Ragatz and Mabert [13] published a compre-
hensive comparison of different due-date assignment
rules. They considered the performance of eight different
assignment rules in a simulated specific shop. We will
consider two public DDA rules, TWK and JIQ, in our
simulation model.

The methodology is described as follows.

3.1.1 Total work content (TWK)

This method assigns due dates to each order as a mul-
tiple of the order’s total processing time. TWK is widely
used in practice. The TWK rule is as follows:

di ¼ ri þ k � pi ð3Þ

Where di denotes the assigned due date for order i
and k is the parameter that reflects the expected queue
time that order i will experience in the system. The k
value is estimated based on the regression models.

3.1.2 Jobs in queue (JIQ)

This method assigns due dates to each order as a mul-
tiple of the number of orders in the queue. JIQ is widely
used in practice. The JIQ rule is as follows:

di ¼ ri þ pi þ k � qs ð4Þ

Where di denotes the assigned due date for order i
and k is the parameter that reflects the expected
queue time that order i will experience in the system.
The k value is estimated based on the regression
models.

770



3.1.3 Jobs in bottleneck queue (JIBQ)

This method is used in the system have the significant
bottleneck. The due date of each order is assigned just
considering the length of the queue in the bottleneck
workstations. The JIBQ rule is as follows:

di ¼ ri þ pi þ k � qbottleneck ð5Þ

Where di denotes the assigned due date for order i
and k is the parameter that reflects the expected queue
time that order i will experience in the system. The k
value is estimated based on the regression models.

3.2 Regression-based DDA rules

In TWK, JIQ and JIBQ, qi, the total queuing time,
including qpsp and qs, will be predicted considering just a
single factor. Most of the conventional DDA rules
consider just one or more factors building a regression-
based model for predicting the order due date. Owing to
the complexity of wafer fabrication, many factors affect
due-date prediction. Ninety-two factors are considered
in this research in building two regression-based DDA
rules, the key factor prediction model (KFM) and sig-
nificant factor prediction model (SFM). KFM uses the
most important factors under statistics analysis. SFM
uses the significant factors.

The 92 factors can be classified into three classes
including: the system conditions, order characteristics
and pre-shop-pool (PSP) condition. There are some
subclasses in the system and PSP conditions. The clas-
sification structure of the prediction factors is shown in
Table 1.

The prediction model for qs was built by choosing
one or more significant factors from main classes 1 and
2. The qpsp prediction model considers all of these factors
in main classes 1, 2 and 3.

3.2.1 KFM_sep

KFM_sep considers only the factor that has the highest
statistical analysis correlation coefficient value. The
queuing times, qs and qpsp, are forecasted separately. The
due date for each order is assigned as follows:

di ¼ ri þ pi þ qKFM PSPð Þ þ qKFM Sð Þ ð6Þ

Where di denotes the assigned due date for order i,
qKFM(PSP) and qKFM(S) are the qpsp and qs estimations in
the KFM regression models.

3.2.2 KFM_com

KFM_com considers only the key factor. The queuing
time (qi), including qs and qpsp, is forecasted using
a regression model. The due date for each order is
assigned as follows:

di ¼ ri þ pi þ qKFM totalð Þ ð7Þ

Where di denotes the assigned due date for order i,
qKFM(total) is the qi estimation using the KFM regression
models.

3.2.3 SFM_sep

SFM_sep considers the significant factors under statis-
tical analysis. The queuing time, qs and qpsp, are fore-
casted separately. The due date for each order is
assigned as follows:

di ¼ ri þ pi þ qSFM PSPð Þ þ qSFM Sð Þ ð8Þ

Where di denotes the assigned due date for order i,
qSFM(PSP) and qSFM(S) are the qpsp and qs equations using
the SFM regression models.

3.2.4 SFM_com

SFM_com considers all of the significant factors. The
queuing time (qi), including qs and qpsp, are forecasted
using a regression model. The due date for each order is
assigned as follows:

di ¼ ri þ pi þ qSFM totalð Þ ð9Þ

Where di denotes the assigned due date for order i,
qSFM(total) is the qi estimation using the SFM regression
models.

Using historical data as the input variables, the
regression model and neural network model represent
the properties and variations in a system. When a system
is stable, acceptable forecasting accuracy using the two
models is expected. However, finding a nonlinear
regression model that can correspond to the historical
data and represent the system’s status is difficult. Many
independent variables must be considered in our case.
Furthermore, some of the data do not fit the basic
assumptions in regression models. Thus, additional data
transformations are necessary to generate our regression
model. Alternatively, creating neural network models
does not have the above conditions. Moreover, in
practice, neural network models can yield better results
than regression models [10, 16].

