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Abstract

In this paper, we 2nd necessary and su3cient conditions for the existence of a 6-cycle system
of Kn − E(F) for every forest F of Kn.
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1. Introduction

An H -decomposition of the graph G is a partition of E(G) such that each element of
the partition induces a subgraph isomorphic to H . In the case where H is an m-cycle,
such a decomposition is referred to as an m-cycle system of G. An m-cycle system of
G will be formally described as an ordered pair (V; B), where V is the vertex set of
G and B is the set of m-cycles.
Results in this area date back to the nineteenth century [7], but have received

a lot of attention over the past 40 years. There have been many results found on
H -decompositions of G for various graphs H and G, usually with G = Kn. One par-
ticularly enticing but di3cult problem was to solve the case where H is an m-cycle
(see [8,9] for surveys of results). This all culminated in two papers. Based on a result
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by HoEman et al. [6], a paper by Alspach and Gavlas [1] and another by GSajna [10]
settled the problem of 2nding the values of n for which there exists an m-cycle system
of Kn.

What about the many cases where Kn does not have an H -decomposition into
m-cycles? Recently a paper by Alspach and Gavlas [1] and another by GSajna [10]
settled the problem of 2nding the values of n for which there exists an m-cycle system
of Kn− I , where I is a 1-factor. This can alternatively be viewed as a partial m-cycle
system in which the set of edges not in any m-cycle induces a 1-factor. These edges
not in any m-cycle (or the subgraph they induce) are called the leave L.
Continuing with the theme of 2nding graph decompositions of graphs which are

close to complete, one way to extend these results is by 2nding necessary and su3cient
conditions for the existence of a m-cycle system of Kn − E(L), where the leave L is
a spanning forest (a forest is a graph that contains no cycle; a connected forest is
a tree). Clearly this would generalize the result described above where the leave is
a 1-factor. This generalization is so extensive that it becomes very di3cult to solve
unless further restrictions are made, such as 2xing the value of m. Fu and Rodger
[4] have obtained such a result by 2nding necessary and su3cient conditions for the
existence of a 4-cycle system of Kn − E(F), where F is any forest in Kn. Here we
extend these results by 2nding necessary and su3cient conditions for the existence of
a 6-cycle system of Kn − E(F) for any spanning forest F .
As will be shown, when the leave is a forest, it must be that n is even. Results

obtaining m-cycle systems of graphs that are close to complete have also been found
when m is odd, in which case each vertex has even degree in the leave (for example
[3] when m= 3, [5] when m= 4 and [2] when m= 6).
Let Zn = {0; 1; : : : ; n− 1}. On occasions arithmetic operations will be de2ned on Zn,

in which case we assume they are performed modulo n.

2. The small cases

As stated in the introduction, this section will provide necessary and su3cient con-
ditions for the existence of a 6-cycle system of Kn − E(F) for any spanning forest F .
The approach taken in this paper requires that we know the number of components in
F . This can be seen in Lemma 2.1, the result being summarized in Table 1.

Lemma 2.1. Let n be even and let F be a spanning forest of the complete graph Kn

with c(F) components. The number of edges in Kn − E(F) is divisible by 6 if and
only if n and c(F) are related as in Table 1.

Proof. Let C1; C2; C3; : : : ; Cc(F) be the components of F. Then

|E(F)|=
c(F)∑

i=1

|E(Ci)|=
c(F)∑

i=1

(V (Ci)− 1) =
c(F)∑

i=1

V (Ci)−
c(F)∑

i=1

1 = n− c(F):

Therefore, c(F) = n− |E(F)|.



D.J. Ashe et al. / Discrete Mathematics 281 (2004) 27–41 29

Table 1
The number of components required in F in order that 6 divides |E(Kn − E(F))| when n is even

n 12k 12k + 2 12k + 4 12k + 6 12k + 8 12k + 10

c(F) (mod 6) 0 1 4 3 4 1

So if 6 divides |E(Kn − E(F))| then c(F) (mod 6) ≡ (n − |E(F)|)(mod 6) ≡
(n− (n2 − n)=2) (mod 6).
Also, if c(F) and n are related as in Table 1 then c(F) ≡ n − (n2 − n)=2 (mod 6),

and so |E(F)| ≡ |E(Kn)| (mod 6). So the result follows.

Another tool that we will need is from a theorem by Sotteau [11]. Sotteau proved a
generalization of the following result. It is stated here for 6-cycles only.

Lemma 2.2. There exists a 6-cycle system of Ka;b if and only if:

(1) a and b are even,
(2) 6 divides a or b, and
(3) a; b¿ 4.

The following lemma is a special case of the results in [1], but is easily proved so
is included for completeness:

Lemma 2.3. Let n∈{2; 6; 8}, and let F be a 1-factor in Kn. There exists a 6-cycle
system of Kn − E(F).

Proof. In each case, we de2ne the 6-cycle system on the vertex set Zn.

(1) If n= 2, let B= � be the required 6-cycle system with leave F = {{0; 1}}.
(2) If n = 6, let B = {(0; 2; 1; 4; 3; 5), (0; 4; 2; 5; 1; 3)} be the required 6-cycle system

with leave F = {{0; 1}, {2; 3}, {4; 5}}.
(3) If n=8, let B= {(0; 1; 2; 3; 5; 7), (0; 2; 5; 6; 3; 4), (0; 3; 1; 7; 4; 6), (1; 5; 4; 2; 7; 6)} be

the required 6-cycle system with leave F = {{0; 5}, {7; 3}, {6; 2}, {1; 4}}.

