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Abstract: We have developed a generic evolutionary method with an empirical scoring function for the protein-ligand
docking, which is a problem of paramount importance in structure-based drug design. This approach, referred to as the
GEMDOCK (Generic Evolutionary Method for molecular DOCKing), combines both continuous and discrete search
mechanisms. We tested our approach on seven protein—ligand complexes, and the docked lowest energy structures have
root-mean-square derivations ranging from 0.32 to 0.99 A with respect to the corresponding crystal ligand structures.
In addition, we evaluated GEMDOCK on crossdocking experiments, in which some complexes with an identical protein
used for docking all crystallized ligands of these complexes. GEMDOCK yielded 98% docked structures with RMSD
below 2.0 A when the ligands were docked into foreign protein structures. We have reported the validation and analysis
of our approach on various search spaces and scoring functions. Experimental results show that our approach is robust,
and the empirical scoring function is simple and fast to recognize compounds. We found that if GEMDOCK used the
RMSD scoring function, then the prediction accuracy was 100% and the docked structures had RMSD below 0.1 A for
each test system. These results suggest that GEMDOCK is a useful tool, and may systematically improve the forms and

parameters of a scoring function, which is one of major bottlenecks for molecular recognition.
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Introduction

A computer-aided docking process, identifying the lead com-
pounds by minimizing the energy of intermolecular interactions,
has greatly advanced an understanding of the molecular recogni-
tion phenomenon, and has been demonstrated to play an important
role for structure-based drug design.'? Protein-ligand docking
simulations need to yield the binding energy of the bound complex
crystal structure. In general, solving a protein-ligand docking
problem involves two critical elements:® a good scoring function
and an efficient search algorithm for finding a global minimum on
the binding energy landscape of a simulation scoring function that
is often complex and rugged funnel shapes.*

A good scoring function should be fast and simple for screen-
ing large potential solutions and effectively discriminating be-
tween correct binding states and nonnative docked conformations.
Various scoring functions have been developed for calculating
binding free energy, such as empirical-based,”® knowledge-
based,>’® physic-based,” "' solvent-based scoring functions,'?
and consensus scoring function.'® A search algorithm should con-
sist of global and local search strategies for covering the confor-

mation and orientation spaces fast and efficiently, including the
deterministic,"*'> stochastic,>'®'” and hybrid approach.'®

Many automated docking approaches have been developed and
can be roughly divided into rigid docking, flexible ligand docking,
and protein flexible docking methods. The rigid-docking meth-
ods'* treated both ligands and proteins as rigid. In flexible ligand
docking methods, such as evolutionary algorithms,>'!-!7-1°
lated annealing,'® and fragment-based approach,'® the ligand is
flexible and the protein is rigid. For reasonably addressing protein
flexible problems, where both ligands and proteins are flexible,
most of the docking methods often allowed a limited model of
protein variations, such as the side-chain flexible or small motions
of loops in the binding site.?” Among these search algorithms, an
evolutionary-based approach is a very promising direction.

simu-
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Main procedure proceeds following steps:

1. Prepare the protein binding site and assign the atom formal charge (Table 1) and the atom type (Table 2).

2. Fix the location of the receptor and Let g = 1. Randomly generate initial population, P(g), with N solutions by
initializing the orientation and conformation of a ligand related to the receptor.

3. Evaluate the scoring fitness of each solution in the population P(g).

4. Generate a new quasi-population, P (g), with N solutions by applying FC_Adaptive with P(g) and decreasing-

based Gaussian mutation (Myg).

5. Generate a new quasi-population, P,(g), with NV solutions by applying FC_Adaptive with P (g) and differential

equation (Myg).

6. Generate a new quasi-population, Pp;:(g), with IV solutions by applying FC_Adaptive with P3(g) and self-adaptive

Cauchy mutation (M,). Let g = g + 1 and P(g) =

Pnezt~

7. Repeatedly execute from step 4 to step 6 until the terminal criteria are satisfied.

FC_adaptive procedure proceeds the following steps with two parameters, working population (P) and working mutation

(Mdg, MpE, or Mc):

1. Let C be an empty set (C = (). For each solution a, called family father, in working population (P) executes

following steps: {family competition}

(a) Generate L docked ligand solutions {the orientation and conformation), denoted as ct,

", by applying

the recombination, rotamer mutation, and working mutation.

(b) Select the one, cbest with the lowest scoring value from the union set (e.g., a and ¢ - e

(c) Add the c**s¢ into the set C.

2. Return the set C with NV solutions.

Ly,

Figure 1. The main steps of GEMDOCK for flexible ligand docking.

Here, we developed a generic evolutionary approach with an
empirical scoring function, referred to as the Generic Evolutionary
Method for molecular DOCKing (GEMDOCK), to address several
issues of protein—ligand docking problems. First, we have reported
the validation and analysis of GEMDOCK on various search
spaces and scoring functions to understand which factors (e.g.,
search algorithms, scoring functions, or experimental errors) are
mainly responsible for the molecular docking errors. Second, we
have analyzed the nature and influences of a hybrid-solution dock-

Table 1. Atom Formal Charges of GEMDOCK.

Formal charge Heavy atom name

Receptor:
N atom in His (ND1 & NE2) and Arg
0.5 (NHI & NH2)
O atom in Asp (OD1 & OD2) and Glu
-0.5 (OEl & OE2)
1.0 N atom in Lys (NZ)
metal atoms (MG, MN, CA, ZN, FE,
2.0 and CU)
0 other atoms
Ligand:
0.5 N atom in —C(NH,),
O atom in —COO—, —PO, , —PO5,
-0.5 —SO0j5, and —SO,
1.0 N atom in —NH; and —N"(CHj;),
0 other atoms

ing method, which evolves simultaneously both rigid and flexible
docked conformations, because most of the current methods are
either flexible or rigid docking methods. Finally, our approach is
likely to help in making a good choice or in improving the scoring
function which is one of the major bottlenecks in protein—ligand
problems. The GEMDOCK is an extended work of our recently
developed evolutionary algorithm which was more robust than
three standard evolutionary approaches, including genetic algo-
rithms,?" evolution strategies,?? and evolutionary programming.>*

We have now substantially enhanced the original method, and
there are four main differences in methodology between the
present work and our previous study.?* First, GEMDOCK could be
a flexible or a hybrid-solution docking method. Second, we devel-
oped an empirical scoring function, which was specifically de-
signed for fast docking applications. Third, GEMDOCK combines
both continuous and discrete search mechanisms to improve the

Table 2. Atom Types of the GEMDOCK.