Table 1 The classification structure of the prediction factors

Main class Subclass Number
of factors
included

1. System Condition 1.1 Shop status 8
1.2 Bottleneck status 10
1.3 Constraint resource status 50
1.4 Recently completed orders 8

2. Order Characteristics 8
3. PSP Condition 3.1 PSP status 4

3.2 Recently completed orders 4
Total 92
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3.3 ANN-based DDA rule

In our research, an artificial neural network, simulations
and statistical analysis tools are integrated to model an
ANN-based DDA rule. The structure of the rule is
shown in Fig. 1. Two types of ANN-based DDA rules
are developed. The first rule, ANN_com, adopts one
neural network to predict the wait time (including
waiting time in PSP and waiting time in the shop) in a
wafer fab. The second rule, ANN_sep, uses two neural
networks to predict the wait time in PSP and the shop
separately. The prediction difference between the
ANN_com and ANN_sep is investigated.

3.3.1 Virtual wafer fabrication

To obtain adequate data for modelling the DDA rules a
virtual wafer fabrication system was modelled based on
a real wafer fab. The wafer fab configuration considered
in this study is a wafer fabrication factory in Taiwan.
The fab consists of 53 workstations and 301 machines.
The fab has three types of products with a product mix
of 0.2, 0.35, and 0.45. The entire process requires 16, 18
and 17 loops. That is, a lot visits photolithographic
exposure workstations 16,18, and 17 times. The pro-
cessing time for a lot is randomly generated from
a uniform distribution between 0.95·MPT and
1.05·MPT, where the MPT (mean processing time) is
given for each workstation. The set-up time is included
in the processing time. The virtual fab takes into account
the downtime, which includes unscheduled breakdowns.
The time between failure and repair for each worksta-
tion is randomly generated from exponential distribu-
tions with given mean values. A lot (a cassette for
wafers) contains 24 wafers and the transfer time between
workstations is ignored in the simulation. The virtual
wafer fab was built on personal computers with Pentium
III 800 processors using the eM-plant, a simulation
package developed by Tecnomatix Technologies Corp.

3.3.2 Data set

We can collect a lot of data using a simulation experi-
ment in the virtual fab. A data set consists of 92 vari-
ances and the real flow time for each lot (containing the
processing time and actual waiting time in the PSP and
shop). This data set was used for training our ANN and
regression model. It is necessary to guarantee statistical
independence among the data before the test is per-
formed. To insure this, only one in every 10 outputs
from the shop simulation was randomly selected to be
included in the sample of 33,000 jobs. The simulation
was designed for a simulation time period of 24 hours a
day and the data was collected after 150 warm days.

3.3.3 Statistics analysis

Creating an ANN initially involves determining the in-
put variables. Based on the data obtained, a correlation
analysis was performed to help determine the input
variables. Forty-two variables (i.e. the significant factors
of due-date prediction) were modelled in our ANN
model. These variables had significant correlation with
flow time.

3.3.4 Modelling and training

Our research constructed three BPN prediction models
using the neuralworks professional II/Plus, a neural
network package developed by NeuralWare Techno-
logical Corp. The first BPN focused on the total wait
time in the system, including the wait time in the PSP
and shop. The other two BPNs focused on predicting the
wait time in the PSP and shop separately.

Modelling a BPN must apply the experimental design
method to determine the optimum BPN structure.
Figure 2 is an example of a three-layer back-propaga-
tion neural network. The number of hidden layers in a
BPN model and the number of nodes on the hidden

Fig. 1 The structure of the
ANN based DDA rule
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layer must be determined. The momentum and learning
rate for the model must also be determined.

Supervised learning is adopted in our BPN model.
The gradient-descent algorithm is employed ([13],
pp 322–328). Through a supervised learning rule, the
collected data set (training data) comprises an input and
an actual target output. The gradient-descent learning
algorithm enables a network to enhance the perfor-
mance by self-learning. Two phases are available for
computing: forward and backward. In the forward
phase of back-propagation learning the input data pat-
tern is directly passed into the hidden layer. Each ele-
ment in the hidden layer calculates an activation value
by summing up the weighted inputs and then transforms
the weighted input into an activity level using a transfer
function (the sigmoid function is broadly used). The
resulting activity is allowed to spread through the net-
work to the output layer. If a difference arises, i.e. an
error term, the gradient-descent algorithm is used to
adjust the connected weights in the backward phase.
This learning process is repeated until the error between
the actual and desired output (target) converges to a
predefined threshold. A trained neural network is ex-
pected to predict the output when a new input pattern is
provided to it.