Lemma 2.4. If F is a spanning forest of K10 in which each vertex has odd degree and
for which 6 divides |E(K10−E(F))|, then there exists a 6-cycle system of K10−E(F).

Proof. The maximum number of components possible in a subgraph of K10 in which
each vertex has odd degree is 5 (i.e. a 1-factor). So by Lemma 2.1 and Table 1, since
we are given that 6 divides |E(K10 − E(F))| it follows that c(F) = 1; so F is a tree.
There are 7 possibilities for the leave F . For 16 i6 7, a 6-cycle system (Z10; Bi)

of K10 − E(Fi) is given below, where Fi is the tree induced by the edges occurring in
no 6-cycle in Bi.
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B1 = {(1; 4; 5; 8; 2; 9), (2; 5; 6; 9; 3; 7), (3; 6; 4; 7; 1; 8), (1; 2; 4; 8; 7; 5), (2; 3; 5; 9; 8; 6),
(3; 1; 6; 7; 9; 4)}, so E(F1) = {{0; 1}; {0; 2}; {0; 3}; {0; 4}; {0; 5}; {0; 6}; {0; 7}; {0; 8};
{0; 9}}.
B2 = {(1; 4; 5; 8; 2; 9), (2; 5; 6; 9; 3; 7), (3; 6; 4; 0; 1; 8), (1; 2; 4; 8; 7; 5), (2; 3; 5; 9; 8; 6),

(3; 1; 6; 7; 9; 4)}, so E(F2) = {{0; 2}; {0; 3}; {0; 5}; {0; 6}; {0; 7}; {0; 8}; {0; 9}; {7; 4};
{7; 1}}.
B3 = {(1; 4; 5; 8; 2; 9), (2; 5; 6; 9; 3; 7), (3; 6; 4; 0; 1; 8), (1; 2; 4; 8; 7; 5), (2; 3; 5; 9; 8; 6),

(3; 0; 6; 7; 9; 4)}, so E(F3) = {{0; 2}; {0; 5}; {0; 7}; {0; 8}; {0; 9}; {7; 4}; {7; 1}; {1; 3};
{1; 6}}.
B4 = {(1; 4; 5; 8; 2; 9), (2; 5; 0; 9; 3; 7), (3; 6; 4; 0; 1; 8), (1; 2; 4; 8; 7; 5), (2; 3; 5; 9; 8; 6),

(3; 0; 6; 7; 9; 4)}, so E(F4) = {{0; 2}; {0; 7}; {0; 8}; {7; 4}; {7; 1}; {1; 3}; {1; 6}; {6; 5};
{6; 9}}.
B5 = {(1; 4; 5; 8; 2; 9), (2; 5; 0; 9; 3; 7), (3; 6; 4; 0; 1; 8), (1; 2; 4; 8; 7; 5), (2; 3; 5; 9; 8; 6),

(3; 1; 6; 7; 9; 4)}, so E(F5) = {{0; 2}; {0; 3}; {0; 6}; {0; 7}; {0; 8}; {7; 4}; {7; 1}; {6; 5};
{6; 9}}.
B6 = {(1; 4; 5; 8; 2; 9), (2; 5; 6; 9; 3; 7), (3; 6; 4; 0; 1; 8), (1; 2; 4; 8; 0; 5), (2; 3; 5; 9; 8; 6),

(3; 1; 6; 7; 9; 4)}, so E(F6) = {{0; 2}; {0; 3}; {0; 6}; {0; 7}; {0; 9}; {7; 4}; {7; 1}; {7; 5};
{7; 8}}.
B7 = {(1; 4; 5; 8; 2; 9), (2; 5; 6; 9; 3; 7), (3; 6; 4; 0; 1; 8), (1; 2; 0; 8; 7; 5), (2; 3; 5; 9; 8; 6),

(3; 0; 6; 7; 9; 4)}, so E(F7) = {{0; 5}; {0; 7}; {0; 9}; {7; 4}; {7; 1}; {1; 3}; {1; 6}; {4; 2};
{4; 8}}.

3. Some building blocks

In this section, we provide some 6-cycle systems of small graphs which will be
used to build 6-cycle systems of Kn −E(F) in Section 4. For the next six lemmas, let
G�;� = G�;�(V ) be a graph labeled with the vertices in the sequence V (the order in
which the vertices are listed is important) and let B be a 6-cycle system of G�;�(V ) (�
and � are indices that represent the �th graph de2ned in the �th lemma of this section
(i.e. in Lemma 3.�)). Let Gc denote the complement of a graph G. Also let G ∨ H
denote the join of two vertex disjoint graphs G and H (so E(G∨H)=E(G)∪E(H)∪
{{u; v}: u∈V (G); v∈V (H)}).
Lemma 3.1. Let G1;1(0; 1; 2; : : : ; 11) be the graph Kc

8 ∨K4+{{0; 2}, {1; 2}}−{{0; 11},
{1; 10}, {2; 9}, {2; 8}} with V (Kc

8)=Z8 and V (K4)=Z12 \Z8. There exists a 6-cycle
system of G1;1.