Atom type Heavy atom name

Donor primary and secondary amines, sulfur, metal atoms,
and atom with positive formal charge®

Acceptor oxygen and nitrogen with no bound hydrogen, and

atom with negative formal charge®
Both water and hydroxyl groups
Nonpolar other atoms (such as carbon and phosphorus)

“The atom formal charge defined in Table 1.
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Figure 2. The linear energy function of the pair-wise atoms for steric
and hydrogen bonds in GEMDOCK (bold line) with a standard Len-
nard—Jones potential (light line).

performance via two new genetic operators. Finally, GEMDOCK
is an automatic system that is able to prepare all required materials,
such as the atom formal charge, the atom type, and the ligand
binding site of a protein.

To evaluate the performance and limitations of GEMDOCK,
we tested it on seven protein—ligand complexes. The docked low-
est energy structures have root-mean-square derivations ranging
from 0.32 to 0.99 A with respect to the corresponding crystal
ligand structures. GEMDOCK was compared to five stochastic
approaches applying the very similar scoring function. In addi-
tion, GEMDOCK was tested on two crossdocking ensembles of
protein structures, 10 complexes of the dihydrofolate reductase,®
and six complexes of the trypsin,'® to evaluate GEMDOCK on a
problem in which a protein structure is small motion during
docking processing. Experimental results indicate that GEM-
DOCK is robust and the empirical scoring function is simple and
fast to recognize compounds. Furthermore, it may be used to
systematically evaluate and thus improve scoring functions.

Method

Here, we present the details of our GEMDOCK for the protein—
ligand docking (Fig. 1). GEMDOCK, an automatic docking tool, is
able to generate all experimental variables and serve as a flexible
or hybrid-solution docking tool. We designed a new rotamer-based
mutation operator for reducing the search space of ligand structure
conformations, and used a differential evolution operator’’ for
reducing the disadvantages of Gaussian and Cauchy mutations.
First, we specified the coordinates of ligand and protein atoms, the
ligand binding area, atom formal charge (Table 1), and atom types
(Table 2). Crystal coordinates of the ligand and protein atoms were
taken from the Protein Data Bank, and were separated into differ-
ent files. The size and location of the ligand binding site was
determined by considering the protein atoms located <10 A from
each ligand atom when preparing the proteins. GEMDOCK then
automatically determined the center of the receptor and the search
cube of a binding site according to the maximum and minimum of
coordinates of these selected protein atoms.

After GEMDOCK prepares the ligand and protein, GEM-
DOCK randomly generates a starting population with N solutions
by initializing the orientation and conformation of the ligand
relating to the center of the receptor according to the search cube.
Each solution is represented as a set of three n-dimensional vectors
(x', o', "), where n is the number of adjustable variables of a
docking system and i = 1, ..., N. The vector x represents the
adjustable variables to be optimized in which x,, x,, and x; are the
three-dimensional location of the ligand; x,, x5, and x4 are the
rotational angles; and from x, to x,, are the twisting angles of the
rotatable bonds inside the ligand. o and ¢ are the step-size vectors
of decreasing-based Gaussian mutation and self-adaptive Cauchy
mutation, respectively. In other words, each solution x is associ-
ated with some parameters for step-size control. The initial values
of x,, x,, and x5 are randomly chosen from the search box, and the
others (x, to x,,) are randomly chosen from 0 to 27 in radians. The
initial step sizes o is 0.8 and s is 0.2. The ligand conformations
(i.e., twisting angles of the rotatable bonds inside a ligand) are
randomly generated if GEMDOCK is a flexible docking method. If
GEMDOCK works as a hybrid-solution docking method, the ini-
tial ligand conformations of rigid solutions (0.2N) are set to the
conformation of the ligand crystal structure in PDB and the others
(flexible solutions with 0.8N) are randomly generated.

GEMDOCK enters the main evolutionary loop which consists
of three main stages in every iteration: decreasing-based Gaussian
mutation, differential equation, and self-adaptive Cauchy mutation
after GEMDOCK initializes the solutions. Each stage is realized
by generating a new quasi-population (with N solutions) as the
parent of the next stage. As shown in Figure 1, these stages apply
a general procedure “FC_adaptive,” with only different working
population and the mutation operator.

The FC_adaptive procedure (Fig. 1) employs two parameters,
namely, the working population (P, with N solutions) and muta-
tion operator (M), to generate a new quasi-population. The main
work of FC_adaptive is to produce offspring and then conduct the
family competition. Each individual in the population sequentially
becomes the “family father.” With a probability p_, this family
father and another solution that is randomly chosen from the rest
of the parent population are used as parents for a recombination
operation. Then the new offspring or the family father (if the
recombination is not conducted) is operated on by the rotamer
mutation and then by the working mutation, i.e., decreasing-based
Gaussian mutation (M), differential equation (M), or self-
adaptive Cauchy mutation (M_). For each family father, such a
procedure is repeated L times called the family competition length.

Table 3. Parameters of the GEMDOCK.

