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Abtract: We present here the crucial effects of material anisotropy on 
optical field induced pattern formation in the one-feedback-mirror 
arrangement which utilizes the nematic liquid crystal film as the nonlinear 
medium. By using the quasi-static electric-field-biased planar-aligned 
homogeneous nematic liquid crystal (NLC) films, we observe both the 
hexagon and the roll patterns which can be switched optically due to the 
intrinsic anisotropic distribution of the threshold intensity. The anisotropy 
comes from the anisotropic nonlinear response of the NLC film and is the 
crucial factor for such a one-feedback-mirror system to form both the roll 
and hexagon patterns. The observed phenomena can be explained from the 
linear stability analysis of the governing diffusion-like equation. The 
experimental results indicate that the stable roll patterns are formed at low 
input light power and the stable hexagon patterns formed at high input 
power. 
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1. Introduction  

Optical pattern formation in nonlinear optics has received great interest in the last decade.  A 
simple arrangement which is useful for optical pattern formation is constituted by a thin slice of 
Kerr or Kerr-like nonlinear medium and a single feedback mirror [1-7]. The hexagons are the 
usual patterns often observed in these experiments. To stabilize and select patterns other than 
the hexagons, one can add a Fourier filter in the feedback route [8-10] or break the rotational 
symmetry by applying the anisotropic nonlinear medium [11]. As pointed out by Santamato in 
Ref.11, by using the homeotropically aligned NLC films as the anisotropic nonlinear medium, 
one makes the formation of the roll patterns possible and the hexagon patterns can also be 
formed as the anisotropy is reduced to zero by setting the NLC film in a suitable tilt angle. The 
anisotropy for such systems can also come from the tilt of the feedback mirror although the 
drifting instability in the formation of the optical patterns may also occur [12-14]. 

  In this paper, we present the theoretical derivations and experimental evidences about the 
crucial effects of the anisotropy on optical pattern formation in the NLC film. Unlike the 
Santamato’s method proposed in Ref.11, we use the quasi-static electric-field-biased 
planar-aligned homogeneous NLC films as the nonlinear medium to demonstrate the optical 
pattern formation of the rolls and the hexagons without canceling the anisotropic nonlinear 
response of the NLC film. Also unlike the anisotropy induced from the tilt of the feedback 
mirror as in Ref. [12], the hexagon patterns observed in this work are not drifting within the 
response time of human eyes (~16ms), since we can see them on the screen even without taking 
short time snapshot pictures. The results further reveal the effects of the anisotropy in the 
formation of the optical patterns. 

  The organization of this paper is as follows. In Section 2 we express the theoretical 
derivation of the governing diffusion-like equation for the orientational distribution of the 
liquid crystal directors in the transverse plane with externally applied electric and optical fields. 
The threshold intensity for the optical patterns to be formed can be obtained from the linear 
stability analysis of the diffusion-like equation. The anisotropic properties of the threshold 
intensity resulted from the anisotropic nonlinear response of the NLC films can be calculated to 
predict the pattern configuration that will be formed. In Section 3 we experimentally 
demonstrate the formation of the optical patterns and showed that both the hexagons and the 
rolls can be obtained by simple optical power modulation. Finally in Section 4 we give a brief 
conclusion about the obtained results. 

2. Theory 

In order to obtain the governing diffusion-like equation for the orientational distribution of the 
liquid crystal directors in the transverse plane with externally applied fields, we start from the 
continuum theory for the NLCs. If one assumes a p-polarized light beam impinges on the 
electric-field-biased liquid crystal film, then the liquid crystal directors will be re-orientated 
when the electric and the optical fields are high enough. As the liquid crystal directors are 
re-orientated, the light beam passing through the liquid crystal film will experience a phase 
delay according to the orientational distribution of the liquid crystal directors. Therefore the 
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orientational distribution of the liquid crystal directors ),,( zyxθ  must be calculated first. 
Figure 1 shows the configuration of the quasi-static electric field biased planar-aligned 
homogeneous NLC film used in our experiment. 

 

Fig. 1. The planar-aligned nematic liquid crystal cell: LC, liquid crystal; θ , molecular 

orientational angle; Eop , optical field; Eac, electric field; n̂  , molecular director; d, cell 
thickness, and ITO, indium tin oxide. 