Proof. There exists a 6-cycle system (Z12; B) of G1;1 de2ned by B= {(0; 2; 1; 8; 9; 10),
(2; 10; 5; 8; 4; 11), (0; 8; 6; 10; 11; 9), (1; 9; 4; 10; 8; 11), (3; 10; 7; 9; 6; 11), (3; 8; 7; 11;
5; 9)}.

Lemma 3.2. Let G2;1(0; 1; 2; : : : ; 7) be the graph Kc
4 ∨ K4 − {{0; i} | 46 i6 7}, and

let G2;2(0; 1; 2; : : : ; 7) be the graph Kc
4 ∨ K4 − {{i; 7 − 2i}, {i; 6 − 2i} | i∈Z2} with

V (Kc
4) = Z4 and V (K4) = Z8 \ Z4 in each case. There exists a 6-cycle system B of

G2;� for 16 �6 2.
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Proof. For 16 �6 2, there exists a 6-cycle system (Z8; B�) of G2;� de2ned by B1 =
{(1; 7; 2; 4; 6; 5), (1; 6; 3; 7; 5; 4), (2; 6; 7; 4; 3; 5)} and B2={(0; 4; 6; 7; 3; 5), (1; 7; 4; 5; 2; 6),
(2; 4; 3; 6; 5; 7)}.

Lemma 3.3. Let G3;1(0; 1; 2; : : : ; 15) be the graph Kc
10 ∨ K6 + {{0; 3}; {1; 4}; {2; 4}} −

{{i; 15 − i}; {4; 10} | i∈Z5}, and let G3;2(0; 1; 2; : : : ; 15) be the graph Kc
10 ∨ K6 +

{{0; 3}; {1; 3}; {2; 3}} − {{i; 15 − i}; {3; 11}; {3; 10} | i∈Z4} with V (Kc
10) = Z10 and

V (K6)=Z16\Z10 in each case. There exists a 6-cycle system B of G3;� for 16 �6 2.

Proof. For 16 �6 2, there exists a 6-cycle system (Z16; B�) of G3;� de2ned by
B1 = {(2; 4; 1; 12; 11; 10), (10; 3; 11; 15; 14; 0), (3; 0; 11; 7; 12; 13), (4; 13; 1; 15; 10; 12),

(5; 10; 9; 14; 2; 11), (5; 15; 6; 11; 13; 14), (6; 13; 7; 15; 8; 12), (3; 15; 13; 10; 7; 14), (4; 15;
12; 9; 11; 14), (5; 13; 9; 15; 2; 12), (6; 14; 8; 11; 1; 10), (0; 13; 8; 10; 14; 12)} and

B2 = {(2; 3; 1; 12; 11; 10), (10; 4; 11; 15; 14; 0), (3; 0; 11; 7; 12; 13), (4; 13; 1; 15; 10; 12),
(5; 10; 9; 14; 2; 11), (5; 15; 6; 11; 13; 14), (6; 13; 7; 15; 8; 12), (3; 15; 13; 10; 7; 14), (4; 15;
12; 9; 11; 14), (5; 13; 9; 15; 2; 12), (6; 14; 8; 11; 1; 10), (0; 13; 8; 10; 14; 12)}.

Lemma 3.4. Let G4;1(0; 1; 2; : : : ; 15) be the graph Kc
8 ∨ K8 − {{0; i} | 86 i6 15},

let G4;2(0; 1; 2; : : : ; 15) = Kc
8 ∨ K8 − {1; 8}; {1; 9}; {0; i} | 106 i6 15},

let G4;3(0; 1; 2; : : : ; 15) = Kc
8 ∨ K8 − {i; 15 − 4i}; {i; 14 − 4i}; {i; 13 − 4i}; {i; 12 −

4i} | i∈Z2},
let G4;4(0; 1; 2; : : : ; 15) = Kc

8 ∨ K8 − {0; i}, {1; j}, {2; k} | 126 i6 15; 106 j6 11;
86 k6 9}, and

let G4;5(0; 1; 2; : : : ; 15)=Kc
8 ∨K8−{{i; 15−2i}; {i; 14−2i} | i∈Z4}, with V (Kc

8)=Z8

and V (K8) = Z16 \ Z8 for each case. There exists a 6-cycle system (Z16; B�) of G4;�

for 16 �6 5.

Proof. Let (Z16=Z7; B) be a 6-cycle system of K9 (this is easy to do; or see [1], or
see [8] for a survey). For 16 �6 5, there exists a 6-cycle system (Z16; B�) of G4;�

de2ned by
B1 = B ∪ {(9; 1; 8; 6; 15; 4), (11; 1; 10; 5; 14; 4), (9; 2; 8; 5; 11; 6), (13; 3; 12; 6; 10; 4),

(13; 6; 14; 3; 10; 2), (13; 5; 15; 2; 12; 1), (11; 3; 15; 1; 14; 2), (8; 4; 12; 5; 9; 3)},
B2 = B ∪ {(9; 0; 8; 6; 15; 4), (11; 1; 10; 5; 14; 4), (9; 2; 8; 5; 11; 6), (13; 3; 12; 6; 10; 4),

(13; 6; 14; 3; 10; 2), (13; 5; 15; 2; 12; 1), (11; 3; 15; 1; 14; 2), (8; 4; 12; 5; 9; 3)},
B3 = B ∪ {(9; 0; 8; 6; 15; 4), (11; 0; 10; 5; 14; 4), (9; 2; 8; 5; 11; 6), (13; 3; 12; 6; 10; 4),