Parameter Value of parameters
o=0.8,v=14¢=0.2(n

Initial step sizes radius)

Family competition length L=2

Population size N = 400

Recombination rate p.=0.3

No. of the maximum generation 60
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Figure 3. The ligands used for docking in this article with rotatable
bonds are indicated. The lower-case four-letter and upper-case three-
letter symbols are the PDB code and ligand code in PDB, respectively.
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Among these L offspring and the family father, only the one with
the lowest scoring function value survives. Because we create L
children from one “family father” and perform a selection, this is
a family competition strategy. This method avoids the population
prematureness but also keeps the spirit of local searches. Finally,
the FC_adaptive procedure generates N solutions, because it forces
each solution of the working population to have one final off-
spring.

When GEMDOCK is a rigid docking, these values of x, to x,,,
conformations of rotatable bonds inside a ligand, are fixed and set
to the ligand conformations of the crystal bound complex. GEM-
DOCK is a flexible docking tool if it evolves the conformation
variables (x5, ..., x,) of each solution in a population. GEM-

Table 4. Test Systems Used in Docking Experiments.

DOCK is a hybrid-solution approach if the conformation variables
of part of solutions (e.g., nN solutions) are set to the values of the
crystal bound complex. In this article, n is 0.2 when GEMDOCK
is a hybrid-solution method.

In the following, genetic operators are briefly described. We
use a = (x“, o“, Y“) to represent the “family father” and b = (x°,
a”, ) as another parent. The offspring of each operation is
represented as ¢ = (x°, o, ). The symbol x; is used to denote
the jth adjustable optimization variable of a solution s, Vj €

{1,..., n}.

Recombination Operators

A recombination operator selected the “family father (a)” and
another solution (b) randomly selected from the working popula-
tion. GEMDOCK implemented both modified discrete recombina-
tion and intermediate recombination.?” The former generates a
child as follows:

! with probability 0.8

a
X
c J
)Ci—{

« with probability 0.2. @)

The generated child inherits genes from the “family father” with a
higher probability 0.8. Intermediate recombination works as:

wi=w + Bw! — wi)/2, ()

where w is o or ¢ based on the mutation operator applied in the
FC_adaptive procedure. The intermediate recombination only op-
erated on step-size vectors, and the modified discrete recombina-
tion was used for adjustable vectors (x).

Mutation Operators

After the recombination, a mutation operator, the main operator of
GEMDOCK, is applied to mutate adjustable variables (x). Gauss-

Ligand Interaction between ligand and receptor
No. of No. of No. of No. of Energy of
PDB Search Cartesian No. of polar charge hydrogen electrostatic native
Protein/ligand complex code volume (A) torsion atoms® atoms” binding® interaction® binding®
D-xylose isomerase/D-glucitol ledg 28 A X 23 A x 28 A 10 11 0 11 0 —91.33
Cyclodextrin glycosyltransferase/
maltose Idd  29A xX29A x31A 4 5 0 8 0 —66.13
Thrombin/Argatroban letr 56 A X 37A X 43 A 7 10 4 12 4 —154.63
Thrombin/NAPAP lets 56 A x 37 A x 42 A 6 8 2 9 4 —198.27
HIV-1 protease/XK263 lhve  29A x32A X384 8 3 0 6 0 —187.61
Influenza virus neuraminidase/
DANA Insd 28 A X 31A X354 10 9 2 14 8 —-157.27
Dihydrofolate
reductase/Methotrexate 3dfr 34A X 32Ax324A 7 12 4 12 7 —215.67

*and " are defined in Table 1 and Table 2, respectively.

“Statics are derived from the native crystal conformations of test systems according to our scoring function [eq. (12)].
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Table 5. GEMDOCK Results on the Test Cases Presented in Table 4.

847

Selected binding site®

Flexible docking®

Hybrid-solution docking®

Whole protein” with flexible docking

PDB Minimum Best Average Success Best Average Success Best Average Success
code energy RMSD (A)  RMSD (A) rate® RMSD (A)  RMSD (A) rate RMSD (A)  RMSD (A) rate
ledg —107.81 0.99 1.16 100% 0.60 0.97 100% 0.85 1.67 90%
1did —78.83 0.40 1.80 55% 0.38 0.75 75% 0.67 2.72 45%
letr —163.93 0.58 3.14 55% 0.53 2.77 65% 0.49 4.09 55%
lets —194.55 0.63 4.85 25% 0.46 4.49 30% 0.79 6.79 40%
lhvr —192.55 0.30 1.28 85% 0.22 1.11 85% 0.34 2.42 80%
Insd —151.53 0.32 0.44 100% 0.30 0.38 100% 0.34 4.18 85%
3dfr —222.77 0.35 0.97 90% 0.30 0.65 95% 0.43 2.20 85%

All results are derived from 20 independent docking runs, and the docked lowest energy conformation is considered to

calculate the best RMSD and average RMSD.

*and " the selected binding site and the whole protein are considered as the search binding areas, respectively.

‘GEMDOCK evolves a population with N flexible solutions.

YGEMDOCK evolves a population with 0.2N rigid solutions and 0.8N flexible solutions.
°The percentage of the docking runs that find a docked lowest energy structure within 2.0 A RMSD with respect to the

crystal ligand structure.

ian and Cauchy Mutations are continuous search operators and the
rotamer mutation is a discrete operator.