 

We choose the coordinates system with the z axis perpendicular to the cell walls, the x-y plane 
coincident with the input cell wall and the x̂  direction coincident with the easy axis of the 
liquid crystal directors. From the continuum theory and by following the derivation of our 
previous papers [15-17], the free-energy density f consisted of the Frank elastic free-energy 
density, the optical energy density, and the electric energy density is given by: 
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where 1)/( 1133 −= kkk , ⊥−= εε /1 //w  , 2)/(1 oe nn−=µ , zD is the z component of 

the electric displacement, c is the velocity of light in vacuum, I is the input optical intensity, k11 

, k22 , and k33 are the splay, twist, and bend elastic constants and en  and on , 
//ε  and ⊥ε  are 

the values of the refractive indices and the dielectric constants with their directions parallel and 
perpendicular to the liquid crystal director. Instead of solving the distribution function 

),,( zyxθ  by the Euler–Lagrange equations directly, we assume a trial solution of ),,( zyxθ  
as follows: 
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We also assume the hard-boundary conditions, 0)()0( ==== dzz θθ . Here d is the thickness 

of the sample and aθ , pθ , and tθ  represent the electrically biased spatial average 

orientational angle, the optically modulating amplitude, and the transverse orientational angle 
in the middle layer of the liquid crystal cell. After substituting Eq. (2) into Eq. (1), integrating 
the total volume of the cell, and following the Euler- Lagrange optimization process, we can 
get the torque balance equation of the liquid crystal directors. After some algebra and 
considering the viscositic term, the torque balance equation can be expressed as: 
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Here γ is the viscosity coefficient, I is the input intensity, V is the root mean square value of 

the biased voltage, li (i = x, y) is the diffusion length in the i direction, )2( tiJ θ  is the Bessel 

function of the first kind of order i, and
frI and thV  are the Freedericksz optical intensity and 

voltage. Equation (3) can be changed into the diffusion-like equation for the optical phase 
variation in the transverse plane since the effective index of refraction for the NLC materials 
can be expressed as:  
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After substituting Eq. (2) into Eq. (4) and replacing effn in Eq. (5) by Eq. (4), the 

diffusion-like equation can be expressed as: 
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Hereτ is the response time related with the viscosity coefficient, S and T are the coefficients 
which are functions of the material parameters and the orientation of the liquid crystal 
directors. Now if we consider a uniform applied voltage, then the phase variation in the 
transverse plane directly comes from the light intensity variation in the transverse plane. It 
follows that the constant phase terms and the constant driving forces can be removed from Eq. 
(6). Therefore a simplified governing diffusion-like equation for the Kerr induced optical phase 
variation ),( yxφ can be obtained and shown as: 
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Equation (7) is similar to the equation proposed by D’Alessandro in Ref.1 except the 
anisotropic property of the diffusion lengths in the transverse plane and α  is the effective 
nonlinear coefficient affected by the molecular orientations as shown in Eq. (8). From Eqs. 
(3a-c) and Eq. (8), we can see that the relative coefficients can be obtained as the material 
parameters, the electrically biased spatial average orientational angle aθ , and the optically 

modulating amplitude 
pθ  are known. The electrically biased spatial average orientational 

angle aθ can be determined by minimizing the total free energy under the hard boundary 

condition and the assumption of a uniformly distributed electric field. By following the 
Euler-Lagrange optimization process, we find that aθ has to obey the following equation: 
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Equation (9) can be calculated numerically if d, V, I, and the material parameters are known. 
From our previous paper [17], the optically modulating amplitude is much smaller than the 
electrically biased spatial average orientational angle, 

ap θθ << . Therefore we can reasonably 

substitute tθ  by aθ  in Eqs. (3a-c) and Eq. (8). 

  
Fig. 2.  Experimental setup: B.S., beam splitter; d, cell thickness; L, feedback length; LC, 
liquid crystal; L’i, lens 

 

  Our experimental setup is the one-feedback-mirror system as shown in Fig. 2. For such a 
system, the linear stability analysis (LSA) of Eq. (7) can be performed by assuming that a small 
sinusoidal phase modulation is applied to the forward plane wave 0E . After the plane wave 

0E  just passes through the sample, it will experience the phase variation as given by: 