(13; 6; 14; 3; 10; 2), (13; 5; 15; 2; 12; 1), (11; 3; 15; 1; 14; 2), (8; 4; 12; 5; 9; 3)},
B4 = B ∪ {(9; 0; 8; 6; 15; 4), (11; 0; 10; 5; 14; 4), (9; 1; 8; 5; 11; 6), (13; 3; 12; 6; 10; 4),

(13; 6; 14; 3; 10; 2), (13; 5; 15; 2; 12; 1), (11; 3; 15; 1; 14; 2), (8; 4; 12; 5; 9; 3)}, and
B5 = B ∪ {(9; 0; 8; 6; 15; 4), (13; 0; 10; 5; 14; 4), (9; 1; 8; 5; 13; 6), (11; 0; 12;

6; 10; 4), (11; 6; 14; 3; 10; 1), (11; 5; 15; 2; 12; 3), (13; 3; 15; 1; 14; 2), (8; 4; 12; 5; 9; 2)}.

Lemma 3.5. Let G5;1(0; 1; 2; : : : ; 15) be the graph Kc
8 ∨K8—{{0; 15}, {0; 14}, {12; 14},

{13; 14}, {1; 11}, {1; 10}, {2; 9}, {2; 8}} and let G5;2(0; 1; 2; : : : ; 15) be the graph.
Kc
8 ∨ K8—{{0; 15}, {0; 14}, {12; 14}, {13; 14}, {1; 11 − i} | i∈Z4} with V (Kc

8) = Z8

and V (K8) = Z16 \ Z8. There exists a 6-cycle system B of G for 16 �6 2.
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Proof. For 16 �6 2, there exists a 6-cycle system ((Z16; B�) of G5;� de2ned by
B1={(8; 1; 9; 0; 11; 5), (1; 13; 6; 14; 5; 15), (3; 10; 2; 15; 6; 11), (3; 14; 7; 13; 8; 9), (4; 8; 0;

12; 7; 11), (4; 9; 5; 12; 15; 10), (4; 15; 13; 11; 8; 12), (4; 14; 9; 11; 10; 13), (13; 12; 11; 14;
15; 9), (1; 12; 10; 6; 8; 14), (3; 12; 6; 9; 7; 8), (3; 13; 5; 10; 7; 15), (2; 14; 10; 8; 15; 11), (2; 12;
9; 10; 0; 13)} and

B2={(8; 2; 9; 0; 11; 5), (1; 13; 6; 14; 5; 15), (3; 10; 2; 15; 6; 11), (3; 14; 7; 13; 8; 9), (4; 8; 0;
12; 7; 11), (4; 9; 5; 12; 15; 10), (4; 15; 13; 11; 8; 12), (4; 14; 9; 11; 10; 13), (13; 12; 11; 14;
15; 9), (1; 12; 10; 6; 8; 14), (3; 12; 6; 9; 7; 8), (3; 13; 5; 10; 7; 15), (2; 14; 10; 8; 15; 11), (2; 12;
9; 10; 0; 13)}.

Lemma 3.6. Let G6(0; 1; 2; : : : ; 15) be the graph Kc
8 ∨K8—{{0; 15}, {0; 14}, {12; 14},

{13; 14}, {1; 11}, {1; 10}, {8; 10}, {9; 10}} with V (Kc
8) = Z8 and V (K8) = Z16 \ Z8.

There exists a 6-cycle system B of G6.

Proof. There exists a 6-cycle system (Z16; B) of G6 de2ned by B={(2; 14; 11; 10; 6; 12),
(2; 15; 4; 10; 7; 13), (3; 15; 9; 6; 8; 12), (3; 14; 1; 8; 9; 13), (0; 11; 5; 9; 7; 12), (4; 9; 11; 8;
5; 13), (5; 10; 12; 13; 11; 15), (1; 9; 14; 15; 8; 13), (2; 10; 0; 9; 3; 11), (2; 9; 12; 5; 14; 8), (3; 8;
7; 15; 13; 10), (0; 8; 4; 11; 6; 13), (4; 14; 6; 15; 1; 12), (7; 11; 12; 15; 10; 14)}.

4. Main result

Finally, we are ready to prove the main result of this paper. Let G[W ] denote the
subgraph of G induced by W .

Theorem 4.1. Let F be a forest in the complete graph Kn with |E(F)|¿ 1. There
exists a 6-cycle system of G = Kn − E(F) if and only if

(1) all vertices in F have odd degree,
(2) |E(Kn − E(F))| is divisible by 6 and
(3) n is even.

Remark. Note that condition (1) requires F to be a spanning forest of Kn.

Proof. Suppose that there exists a 6-cycle system (V; B) of G = Kn − E(F). Then
for each v∈V , the 6-cycles in B partition the edges incident with v into pairs, so
dG(v) is even. Since |E(F)|¿ 1 and F is a forest, F contains at least one vertex,
say w, with dF(w) = 1, so dG(w) = n− 2. Therefore, n is even. Also, for each v∈V ,
dF(v) = (n− 1)− dG(v) so dF(v) is odd. Then clearly F spans Kn. Since the 6-cycles
in B partition the edges of G, it follows that 6 must divide |E(Kn − F)|.
To prove the su3ciency, 2rst note that the necessary conditions prevent the possi-

bility that n= 4.
Next observe that if n∈{2; 6; 8} then conditions (1)–(3) require that F be a 1-factor.