3.3.5 Certification and retraining

The BPN model training occurs off-line. The data set is
separated into two parts before model training. The first

set is the training data (30,000 records). The second set
(3,000 records) is used for certification. To improve the
prediction accuracy different data set should be used in
training and certification. To assure that the model is
suitable for prediction, on-line retraining is designed in
the BPN model. That is, the model is retrained using
recently completed data lots.

3.3.6 Due-date acknowledgement

When the trained BPN is on-line, the ANN based DDA
rules can immediately assist the due-date acknowledge-
ment. When a customer asks for a due-date quote for an
order, a new input pattern consists of all of the input
variables provided to the BPN for predicting the total
wait time. The due date is confirmed based on
Eqs. 10(ANN-com) and 11 (ANN_sep):

di ¼ ri þ pi þ qANN com totalð Þ ð10Þ

di ¼ ri þ pi þ qANN sep PSPð Þ þ qANN sep Sð Þ ð11Þ

qANN_com(total) is the estimation of the total wait in the
system under the trained BPN model. qANN_sep(PSP) and
qANN_sep(S) are the wait time estimations in PSP and the
shop under the trained BPN model.

4 Experimental design

Our research included three types of DDA methodology
with nine rules in our simulation model. Table 2 shows a
summary of these DDA rules:

The required parameter values for each rule were pre-
determined. The regression and ANN models were built
before the rule comparison.

A simulation experiment was performed to compare
the DAA rules used in this study. The performance
measures used for the comparison were tardiness, late-
ness, earliness and the correlation between the predicted
flow time and actual flow time. Tardiness is the absolute
difference between the actual completion date and the
promised due date for orders. This method was used as
the primary performance measure. A smaller tardiness
implies a better due-date prediction capability. Tardiness
is always equal to the sum of the lateness and earliness.
The formulas used for the performance index are as
follows:

Fig. 2 An example of three-layer back-propagation neural network

Table 2 The summary of DDA
rules Types Rules Information required Formula

Conventional TWK Total PT di=ri+k*pi
JIQ Queue in system di=ri+pi+k*qs
JIBQ Queue in bottleneck di=ri+pi+k*qbottleneck

Regression-based KFM_com Key factor di=ri+pi+qKFM(total)

KFM_sep Key factor di=ri+pi+qKFM(PSP)+qKFM(S)

SFM_com Significant factors di=ri+pi+qSFM(total)

SFM_sep Significant factors di=ri+pi+qSFM(PSP)+qSFM(S)

ANN-based ANN_com Significant factors di=ri+pi+qANN_com(total)

ANN_sep Significant factors di=ri+pi+qANN_sep(PSP)+qANN_sep(S)
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Tardiness ¼
Xn

i¼1
max 0; di � fið Þ þmax 0; fi � dið Þ½ �

( )
=n

ð12Þ

Earliness ¼
Xn

i¼1
max 0; di � fið Þ

" #
=n ð13Þ

Lateness ¼
Xn

i¼1
max 0; fi � dið Þ

" #
=n ð14Þ

fi: is the actual finish date of order i.
di: is the internally set due date for order i
n: is the number of orders

The configuration of the wafer fab considered in this
study is a wafer fabrication factory in Taiwan. The fab
consists of 53 workstations and 301 machines. Product
type, processing time and other information related the
virtual wafer fab is shown in Sect. 3.3.

The order releasing mechanism releases new lots into
the fab at a constant rate, e.g. 16 lots/day (i.e. UNIF).
Under the order release mechanism, the fab utilization is
nearly 90%. Before a lot is released, the lot orders are kept
in the pre-shop pool. First-In-First-Out (FIFO) is adop-
ted as the dispatching rule at each work centre. UNIF and
FIFO are in widespread use in practice. Only one in every
10 outputs from the virtual fab was randomly selected to
be included in the sample of 600 jobs for measuring the
DDA rule performance. The simulation was designed for
a simulation time period of 24 hours a day and the data
was collected after 150 warm days. A due date is quoted
immediately when the order is accepted. All of the infor-
mation used in these DDA rules is collected at that time.