Gaussian and Cauchy Mutations

Gaussian and Cauchy Mutations are accomplished by first mutat-
ing the step size (w) and then mutating the adjustable variable x:

wi=wiA(), 3)
xj=x;+ wD(), “4)

where w; and x; are the ith component of w and x, respectively,
and w, is the respective step size of the x; where w is o or .. If the
mutation is a self-adaptive mutation, A(-) is evaluated as
exp[7'N(0, 1) + 7N,(0, 1)] where N(0, 1) is the standard normal
distribution, N;(0, 1) is a new value with distribution N(0, 1) that
must be regenerated for each index j. When the mutation is a
decreasing-based mutation A(-) is defined as a fixed decreasing
rate y = 0.95. D(-) is evaluated as N(0, 1) or C(1) if the
mutation is, respectively, Gaussian mutation or Cauchy mutation.
Our decreasing-based Gaussian mutation uses the step-size vector
o with a fixed decreasing rate y = 0.95 and works as

o= yo, S))
x; = x + o“N,(0, 1). (6)

The self-adaptive Cauchy mutation is defined as
Wi = yiexp[T'N(0, 1) + 7N,(0, 1)], 7

x; = x{ + PiCi(1). ®)

We set T and 7 to (V2n)™!' and (V2+v/n)"!, respectively,
according to the suggestion of evolution strategies.”> A random
variable is said to have the Cauchy distribution [C(#)] if it has the
density function:

_ 7k
f(ys t) - t2+y2,

—oo <y <o,

where 7 is set to 1.

Differential Evolution

An offspring of differential evolution is generated as

. [up, ifrand[0, 1) = CR 9
Xi= x, otherwise ©)

and
uj' = xj + F(x;’ - xj), (10)

where a is the “family father”; b and c are two solutions randomly
selected from the working population subjected to a # b # c. In
this work, F and CR are set to 0.5 and 0.9, respectively.

Rotamer-Mutation

This operator is only used for x, to x,, to find the conformations of
the rotatable bonds inside the ligand. For each ligand, this operator
mutates all of the rotatable angles according to the rotamer distri-
bution and works as:

X; = ry; with probability py;, 1n
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Figure 4. GEMDOCK results of four protein-ligand complexes. The RMSD values of these four complexes are less than 1.0 A, and most of the
docked ligand groups (white) are identical with the crystal ligand structures (gray). The white dotted lines are hydrogen bonds.

where r,; and p,; are the angle value and the probability, respec-
tively, of ith rotamer of kth bond type including sp—sp> and
sp>—sp? bonds. The values of r,, and p,; are based on the energy
distributions of these two bond types.

Scoring Function

In this work, we used an empirical scoring function given as
Eml = Einter + Eimra + EC07 (12)

and E.

intra

where E; ., are the intermolecular and intramolecular
energy, respectively, E~, penalizes a solution if the relative con-
tract order between ligand and receptor is less than a predefined
value.

The intermolecular energy is defined as

lig pro
Epe = 2 D [F(rfj"f) +332.0 Z’j’], (13)
i=1j=1

ij

where r;; is the distance between the atoms i and j, ¢, and g, are
the formal charges and 332.0 is a factor that converts the electro-

static energy into kilocalories per mol. The lig and pro denote the
numbers of the heavy atoms in the ligand and receptor, respec-
tively. The formal charge of atom type of receptor and ligand are
defined in Table 1. F (r,’j") is a simple atomic pair-wise potential
function (Fig. 2) modified from previous works>?® and given as

(

Verbi
oFij . i
Vﬁi Vll > lfrfj SV]
V(i =V
Bij) — 2V
F(rij) Vs, if V2<7‘5»"SV3' (14)
Vs(ry? = V.
S_M’ ifVy<r’=V,
Vi— Vs
\0, if 1 >V,

rg’/ is the distance between the atoms i and j with bond type B;;
which is the interaction bonding type forming by the pair-wise
heavy atoms of a ligand and a protein. B, is either hydrogen
binding or steric state. The values of parameters, V, ..., Vg, are
given in Figure 2. In this atomic pair-wise model, the interactive
types are only hydrogen binding and steric potential which have
the same function form but with different parameters, V, ..., V.
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Figure 5. Results of docking the ligand argatroban (MQI) into throm-
bin (letr) with (a) the while protein and (b) the selected binding site as
the search binding areas. The docked ligand conformations are yellow,
and the crystal ligand structures are red. (a) Shows three main clusters
of the docked ligand conformations, 55% results are near the native
binding state (yellow), 30% results are near the pocket (green), and
15% results are in the other positions.

The energy value of hydrogen binding should be larger than the
one of steric potential. In this model, the atom is divided into four
different atom types (Table 2): donor, acceptor, both, and nonplar.

The hydrogen binding can be formed by the following atom-pair
types: donor—acceptor (or acceptor—donor), donor—both (or both—
donor), acceptor—both (or both—acceptor), and both—both. Other
atom-pair combinations are to form the steric state.

The intramolecular energy of a ligand is

lig  lig dihed
Ene =2, >, [FGEN]+ X Al — cos(mé, — 6,)], (15)
i=1j=i+2 k=1

where F' (rf,‘-"f) is defined as eq. (14) except the value is set to 1000
when r{j‘f < 2.0 A for penalizing the unreasonable ligand confor-
mations and dihed is the number of rotatable bonds. We followed
the work of Gehlhaar et al.” to set the values of A, m, and 6,. For
the sp®>—sp= bond A, m, and 6, are set to 3.0, 3, and 7; and A =
1.5, m = 6, and 6, = O for the sp>—sp? bond.

The relative contract order is defined as R = f/T, where f is
the frequency of the atom-pair distance less than 8 A, and T is the
total number of interactions between the ligand and receptor. The
penalty E is based on R and is given

1000(K — Rco), if Reo=K
co = {0, if Reo > K (16)

In this article, the K is set to 0.025 and 0.075 when the whole
protein and the selected binding site as the search binding areas,
respectively.

Results and Discussions

Parameters of GEMDOCK

Table 3 indicates the setting of GEMDOCK parameters, including
initial step sizes, family competition length (L = 2), population
size (N = 400), and recombination probability (p. = 0.3) in this
work. The GEMDOCK optimization stops when either the con-
vergence is below certain threshold value or the iterations exceed
a maximal preset value which was set to 60. Therefore, GEM-
DOCK generated 2400 solutions in one generation and terminated
after it exhausted 144,000 solutions in the worse case. These
parameters were decided after experiments conducted to recognize
complexes of test docking systems with various values.