Lemma 2.3 provides such a 6-cycle system of Kn − E(F) for each n∈{2; 6; 8}. If
n = 10, then conditions (1)–(3) require that F be a spanning tree, thus giving seven
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possibilities for F , and each is considered in Lemma 2.4. Therefore we can now assume
that n¿ 12.

The remaining cases are proved by induction. So now suppose that for each positive
integer ' with 26 '¡n and for any forest F ′ in K' that together satisfy:

(1′) all vertices in F ′ have odd degree (so F ′ is spanning),
(2′) |E(K' − E(F ′))| is divisible by 6 and
(3′) ' is even,

there exists a 6-cycle system of K' − E(F ′). We can assume that V (Kn) = Zn. We
obtain a 6-cycle system (Zn; B) of Kn − E(F) by considering several cases in turn: F
has at least three components which are isomorphic to K2; n=6t; n=6t+2; n=12k+4;
and n = 12k + 10 (3 subcases). We regularly make use of Table 1, since it is easier
to 2nd the number of components c(F ′) in F ′ than it is to check that condition (2′)
is satis2ed.

Case 1: Suppose F has three components isomorphic to K2.
Let the vertex sets of these three components be {n− i; n− i−1}, where i∈{1; 3; 5}.

Let F ′ = F[Zn−6] and let '= n− 6.
We must check to see that F ′ and '=n−6 satisfy conditions (1′)–(3′). Since F ′ is

formed by removing the three components of F isomorphic to K2, dF′(v) = dF(v) for
each v∈Zn−6. So all vertices in F ′ have odd degree, and thus (1′) is satis2ed. Also
c(F ′)=c(F)−3 and |V (F ′)|=n−6. Since we assumed that 6 divides |(Kn−E(F))|, by
Table 1, we have that 6 divides |E(Kn−6 − E(F ′))|, so (2′) is satis2ed. Clearly, n− 6
is even since n is even, so (3′) is satis2ed. We apply induction to obtain a 6-cycle
system (Zn−6; B1) of Kn−6 − E(F ′).
Since n¿ 12; n − 6¿ 6 and |Zn \ Zn−6| = 6, by Lemma 2.2 there exists a 6-cycle

system (Zn; B2) of Kn−6;6 with bipartition {Zn−6;Zn \ Zn−6} of the vertex set.
By Lemma 2.3, there exists a 6-cycle system B3 of K6−{{n−i; n−i−1}|i∈{1; 3; 5}}

de2ned on the vertex set Zn \ Zn−6. Then (Zn, B1 ∪ B2 ∪ B3) is a 6-cycle system of
Kn − E(F).
In view of Case 1, we can assume that in the remaining cases, F contains at most 2

components that are isomorphic to K2. The remaining cases depend on the congruence
of n (mod 12).

Case 2: Suppose n= 6t, so n¿ 12.
By Table 1, we know that c(F) ≡ 0 or 3 (mod 6) so in particular c(F)¿ 3. Let

C0; C1, and C2 be three components in F . In view of Case 1, we can assume that one
of the components, say C2, is not K2.

For 06 i6 2, let the second vertex in a maximum length path Pi ∈Ci be named
i; then vertex i is adjacent to a vertex of degree 1 in F , namely the 2rst vertex
in Pi, which we call n − i − 1. Since we know that C2 is not K2, and since we
know that each vertex in F has odd degree, vertex i = 2 is incident with at least two
additional edges in F . At least one of these edges is incident to a leaf (a leaf is a
vertex of degree one) or else the path P2 would not be maximal. Name this leaf n− 4
(see Fig. 1).
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Fig. 1. n = 6t.

Now that we have selected 4 special vertices, we proceed as follows. Let F ′ be
formed from F[Zn−4] and adding edges {0; 2} and {1; 2}, and let '= n− 4. We check
to see that conditions (1′–3′) are satis2ed.
Since dF′(i) = dF(i) − 1 + 1 for 06 i6 1 and dF′(2) = dF(2) − 2 + 2, clearly

dF′(i) = dF(i) for 16 i6 n − 4, so all vertices in F ′ have odd degree, so (1′) is
satis2ed. Furthermore, the edges {0; 2} and {1; 2} connect the three components C0; C1,
and C2 in F to create a single component in F ′, so we know that c(F ′) = c(F) − 2.
Since |V (F ′)| = n − 4 and we are assuming 6 divides |E(Kn − E(F)|, by Table 1, 6
divides |E(Kn−4−E(F ′)|. It follows that (2′) is satis2ed. Clearly since n is even, n−4
is even, so (3′) is satis2ed. So, we can apply induction to obtain a 6-cycle system
(Zn−4; B1) of Kn−4 − E(F ′).
For convenience, if n = 12 then B2 = ∅. If n¿ 18 then n − 12¿ 6¿ 3. Clearly

n− 12= 6(t − 2) which is divisible by 6 (in particular we are interested in t ¿ 2). So
by Lemma 2.2, there exists a 6-cycle system (Zn \ Z8; B2) of Kn−12;4 with bipartition
{Zn−4 \ Z8;Zn \ Zn−4} of the vertex set.
By Lemma 3.1, there exists a 6-cycle system B3 of G1 = G1(0; 1; 2; 3; 4; 5; 6; 7; n −

4; n−3; n−2; n−1). Recall from the de2nition of G in Lemma 3.1 that {{0; 2}; {1; 2}} ⊆
E(G). These two edges are in F ′, so they do not occur in F nor in any 6-cycle in B1,
so they are placed in a 6-cycle in B3. Also, {{0; n − 1}; {1; n − 2}; {2; n − 3}; {2; n −
4}} ∩ E(B3) = ∅, which means those edges are not in a 6-cycle in B3. This is good
because these edges occur in F . Therefore (Zn; B1 ∪ B2 ∪ B3) is a 6-cycle system of
Kn − E(F).