                   )})sin()cos(cos(1{),( 0 yqxqiEyxE f ϕϕρ ++=           (10) 
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Here 1<<ρ  is the perturbation amplitude and the terms related to the wave vector q have 

been written in the polar form with the azimuthal angle ϕ  from the axis of the anisotropy to 

the wave vector clockwise. The beam ),( yxE f  then propagates freely to and reflects from 

the reflecting mirror. This part of wave propagation can be readily modeled by the Fresnel 
propagation formula. By squaring the reflected beam field to obtain the feedback intensity 
distribution and by inserting it into the right side of Eq. (7) for performing the stability analysis, 
after some algebra we can derive the following threshold intensity for the growing of the 
perturbation: 
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Here L is the length between the sample and the reflecting mirror and R is the reflectivity of the 
reflecting mirror. From Eq. (11), the threshold intensity as a function of q is expected to reach 

its minimum approximately when sin(q2
0λ L/2π )=1 or equivalently when 
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At this time the net feedback length 2L is simply the required length to transform the phase 
modulation in Eq. (10) to pure amplitude modulation as the beam is reflected back to the 
sample. The threshold intensity in various azimuthal angles can then be readily obtained when 
the spatial frequency is known. 
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Fig. 3. The calculated curve of the threshold intensity versus the azimuthal angle ϕ  when the 

average tilt angle aθ  is fixed at 0.787 radian and the beam diameter=1.4mm, d=68µm, 

L=1.9cm, R=0.65 

  From Eq. (7) and Eq. (11) we can easily see that the anisotropic nonlinear response of NLC 
films indeed induces the anisotropic distribution of the needed threshold intensity for the 
pattern to be formed. Unlike Santamato’s method in Ref. [11] we analyze the optical pattern 
formation phenomena by calculating the threshold intensity distribution for various azimuthal 
angles. After knowing the sample thickness, the material parameters, the feedback length, the 
external applied fields, the reflectivity of the feedback mirror, and the aθ  from Eq. (9), the 
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threshold intensity distribution versus the azimuthal angle ϕ  can be obtained. For instance, 

Fig. 3 shows the threshold intensity versus ϕ  for the 0.9W input light power and the 
1.117Vrms biased planar-aligned homogeneous nematic E7 sample with the sample thickness 
of 68 µm and the average tilt angle aθ  of 0.787 radian. 

  From Fig. 3 we can find the anisotropic property of the threshold intensity in various 
azimuthal angles. In the case of isotropic media, the threshold intensity should be equal in all 
azimuthal directions. However in our case, the diffusion length anisotropy results in the 
anisotropic threshold intensity distribution such that the minimum threshold intensity locates at 

090=ϕ  and the maximum one locates at 00=ϕ and 0180 . This property gives us a hint 
to obtain both the hexagonal and the roll-like patterns using the anisotropic nonlinear materials.  
For the isotropic materials, the common hexagonal pattern will appear as soon as the input light 
intensity is above the threshold. Similarly, in our anisotropic case, we believe if the input light 
intensity is above the maximum threshold, the hexagon patterns may appear since all the 
modes with different azimuthal angles ϕ  are allowed to exist and the final stable hexagons 
can be obtained because of their compact stable structures. On the other hand, since the 
threshold intensity distribution has a minimum, what pattern will be formed when the input 
light intensity is above and near the minimum threshold intensity? A direct and simple 
prediction is that the mode with the minimum threshold intensity will exist since it experiences 
the maximum nonlinear gain.  

  Furthermore, our approach to get both the hexagons and the rolls are not the same as the 
Santamato’s method in which the anisotropic nonlinear response of the NLC is removed by 
rotating the sample to a suitable angle. In our quasi-static electric-field-biased planar-aligned 
homogeneous NLC films the anisotropic property will not be removed within the tilted range 
from aθ = 0 to aθ =π / 2 . This is seen as we calculating the difference between the diffusion 

lengths in the x and y directions and the result is shown in Fig. 4. From Fig. 4 we see that the 
anisotropy exists from 0=aθ to πθ =a / 2 . In other words, for this system the 

diffusion length anisotropy can not be suppressed to zero by changing aθ . 
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Fig. 4. Diffusion length anisotropy (lx-ly) versus the average orientational angle 

aθ  with input 

power= 0.9W, d=68µm, L=1.9cm, R=0.65, and beam diameter=1.4mm. 