Test Complexes and Docking Protocols

We chose seven protein—ligand complexes shown in Figure 3 and
Table 4 to illustrate the effectiveness of our approach and to allow
comparison with other docking approaches,®** which used the
similar empirical scoring functions. These ligands have between 4
and 10 rotatable bonds, between 3 and 12 polar atoms, and be-
tween 0 and 4 formal charge atoms. The native binding energy of
a crystal complex is calculated by using our scoring function [eq.
(12)], which consists of three major kinds of protein—ligand inter-
actions (i.e., the hydrophobic interactions, electrostatic interac-
tions, and hydrogen bindings). The number of the hydrogen bonds
ranges between 6 and 14 and the number of the electrostatic
interactions ranges between 0 and 8. These statics are derived from
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Table 6. Comparisons GEMDOCK with Different Energy Functions on Test Cases.

E; - [eq. (13)] without electrostatic

energy E. [eq. (12)] without penalty Eq RMSD [eq. (17)] scoring function

PDB Best Average Success Best Average Success Best Average Success
code RMSD (A) RMSD (A) rate® RMSD (A) RMSD (A) rate RMSD (A) RMSD (A) rate

ledg 0.97 1.15 95% 0.80 1.15 95% 0.01 0.02 100%
1did 0.43 1.86 50% 043 2.00 50% 0.01 0.02 100%
letr 0.48 322 45% 0.58 7.98 10% 0.03 0.05 100%
lets 0.89 6.72 15% 1.58 9.53 5% 0.09 0.14 100%
lhvr 0.27 1.40 85% 0.32 1.86 85% 0.03 0.08 100%
Insd 0.35 0.67 95% 0.38 0.45 100% 0.02 0.03 100%
3dfr 0.32 1.42 85% 0.32 1.48 80% 0.04 0.10 100%

All results are derived from 20 independent docking runs and the docked lowest energy conformation is considered for

each test case.

*The percentage of the trials that find a docked lowest energy structure within 2.0 A RMSD with respect to the crystal

ligand structure.

the crystal binding conformations and the distant thresholds of a
hydrogen bond and an electrostatic interaction are set to 3.2 and
4.5 A in this article, respectively. GEMDOCK was also tested on
two crossdocking ensembles of protein structures, 10 complexes of
the dihydrofolate reductase, and six complexes of the trypsin
(serine proteinase) complex, to evaluate it on unbound docking
problems and on the problem in which a protein structure is small
motion during docking processing.

Crystal coordinates of ligand and protein atoms were taken
from the Protein Data Bank, and were separated into different files.
The protein atoms are selected if they are located less than 10 A
apart from each ligand atom. We followed the work>’ to retain the
metal atoms and water molecules. GEMDOCK automatically de-
cided the cube of a binding site based on the maximum and
minimum of atom coordinates of a selected binding site. Among
these seven test systems, the minimum cube is 28 X 23 X 28 A
(lcdg) and the maximum cube is 56 X 37 X 44 A (letr). Our
program also automatically assigned the formal charge (Table 1)
and the atom type (Table 2) of each atom in the ligand and protein.
The bond type (sp—sp?, sp®—sp?, or others) of a rotatable bond
inside a ligand is also assigned. The energies of the native crystal
conformations of test systems are indicated for referring based on
our scoring function [eq. (12)].

Accuracy of Docking Prediction

The overall accuracy of GEMDOCK in predicting the docked
conformations of seven test cases is shown in Table 5. We used
two performance criteria to evaluate the accuracy and robustness
of a docking method. The first is the root-mean-square deviation
(RMSD) error in ligand heavy atoms between the docked confor-
mation and the crystal ligand structure. The second criterion is the
success rate, which is the percentage of the trials that find a
solution within 2.0 A RMSD. The RMSD is commonly used and
is given
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where M is the heavy atom number of a ligand; (X;, Y, Z,) and
(x;, y;, z;) are the coordinates of the ith atom of X-ray crystal and
docked structures, respectively. All results were derived from 20
independent docking runs and the docked lowest-energy structure
was considered for each test case. In this work GEMDOCK runs
on Pentium 1.4 GHz personal computer with single processor. On
average GEMDOCK took 410 s, the maximum time was 652 s for
the complex, lets, and the shortest time was 130 s for 1did. When
we analyzed the characteristics of GEMDOCK and compared
GEMDOCK with other methods, GEMDOCK executed 100 and
500 docking runs and the docked lowest energy structure was
considered for each test system, respectively.

As shown in Table 5, GEMDOCK yielded the best RMSD
values ranging between 0.30 A (1hvr) and 0.99 A (1cgd) and the
average RMSD values ranging between 0.44 A (1nsd) and 4.85 A
(lets) when GEMDOCK worked as a flexible docking and the
selected binding site was considered as the binding search area.
The success rates range between 100% (lcdg) and 35% (lets).
Figure 4 shows four docked solutions (i.e., 1did, 1hvr, 1nsd, and
3dfr) in which GEMDOCK predicted correct positions for most of
the ligand groups. The docked and crystal ligand conformations
are white and gray, respectively, and the white dotted lines indicate
hydrogen bonds. The RMSD values of these four docked confor-
mations are less than 1.0 A. According to these docked conforma-
tions, we observed that GEMDOCK often yielded more number of
hydrogen bonds than native states to minimize the docking energy
based on our energy function [eq. (12)]. The energy of the docked
conformation (Table 5) obtained by GEMDOCK was often lower
than the energy of the crystal conformation (Table 4). Although
GEMDOCK worked as a hybrid-solution docking method, evolv-
ing 260 flexible ligand solutions and 40 rigid ligand solutions, it
consistently yielded lower RMSD values and higher success rates
than the ones of the flexible docking method for all test cases.