Case 3: Suppose n= 6t + 2, so n¿ 14.
This proof requires carefully selecting four vertices (named n− 4; n− 3; n− 2; and

n − 1) in F , which we do for several cases. By Table 1, we know that c(F) ≡ 1 or
4 (mod 6).
Suppose c(F) = 1. If F is a star centered at vertex say 0, then it has at least 13

leaves, so choose any 4 and call them n− 1; n− 2; n− 3, and n− 4. If F is not a star,
let P be a maximum length path in F . Since n¿ 14, and since F is not a star, P has
length at least 3. Label the second vertex in P with 0 and the second to last vertex
in P with 1. Since P is maximal and each vertex in F has odd degree, we know that
vertex 0 is adjacent to at least two vertices of degree 1, call them n − 1 and n − 2,
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and similarly vertex 1 is adjacent to at least two vertices of degree 1, call them n− 3
and n− 4.
Finally, suppose c(F)¿ 1. Then F has at least 4 components. Since at most 2

components are isomorphic to K2, there are at least two components not isomorphic
to K2, call them C0 and C1. For 06 i6 1, let vertex i be the second vertex in a
maximum length path Pi ∈Ci. Since Pi is a maximum length path, vertex i is adjacent
to at least 2 vertices of degree 1 call them n− 2i − 1 and n− 2i − 2.
Now that we have selected four special vertices, we proceed as follows. Let F ′ =

F[Zn−4]. Therefore, F ′ spans Zn−4. Since either

(i) dF′(i) = dF(i)− 4 for i = 0 and dF′(i) = dF(i) for 16 i6 n− 5 or
(ii) dF′(i) = dF(i)− 2 for 06 i6 1 and dF′(i) = dF(i) for 26 i6 n− 5,

all vertices in F ′ have odd degree and thus (1′) is satis2ed. Since F ′ is formed from
F by deleting vertices of degree 1, c(F ′) = c(F). Therefore, since |V (F ′)|= n− 4 and
we are assuming 6 divides |E(Kn − E(F))|, by Table 1, 6 divides |E(Kn−4 − E(F ′))|
so (2′) is satis2ed. Clearly, since n is even, so is n − 4, so (3′) is satis2ed. We can
apply induction to obtain a 6-cycle system (Zn−4; B1) of the vertex set Kn−4 − E(F ′).
Since n¿ 14; n−8¿ 6, clearly n−8=6(t−1) which is divisible by 6 (in particular,

we are interested when t ¿ 1). By Lemma 2.2, there exists a 6-cycle system (Zn\Z4; B2)
of Kn−8;4 with bipartition {Zn−4 \ Z4;Zn \ Zn−4} of the vertex set.
By Lemma 3.2, there exists a 6-cycle system B3 of G2; i = G2; i(0; 1; 2; 3; n − 4; n −

3; n− 2; n− 1), where i = 1 when F is a star and i = 2 otherwise.
It follows from the de2nition of G2;1 that {{0; n − 1}; {0; n − 2}; {0; n − 3}; {0; n −

4}} ∩ E(B3) = ∅ which is good because these edges occur in F when F is a star.
Similarly, the de2nition of G2;2 ensures that {{0; n− 1}, {0; n− 2}, {1; n− 3}, {1; n−
4}} ∩ E(B3) = ∅ which is good because these edges occur in F when F is not a star.
Therefore (Zn; B1 ∪ B2 ∪ B3) is a 6-cycle system of Kn − E(F).

Case 4: Suppose n= 12k + 4, so n¿ 16.
By Table 1, we know that c(F) ≡ 4 (mod 6), so in particular c(F)¿ 4. Let C0, C1,

C2, and C3 be components in F . We also know that one of the components, say C3,
is not a K2. For 06 i6 3, let Pi be a maximum path in Ci, and let n− i − 1 be the
2rst vertex in Pi and let i be the second vertex in Pi. If C3 is a star then let n − 5
and n− 6 be two additional vertices of degree one adjacent to vertex 3. If C3 is not a
star then let vertex 4 be the second to last vertex on P3. Since P3 is maximal, vertex
4 is adjacent to at least 2 vertices of degree 1, call them n− 5 and n− 6 (see Fig. 2).
Now that we have selected 6 special vertices, namely n − 6, n − 5, n − 4, n − 3,

n−2, n−1, we proceed as follows. Let F ′ be formed from F[Zn−6] by adding edges

(i) {0; 3}; {1; 4} and {2; 4} if C3 is not a star and
(ii) {0; 3}; {1; 3} and {2; 3} if C3 is a star.