3. Experiments and discussions  

To illustrate the predictions in Section 2 experimentally, we use the quasi-static electric field 
biased planar-aligned homogeneous nematic E7 cell sandwiched between two indium-tin oxide 
coated glass windows as the nonlinear medium. The experimental setup is the same as shown 
in Fig. 2. We use polyvinyl alcohol (PVA) as the alignment material and achieve the parallel 
planar alignment by rubbing. The thickness of the cell is about 68µm. The applied external 
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fields include a 1KHz electric field (1.117Vrms) generated by a microcomputer’s waveform 
synthesizer (Quatech Inc., WSB-A12M) and the p-polarized optical field at the wavelength of 
514.5nm from an Ar-ion laser. The original beam waist from the Ar-ion laser is 1.9mm and the 
input beam diameter is controlled by the pinhole as 1.4mm. The pinhole is used to block the 
stray light in the low intensity wings of the beam and let the high intensity region pass through 
the sample. The reflectivity of our reflecting mirror is about 0.65. The lens L1, L2 are arranged 
to observe the near field picture of the reflected beam impinging on the sample. In the 
following we fix the biased voltage and change the input light power to see what patterns will 
be formed at different input powers. The powers used in our experiments are from 0.71W to 
0.98W with a power step about 0.03W. The input light power is measured after the beam 
passing through the pinhole and the beam splitter. In our experiments, the laser beam is 
blocked when we change the input light to the desired power. Therefore the pattern formations 
are always starting from the homogeneous state. The pictures of the observed patterns are 
shown in Fig. 5 with the exposure time of 1.25ms. 

 

     
            (a )                       (b)                     (c) 

Fig. 5. Near field patterns observed on the screen (a) input power=0.74W (b) input 
power=0.83W (c) input power=0.98W. With biased voltage=1.117Vrms, d=68µm, L=1.9cm, 
R=0.65, beam diameter=1.4mm, and exposure time=1.25ms. 

 
  In Fig. 5 we can clearly see that the stable rolls and hexagons are obtained at 0.74W and 

0.83W respectively. For the relative higher power of 0.98W the optical patterns become 
chaotic. This kind of unstable phenomena at the high input power has also been reported in the 
literature [5]. One thing has to be mentioned is that when we apply an optical power of 0.83W, 
the roll patterns appear first and then transform finally to the stable hexagon patterns as shown 
in Fig. 5(b). This dynamic transition implies the instability of the homogeneous state and then 
the instability of the roll state. Besides, we do not observe stable optical patterns with the input 
power at 0.77W and 0.8W. We plot the calculated threshold power distribution versus the 
azimuthal angles in Fig. 6 to relate these experimental observations to our arguments from the 
theoretical results in Section 2. Even though the actual laser beam is a gaussian beam, for 
simplicity we calculate the threshold power from the threshold intensity shown in Fig. 3 by 
multiplying the beam area. Since only the light with high intensity passing through the pinhole 
and the sample the optical power with the peak intensity reaching the threshold intensity should 
be lower then that shown in Fig. 6. Nevertheless, it is clear that the stable rolls and stable 
hexagons exist and are obtained indeed in the power regions near the minimum and the 
maximum threshold power respectively. 

 

#3938 - $15.00 US Received 27 February 2004; revised 22 March 2004; accepted 23 March 2004

(C) 2004 OSA 5 April 2004 / Vol. 12,  No. 7 / OPTICS EXPRESS  1327



0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8
0.81
0.82
0.83
0.84
0.85

0 0.5 1 1.5 2 2.5 3

azimuthal angle  (rad. )

th
re

sh
ol

d 
po

w
er

 (
W

)

threshold
power
P=0.74W

P=0.83W

Fig. 6. The calcualted curve of the threshold power versus the azimuthal angle ϕ  when the 

average tilt angle aθ  is fixed at about 0.787 radian and the biased voltage is 1.117Vrms. 

 
  According to the theoretical analysis and the experimental observations that we have 

shown above, one can see that the anisotropy indeed play an important role in the formation of 
the rolls. Moreover, some more words have to be said about the input power issue. When the 
power is above the maximum threshold, the hexagons appear. However, chaotic patterns will 
be formed if we keep increasing the input power. One interesting question may appear is that 
what patterns will be formed as the input power is between the minimum and the maximum 
threshold power. Actually our experimental observations at 0.77W and 0.8W indicate that the 
hexagons and the rolls may compete with each other and are not stable. This implies an 
interesting suggestion that the hexagons may still be formed without the requirement that all 
the modes with different azimuthal angles are allowed to appear. Unfortunately, since we do 
not observe stable patterns in this parameter range, no conclusive remarks can be made about 
this point at the present time. We are investigating more carefully on this respect right now. 

4. Conclusions 

In this paper we have theoretically analyzed and experimentally observed the effects of the 
anisotropic nonlinear response of the NLC film on pattern formation and have found that this 
anisotropy plays a crucial role for the one-feedback-mirror system to form the roll and the 
hexagon patterns. The anisotropy is the necessary factor in the formation of the rolls without 
externally adding a mask or filter. Based on this intrinsic anisotropy, the formation of both the 
stable roll and the stable hexagon patterns has been achieved by suitably adjusting the input 
power. 
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