Although the whole protein was considered as the search bind-
ing area, GEMDOCK used the same parameter values, shown in
Table 3, except that the population size was 700 to improve the
success rates and reduce the average RMSD values. Table 5
indicates that GEMDOCK yields slightly different performance on
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Figure 6. GEMDOCK results are divided into three categories (see text) for the flexible docking in seven complexes with 100 docking runs: (a)
lcdg, (b) Insd, and (c) 4dfr are the first class; (d) letr and (e) lets are the second class; (f) 1did and (g) lhvr are the final class.

these two kinds of the search binding sites, the selected binding
site, and the whole protein. Figure 5a and b shows the results of
docking the argatroban (MQI) into the thrombin (letr) with the
whole protein and selected binding site as the search binding areas,
respectively. The docked ligand conformations are yellow and the
crystal ligand structures are red. The docked lowest energy con-
formation is identical with the crystal structure for most of ligand

groups. Figure 5a shows that the docked ligand conformations can
be divided into three main clusters: the first (55% solutions) is near
the native binding state (yellow), the second (30% solutions) is
near the pocket (green), the final (15% solutions) is in the other
locations.

In the following subsections, we validated and analyzed the
characteristics of GEMDOCK, including energy functions, the
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search spaces, and docking materials, and should therefore help to
understand the error-free prediction of docked conformations.

Evaluation of the Energy Function Used

One of main objectives of this study was to evaluate whether our
empirical scoring function was robust for molecular docking. To

simplify the task, we tested GEMDOCK with various uses and
parameter values of our scoring function [eq. (12)] on test com-
plexes. The overall accuracy is shown in Tables 5 and 6. GEM-
DOCK generally improved the docked quality by considering the
electrostatic energy if the protein—ligand interaction has the elec-
trostatic energy, such as the letr, lets, Insd, and 3dfr. For complex
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Insd, eight electrostatic interactions were formed between the
atoms O of CO; (ligand) and Argl15 N¥, Arg291 N¥%, and Arg373
N¢ (receptor). For the complex letr, three electrostatic interactions
were formed between the atoms N of (NH,); (ligand) and Asp189
0°® (receptor) and one electrostatic interaction was formed between
the atoms O of CO, (ligand) and His57 N¥ (receptor). The E is
useful for large search Cartesian volume, such as letr and lets.
According to these experimental results, the element, F' (rg."f), of
the E; ... [eq. (13)] was the main element of our scoring function.
In contrast, the E,,... Eco, and electrostatic energy were minor
elements that influenced some specific docking cases.

Figures 6 and 7 show the relationships between binding ener-
gies and RMSD values of the docked lowest energy structures for
flexible and hybrid-solution docking methods with 100 indepen-
dent docking runs for each complex. For these two docking meth-
ods, GEMDOCK has similar search behaviors and results that are
roughly classified into three kinds of typical categories. For the
first category, GEMDOCK yielded high success rates (>90%) and
our scoring function [eq. (12)] is able to discriminate between
native and nonnative conformations for complexes lcdg (Figs. 6a
and 7a), 1nsd (Figs. 6b and 7b), and 3dfr (Figs. 6¢c and 7c¢). For the
second category, GEMDOCK yielded medium success rates
(<60%) and may trap into local optimal, such as letr and lets.
Figures 6d, 7d, 6e, and 7e show that our scoring function is also
able to discriminate between correct binding states and nonnative
conformations. In general, GEMDOCK is able to improve the
success rate and docked accuracy by enlarging the population size
for this category (Fig. 8b). For the final category, including 1did
(Figs. 6f and 7f) and 1lhvr (Figs. 6g and 7g), our scoring function
may be unable to discriminate between correct binding states and
incorrect conformations, for example, the lowest energy structures
cannot promised to produce good docked conformations. In sum-
mary, GEMDOCK is able to achieve good predictions for the
complexes of categories 1 and 2 by increasing the population size
(Figs. 8a and b) or lengthening the family competition length. In
contrast to the protein—ligand complexes of the third category, a
modified scoring function is required to improve solution quality.

However, with uncertainty in the scoring function, the robust-
ness of GEMDOCK was difficult to assess. To address this ques-
tion, we made use of the high adaptability of GEMDOCK and
simply replaced the empirical scoring function with a RMSD
scoring function (i.e., one that would produce zero RMSD in heavy
atom positions). As shown in Table 6, using the RMSD scoring
function [eq. (17)], GEMDOCK could achieve the best RMSD and
the average RMSD of docked structures were below 0.09 and 0.14
A for each test complex, respectively. It is also worthy of note that
GEMDOCK converges much faster with the RMSD scoring func-
tion (<4 s for a docking run). These results may suggest that the
flexible of GEMDOCK should allow us to begin to systematically

Figure 8. The relationships between the solution quality (the success
rate and average RMSD value) and the population size. GEMDOCK is
able to improve the solution quality of docking (a) MTX into 3dfr and
(b) thrombin into letr when the population size increases. In contrast,
the solution quality of docking (c) cyclodextrin glycosyltransferase
into 1did is unrelated to the population size.
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Figure 9. GEMDOCK results for removing the structure water molecules in the complexes (Icdg and Insd) with 100 independent runs.

improve the forms and parameters of energy function for molec-
ular recognition.

Evaluation of Search Spaces Used

Table 5 shows the accuracy of GEMDOCK with various search
spaces and environments, including ligand size (i.e., number of
heavy atoms), ligand flexibility (i.e., the number of rotatable
bonds), sizes of the binding areas (i.e., selected binding site and
whole protein), hetero atoms (i.e., water molecules and metal
ions), and ligand polarity (i.e., numbers of hydrogen binding and
electrostatic interactions between ligands and proteins). When
GEMDOCK is a hybrid-solution docking method (Fig. 6), it
yielded slight better docked conformations than the ones of the
flexible docking method (Fig. 7). These results show that the
GEMDOCK performance was somewhat influenced by ligand size
and ligand flexibility. For the large search cube (i.e., letr and lets)
or the whole protein as the search binding area, GEMDOCK often
yielded a low success rate and a large average RMSD value (Table
5). Fortunately, Figure 8 shows that GEMDOCK is able to im-
prove the docked accuracy by enlarging the population size if the
scoring function can discriminate between native and nonnative
conformations.