Clearly F ′ spans Kn−6. Since either

(i) dF′(i) = dF(i) + 1− 1 for 06 i6 3 and dF′(i) = dF(i) + 2− 2 for i = 4 or
(ii) dF′(i) = dF(i) + 1− 1 for 0 6 i6 2 and dF′(i) = dF(i) + 3− 3 for i = 3,
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Fig. 2. Naming the vertices when n = 12k + 4 (if C3 is a star then vertex 3 and vertex 4 are the same
vertex).

all of the vertices in F ′ have odd degree so (1′) is satis2ed. Furthermore, by connecting
the four components C0, C1, C2, and C3 in F to create a single component in F ′, we
know that c(F ′) = c(F) − 3. Therefore, since c(F) ≡ 4 (mod 6), we have c(F ′) ≡ 1
(mod 6). Since |V (F ′)| = n − 6 and we are assuming 6 divides |E(Kn − E(F))| by
Table 1, 6 divides |E(Kn−6 − E(F ′))| so (2′) is satis2ed. Clearly, since n is even, so
is n − 6, so (3′) is satis2ed. Therefore, we can apply induction to obtain a 6-cycle
system (Zn−6; B1) of Kn−6 − E(F ′).
For convenience, if n= 16 then B2 = ∅. If n¿ 28, then clearly n− 16 = 6(2k − 2)

which is divisible by 6. So, by Lemma 2.2, there exists a 6-cycle system (Zn \Z10; B2)
of Kn−16;6 with bipartition {Zn−6 \ Z10, Zn \ Zn−6} of the vertex set.
Let � = 1 if C3 is not a star and � = 2 if C3 is a star. By Lemma 3.3, there exists

a 6-cycle system B3 of G3;� = G3;�(0; 1; 2; 3; 4; 5; 6; 7; 8; 9; n− 6; n− 5; n− 4; n− 3; n−
2; n−1). Notice that the edges of G3;� joining vertices in Zn−6 are precisely the edges
in E(F ′) \ E(F), and do not occur in a 6-cycle in B1 but do occur in a 6-cycle in
B3. Also, the edges joining a vertex in Zn−6 to a vertex in Zn \Zn−6 that occur in no
6-cycle in B3 are precisely the edges in E(F) \ E(F ′). Therefore, (Zn; B1 ∪ B2 ∪ B3) is
a 6-cycle system of Kn − E(F).

Case 5: Suppose n= 12k + 10, so n¿ 22.
By Table 1, we know that c(F) ≡ 1 (mod 6). This proof requires the term leaf pair

to be de2ned. A leaf pair is a set Y of two vertices each of degree 1 in F that have
a common neighbor, N (Y ). We call N (Y ) the center of Y . Additionally, 2, 3, or 4
leaf pairs that have a common center are called a double, triple, or quadruple leaf pair
respectively. This proof requires carefully selecting 8 vertices (named: n− 8; n− 7; n−
6; n− 5; n− 4; n− 3; n− 2, and n− 1) in F which we do for 3 subcases.
Subcase 1: Suppose F has at least four disjoint leaf pairs, call them {n−(2i+1); n−

(2i + 2)} for 06 i6 3.
Name each of the centers of the four leaf pairs with a vertex in {0; 1; 2; 3} in such

a way that for 06 i¡ j6 3, vertex i is the center of at least as many leaf pairs as
vertex j. Naming the vertices in this manner gives rise to 2ve possibilities for the set
L consisting of these leaf pairs (see Fig. 3):

(1) L is 1 quadruple leaf pair, in which case let � = 1,
(2) L is 1 leaf pair and a triple leaf pair, in which case let � = 2,
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Fig. 3. Naming the vertices when n = 12k + 10 (subcase 1).



38 D.J. Ashe et al. / Discrete Mathematics 281 (2004) 27–41

(3) L is 2 double leaf pairs, in which case let � = 3,
(4) L is 2 leaf pairs and a double leaf pair, in which case let � = 4 and
(5) L is 4 leaf pairs, in which case let � = 5.
Now that we have selected 8 special vertices, we proceed as follows. Let F ′ =

F[Zn−8]. In each case, all n − 8 vertices in F ′ have odd degree so (1′) is satis2ed.
Since F ′ is formed from F by deleting vertices of degree 1 in F , c(F ′) = c(F). Since
|V (F ′)|=n−8 and we are assuming 6 divides |E(Kn−E(F))|, by Table 1, we see that
6 divides |E(Kn−8 −E(F ′))| so (2′) is satis2ed. Clearly, since n is even n− 8 is even,
so (3′) is satis2ed. So we can apply induction to obtain a 6-cycle system (Zn−8; B1)
of Kn−8 − E(F ′).
Since n¿ 22, n − 16¿ 6. Clearly n − 16 = 6(2k − 1) which is divisible by 6, so

by Lemma 2.2 there exists a 6-cycle system (Zn−8, B2) of Kn−16;8 with bipartition
{Zn−8 \ Z8;Zn \ Zn−8} of Zn−8.
Finally, by Lemma 3.4, there exists a 6-cycle system B3 of G4;�(0; 1; 2; 3; 4; 5; 6; n−