5 Discussion and analysis

The performance of the nine DDA rules is shown in Ta-
ble 3 and Fig. 3. The ANN-based DDA rules are shown
to be superior to the regression-based and conventional

rules. The ANN_com and ANN_sep tardiness rate is
lower than the other methods. The difference is greater
than 2 days. In the regression-based rules, SFM_com and
SFM_sep are superior toKFM_sep andKFM_com. That
is, more information used will improve the prediction
performance. The conventional rules, including TWK,
JIQ, and JIBQ, are inferior to the others. Owing to the
complexity of wafer fabrication, the conventional DDA
rules, including single information, are inadequate. The
ANN-based rules are better than others in lateness and
earliness. SFM_sep and SFM_com are better than the
conventional rules. The tardiness variance is significant in
the DDA rules. In the ANN-based rule the maximum
tardiness is more than 17 days. The regression-based and
conventional rule had more than 18 days tardiness. It is
very significant that the DDA rule, using simple meth-
odology, is not sensitive to the due date.Due-date quoting
based on these rules will not have the capability to reflect
the reality in the fab. ANN-based rules have a smaller

Table 3 The performance of DDA rules

Performance Index SFM_com SFM_sep ANN_com ANN_sep KFM_com KFM_sep TWK JIQ JIBQ

Mean of predicted
flow time (variance)

43.37 43.13 43.43 43.38 43.33 43.34 43.38 43.31 43.35
(5.23) (5.12) (5.33) (5.12) (3.59) (4.02) (0.43) (4.04) (0.01)

Correlationa 0.66 0.68 0.78 0.82 0.55 0.55 0.21 0.57 0.04
Tardiness Average 2.15 2.14 1.75 1.8 2.31 2.27 2.91 2.26 2.91

Max. 18.89 18.9 16.92 15.79 18.65 19.11 17.89 18.6 18.46
Lateness Average 1.08 1.2 0.65 0.95 1.18 1.16 1.46 1.17 1.47

Max. 18.89 18.9 16.92 16.79 18.65 19.11 17.89 18.6 18.46
Earliness Average 1.07 0.94 1.1 0.85 1.13 1.11 1.45 1.09 1.44

Max. 6.31 6.71 6.04 6.92 7.58 7.12 9.78 7.66 10.51
% of late 0.29 0.28 0.18 0.2 0.3 0.24 0.37 0.29 0.37
% of early 0.42 0.36 0.43 0.41 0.42 0.4 0.44 0.42 0.4
% of on time 0.29 0.36 0.39 0.39 0.28 0.36 0.19 0.29 0.23

a The correlation coefficients between real flow time and predict flow time of lots

Fig. 3 The performance of DDA rules
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tardiness value and variance. The ANN-based rule due-
date prediction capability is better than others.

The on-time delivery percentage is another important
performance index. On-time delivery is defined as the
order’s tardiness is smaller than 1 day. That is, the
forecasted due date is not larger or smaller than one day
of the actual flow time. ANN-based DDA rules have
39% on-time delivery. More than 80% of the orders can
be delivered before the predicted due date. The per-
centage of on time delivery is not derived from a greater
buffer on the due-date prediction. The due-date predic-
tion accuracy using ANN-based rules is better than that
using regression-based and conventional rules.

Table 4 shows the Duncan’s multiple test result at
a=0.05. The ANN-based rules are superior to the other
rules.

6 Conclusion and future work

In this research regression-based and ANN-based DDA
rules were developed and tested in a virtual fab. The
conventional DDA rules, TWK, JIQ, and JIBQ, were
used as the benchmark in the simulation model. The
simulation result and statistics showed that the ANN-
based DDA rules produce a better due-date prediction.
The ANN-based DDA rule tardiness is smaller than that
from the other rules. Their sensitivity and variance are
also better than the others. If the wafer fab information
is not very difficult to obtain, the ANN-based DDA rule
can perform due-date prediction. The regression-based
and conventional rules, SFM_sep and JIQ are better
than the other rules. SFM_sep, like the ANN-based rule,
is based on lots of information about the wafer fab. If
the cost of obtaining this information is too expensive,
KFM-com, KFM-sep, and JIQ are suitable for due-date
prediction in wafer fabrication.

There are some other topics that can be discussed in
the future, including the integration of the due-date
assignment rule and shop floor control strategies, such
as order review/releasing and dispatching. Because the

interaction among the shop floor control strategies is
significant, the effect of order review/release and dis-
patching on due-date prediction cannot be ignored.
Due-date prediction based on capability planning in
place of a prediction model can be developed.
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Table 4 Duncan’s multiple range test for the DDA rulesa

Performance DDA Rule

Tardiness 3b, 4, 2, 1, 8, 6, 5, 7, 9
Lateness 3, 4, 1, 6, 8, 5, 2, 7, 9
Earliness 4, 2, 1, 8, 3, 6, 5, 9, 7

a The a of Duncan’s test is 0.05
b Thenumber isDDArule: 1. SFM_com, 2. SFM_sep, 3.ANN_com,
4. ANN_sep, 5. KFM_com, 6. KFM_sep, 7. TWK, 8. JIQ, 9. JIBQ
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