When hetero atoms in the binding site were retained, GEM-
DOCK generally improved the predicated accuracy for complexes
1did, 1nsd, letr, and 3dfr. For the complex 1cdg, Figures 9a and 6a
show that the success rates are 31 and 99% for removing and
retaining water molecules, respectively. For the complex 1nsd,
Figures 9b and 6b show that the success rates are 86 and 100% for
removing and retaining water molecules, respectively. The reasons
can be attributed to the additional steric, hydrogen binding, and
electrostatic interactions between ligands and hetero atoms, which
are “both (water molecules)” or “donor (metal ions)” (Table 2). As
shown in Figure 4, a water molecule is often able to form hydrogen
bonds with ligand atoms and become the search space constraint to
reduce the possible docked orientations. For example, the ligand
DIG forms two hydrogen bonds with the 519th and 520th water
molecules in the complex 1did (Fig. 4A); the ligand DAN forms

five hydrogen bonds with the 429th, 431th, 434th, 435th, and
437th water molecules in the complex 1nsd (Fig. 4C). This obser-
vation was also supported by the work of Westhead,>® which
showed that the removal of the waters could lead to considerable
errors.

Comparison with Other Approaches

Table 7 shows the results of comparing GEMDOCK with five
different search methods, which were tested on the very similar
scoring function [eq. (12)].>° In general, it is neither straightfor-
ward nor completely fair to compare the results of different mo-
lecular docking methods because different accuracy measures,
energy functions, and test complexes. Most of docking methods,
with the exception of the studies of Jones et al.'” and Kramer et
al.,'” have performed on a rather small set of complexes. Despite
this, here we compared GEMDOCK with several molecular dock-
ing methods including simulated annealing (SA), evolutionary
programming (EP), Tabu search (TS), genetic algorithm (GA), and
random search (RS). These methods were studied by Westhead et

Table 7. Comparison GEMDOCK with Some Heuristic Approaches
Based on Success Rate."

PDB

code GEMDOCK SA® EP® TSP GA® RSP

letr 55% 30% 21% 39% 13% 3%
lets 21% 3% 9% 8% 11% 2%
lhvr 86% 65% 54% 58% 59% 2%
Insd 98% 40% 64% 88% 57% 6%
3dfr 92% 90% 76% 93% 76% 9%

“The percentage of 500 docking runs that find a docked lowest energy
structure within 1.5 A RMSD with respect to the crystal ligand structure.
"These results were summarized from ref. 25. SA is simulated annealing,
EP is evolutionary programming, TS is Tabu search, GA is genetic algo-
rithm, and RS is random search.
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Figure 10. Cross-RMSD matrices of all paired PDB entries for (a) 10
dihydrofolate reductase complexes, and (b) six trypsin complexes.

al.?® with the similar empirical scoring function and the same test
complexes. They calculated the success rate, the percentage of the
trials which find a solution within 1.5 A RMSD, based on 500
independent runs. We followed their criteria to obtain the GEM-
DOCK results and the results of comparative approaches were
directly summarized from the previous study.?

As shown in Table 7, our approach was more robust than these
comparative approaches on this test set. The random search is the
worst and GEMDOCK is the best among these approaches on this
test set. GEMDOCK seems good for the complexes letr and lets
and the success rate is approaching to 90% if we enlarged the
population size to 1000 (Fig. 8). At the same time, the GEMDOCK
approach, as discussed above, can be used to analyze elements of
molecular docking approaches, such as search schemes, docking

materials, and energy functions. It should help in moving toward
error-free prediction of docked conformations and in systemati-
cally improving the forms and parameters of a scoring function,
which is one of major bottlenecks for molecular recognition.

Crossdocking Results

We used two ensembles of protein structures, i.e., 10 complexes of
the dihydrofolate reductase and six complexes of the trypsin
(serine proteinase) complex,'® to evaluate GEMDOCK on the
unbound docking problem and the problem in which a protein
structure is small motion during docking processing. These protein
structures differ only on a small variation of side chains and loops
on the active site. Figure 10 shows the cross-RMSD matrices (e.g.,
protein heavy atoms of the binding site) of all paired PDB entries
that indicate the protein flexibility in the binding site. The largest
RMSD is 0.54 A and the smallest RMSD is 0.1 A. Figure 11a and
b shows these 10 inhibitors of the dihydrofolate reductase ensem-
ble and six inhibitors of the trypsin ensemble, respectively. The
symbol, four lower-case letters with three upper-case letters, was
used to denote a ligand. For example the ligand “4dfr.MX,” “4dfr”
denotes the PDB code and “MTX” is the ligand name in the
Protein Data Bank. Figure 12a and b shows the binding modes of
the dihydrofolate reductase and the trypsin complex, respectively.
For the dihydrofolate reductase ensemble, the sizes and conforma-
tions of all of ligands are similar. Three ligands, 1jol.FFO (5-
formyl-6-hydrofolic acid colored dark), 1dyh.DZF (5-deazafolate
colored gray), and 4dfr.MTX (methotrexate colored white), are
shown in Figure 12a. On the other hand, the binding mode of the
trypsin can be divided into two categories, one is the ligand
1tni.PBN (4-phenylbutylamine colored gray) and the other consists
of the other five ligands (white).
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Figure 11. Ligands bound to (a) 10 dihydrofolate reductase com-
plexes, and (b) six trypsin complexes tested in this work. Coordinates
for each complex were obtained from the Protein Data Bank, using the
accession codes given here. A four lower-case letter (e.g., 1dhj and
Itng) with a three upper-case letter (e.g., MTX and AMC) denotes a
ligand.
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(a) binding mode of dihydrofolate reductase

@ioT

(b) binding mode of trypsin

Figure 12. Binding modes of (a) dihydrofolate reductase and (b)
trypsin complexes. Three ligands, 1jol.FFO (dark), 1dyh.DZF (gray)
and, 4dfr.MTX (white), of dihydrofolate reductase have a similar
binding mode. Six ligands of trypsin have similar conformations
(white) except the ligand 1tni.PBN (dark). The dotted lines are hydro-
gen bonds and white balls are the water molecules.