8; n − 7; n − 6; n − 5; n − 4; n − 3; n − 2; n − 1). Notice the edges joining vertices in
Zn−8 to vertices in Zn \Zn−8 that occur in no 6-cycle in B3 are precisely the edges in
E(F) \ E(F ′). Thus (Zn; B1 ∪ B2 ∪ B3) is a 6-cycle system of Kn − E(F).
Subcase 2: Notice that in Case 5, if c(F)¿ 1 then by Table 1 it is clear that

c(F)¿ 7. Since F has at most two components that are isomorphic to K2, if c(F)¿ 1
then there are at least 4 components each of which contains a leaf pair. So in view of
subcase 1, we can now assume that F is a tree.
Suppose F has exactly three leaf pairs. Let P be a maximum length path in F . We

know the second and second to last vertices are the centers of leaf pairs. Since P has
only one other leaf pair, all other internal vertices in P, except possibly one, have
degree 3 in F and are adjacent to a leaf. Since n¿ 22, P must have length at least 8.
Therefore, by changing the direction of P if necessary, we can assure ourselves that
the third leaf pair is at least as close to the end of P as it is to the beginning. Now
let n− 2 be the second vertex of P, and let the two vertices of degree 1 adjacent to it
in P be n− 3 and n− 4. Now let 0 be the third vertex of P and call the leaf adjacent
to it n− 1. Let 1 be the second to last vertex of P, and let the two vertices of degree
1 adjacent to it in P be n− 5 and n− 6. Finally, call the last leaf pair n− 7 and n− 8
and name its center 2 if it is not vertex 1 (see Fig. 4). If vertex 1 is a single or double
leaf pair let � = 1 or 2, respectively.
Now that we have selected at least 10 special vertices, we proceed as follows. Let

F ′=F[Zn−8]. Therefore, F ′ spans Zn−8. Since, when �=1, dF′(i)=dF(i)−2 for i∈Z3

and dF′(i)=dF(i) for 36 i6 n−9 or if �=2, dF′(0)=dF(0)−2, dF′(1)=dF(1)−4
and dF′(i) = dF(i) for 26 i6 n − 9, then all vertices in F ′ have odd degree so (1′)
is satis2ed. Since F ′ is formed from F by deleting vertex n− 2 and its leaf pair (each
of degree 1 in F), c(F ′)= c(F). Since |V (F ′)|= n− 8 and we are assuming 6 divides
|E(Kn − E(F))|, by Table 1, 6 divides |E(Kn−8 − E(F ′))|, so (2′) is satis2ed. Clearly
since n is even we know n− 8 is even, so (3′) is satis2ed. We can apply induction to
obtain a 6-cycle system (Zn−8; B1) of Kn−8 − E(F ′).
Since n¿ 22, n − 16¿ 6. Clearly n − 16 = 6(2k − 1) which is divisible by 6, so

by Lemma 2.2, there exists a 6-cycle system (Zn−8; B2) of Kn−16;8 with bipartition
{Zn \ Zn−8;Zn−8 \ Z8} of the vertex set.
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Fig. 4. Naming the vertices when n = 12k + 10 (subcase 2).

By Lemma 3.5, there exists a 6-cycle system B3 of G5;�(0; 1; 2; 3; 4; 5; 6; 7; n− 8; n−
7; n − 6; n − 5; n − 4; n − 3; n − 2; n − 1). Notice the edges joining a vertex in Zn−8

to a vertex in Zn \ Zn−8 that occur in no 6-cycle in B3 are precisely the edges in
E(F) \ E(F ′). Then (Zn; B1 ∪ B2 ∪ B3) is a 6-cycle system of Kn − E(F).
Subcase 3: Suppose F has exactly two leaf pairs. Let P be a maximum length path

in F . We know the second and second to last vertices are the centers of the two leaf
pairs. Now let n− 2 be the second vertex of P and call its adjacent leaves n− 3 and
n− 4, call the third vertex 0, and call the leaf adjacent to it n− 1. Similarly, let n− 6
be the second to last vertex of P and call its adjacent leaves n− 7 and n− 8, call the
third to last vertex 1 and call the leaf adjacent to it n−5, these vertices are all distinct
since n¿ 22 (See Fig. 5).

Now that we have selected 8 special vertices, we proceed as follows. Let F ′ =
F[Zn−8]. Therefore, F ′ spans Zn \ Zn−8. Since dF′(i) = dF(i) − 2 for 06 i6 1 and
dF′(i) = dF(i) for 26 i6 n − 9, then all vertices in F ′ have odd degree so (1′) is
satis2ed. Since F ′ is formed from deleting vertex n−6 and vertex n−2 whose leaf pairs
have degree 1 and deleting n−1 and n−2 in F , c(F ′)=c(F). Since |V (F ′)|=n−8 and
we are assuming 6 divides |E(Kn−E(F))|, so by Table 1, 6 divides |E(Kn−8−E(F ′))|
so (2′) is satis2ed. Clearly since n is even n − 8 is even so (3′) is satis2ed. We can
apply induction to obtain a 6-cycle system (Zn−8; B1) of Kn−8 − E(F ′).
Since n¿ 22; n − 16¿ 6. Clearly n − 16 = 6(2k − 1) which is divisible by 6, so

by Lemma 2.2, there exists a 6-cycle system (Zn−8; B2) of Kn−16;8 with bipartition
{Zn \ Zn−8;Zn−8 \ Z8} of the Kn−16;18 vertex set.
By Lemma 3.6, there exists a 6-cycle system B3 of G6 = G6(0; 1; 2; 3; 4; 5; 6; 7; n −

8; n − 7; n − 6; n − 5; n − 4; n − 3; n − 2; n − 1). Notice the edges joining a vertex in
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Fig. 5. Naming the vertices when n = 12k + 10 (subcase 3).

Zn−8 to a vertex in Zn \ Zn−8 that occur in no 6-cycle in B3 are precisely the edges
in E(F) \ E(F ′). Then (Zn; B1 ∪ B2 ∪ B3) is a 6-cycle system of Kn − E(F).
This completes the proof.
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