The dihydrofolate reductase® is a small enzyme that plays an
essential role, in the building of DNA and other processes. There
are over 60 crystal structures with good resolution (=2.8 A) in the
Protein Data Bank. This reductase with diverse inhibitors, which
are similar in size and structure flexible (Fig. 11a), is an important
medicinal target, and shows the type of flexibility that can pose
significant problems in docking simulation. It has been commonly
used to evaluate and compare the performance of various docking
methods. The trypsin, a kind of serine proteinase, specifically
cleaves the peptide bond on the carboxyterminal side of positively
charged residues, namely lysine and arginine. The trypsin binding
pocket is only small motion and the structures of several trypsin-
inhibitor complexes have been solved in the PDB.

Figure 13 shows the results for the crossdocking experiments in
which all ligands of a protein ensemble were docked into each
protein of this ensemble. For example, we obtained 100 cross-
docked results when each of 10 ligands was docked into each of 10
complexes of the dihydrofolate reductase. For the trypsin ensem-
ble, we obtained 36 crossdocked solutions. When preparing the
proteins for crossdocking experiments, the size and location of the
ligand binding site was determined by considering the protein
atoms that are located less than 12 A apart from each ligand atom.
We removed all water molecules from the binding sites.

Figure 13a shows the crossdocking results of the dihydrofolate
reductase ensemble. All of the diagonal results, docking the ligand
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Figure 13. Crossdocking results of all-pair experiments for (a) 10
dihydrofolate reductase complexes and (b) six trypsin complexes. The
color-coded table shows the gray-scaling of RMSD values for each
ligand (row) docked into each protein (column) of a protein ensemble.
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back into its respective complex, are less than 1.0 10\, and most of
off-diagonal results, crossdocking examples, GEMDOCK also
yielded good results that the RMSD values are less than 1.5 A. The
largest RMSD value is 1.37 A when the ligand 2drc. MTX was
docked into the complex 1dyi, and the average is 0.77 A. As shown
in Figure 13a and Figures 3 and 4 in ref. 29, GEMDOCK is
significantly better than FlexX'® and FlexE*® on the dihydrofolate
reductase ensemble. The largest RMSD values of docked confor-
mations predicted by FlexE and FlexX were 5.37 and 7.55 A,
respectively. FlexX and FlexE yielded 44 and 83.3% docked
conformations with RMSD less than 2.0 A, respectively. For six
ligands, including 1dhj.MTX 1draMTX 1drb.MTX 2drc. MTX
3drc. MTX 4dfr.MTX, both FlexE and FlexX worked well for
predicting the docked conformations. On the other hand, FlexX
was unable to obtain good enough solutions for other ligands, such
as 1dyh.DZF 1dyi.FOL 1dyj.DDF 1jol.FFO. FlexE also yielded
little poor predictions for these four ligands, especially, FlexE
obtained wrong docked conformations for the ligand 1jol.FFO. By
contrast, GEMDOCK achieved 100% correct docked conforma-
tions, i.e., the RMSD values less than 1.5 A, for all 100 cross-
docking experiments.

For all 36 docked conformations of the trypsin ensemble,
GEMDOCK also obtained good and stable results except when the
ligand 1tni.PBN was docked into the complexes 1tnk and 1tnl. The
largest RMSD value is 2.72 A, and the average is 0.82 A (Fig.
13b). Our approach was more stable than FlexX'” on this trypsin
ensemble. As shown in Figure 12b, the binding mode of the ligand
1tni.PBN was significantly distinct from other ligands. Although
this ligand was docked into six trypsin complexes, GEMDOCK
obtained lower successful rates (=20%) than the rates (=60%) of
other crossdocking experiments in the trypsin ensemble. If water
molecules were retained in the binding site, GEMDOCK was able
to find corrected conformations, which the RMSD value is less
than 0.6 A and the successful percentage is more than 60%, for
docking the ligand 1tni.PBN into other systems. These results
show that GEMDOCK may be able to address the problem in
which the protein structure makes a slight variation during docking
processing.

Conclusions

We have developed a robust evolutionary approach with an em-
pirical fitness function for the flexible protein-ligand docking.
GEMDOCK seamlessly blends local search and global search to
work cooperatively by the integration of a number of genetic
operators, each having unique search mechanism. We have vali-
dated GEMDOCK on seven test cases and on two crossdocking
experimental sets by using various search spaces and scoring
functions. Experimental results have demonstrated the robustness
and adaptability of GEMDOCK for exploring the conformational
space of a molecular docking problem and efficiently finding the
solution under the constraint of the fitness function used. GEM-
DOCK could indeed yield 100% docking accuracy if the RMSD
scoring function was used.

Despite the GEMDOCK’s apparent success, there are a number
of problems with the methodology in general. First, our approach
is somewhat time-consuming; second, the binding site of the

protein is essentially rigid; and finally, some protein—ligand inter-
actions were not considered in our fitness function. In the future,
we will investigate three directions to reduce above disadvantages:
(1) developing a rapid energy evaluation with grid-based potentials
for drug screening; (2) considering the side-chain flexibility in the
protein active site; (3) incorporating important function—group
interactions between ligands and proteins;'” the solvent effect,'?
and the hydrogen bond strength for calculating a hydrogen bond-
ing energy® into our empirical scoring function.
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