
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004 293

Design and Implementation of the SNMP Agents
for Remote Monitoring and Control via UML

and Petri Nets
Jin-Shyan Lee and Pau-Lo Hsu, Member, IEEE

Abstract—For large-scale and long-distance distributed sys-
tems, this paper proposes a systematical multiparadigm approach
to develop the simple network management protocol (SNMP)
agents for remote monitoring and control. The standard unified
modeling language (UML) is adopted for modeling the system,
and then the Petri-net model is applied to achieve both qualitative
and quantitative analyses for the system’s dynamic behavior. In
real applications, the present design can be further implemented
with Java and ladder diagrams on programmable logic controllers
(PLC). The developed system has been used successfully in a
mobile switching center (MSC) of Taiwan Cellular Corporation
for the remote monitoring and control, through the Internet, of its
environmental conditions, including the temperature, humidity,
power, and security, with a total of 316 sensors and 140 actuators.

Index Terms—Java, Petri nets (PNs), programmable logic
controllers (PLC), remote monitoring and control, simple network
management protocol (SNMP) agents, unified modeling language
(UML).

I. INTRODUCTION

FOR many automated manufacturing processes in large-
scale and long-distance distributed systems, the remote

monitoring and control system is crucial to achieving guaran-
teed normal operations. It allows for monitoring the status of
processes, detecting abnormal conditions, activating emergency
machines, and reporting alarms. In the traditional approach,
people are often put at risk monitoring industrial processes in
close proximity through a specific network protocol. Recently,
due to the rapid development of Internet technology, monitoring
systems no longer needs to be within a given area, and several
remote approaches have been proposed that allow people to
monitor the processes of manufacturing systems from great
distances [1]–[5].

In general, the components of remote monitoring and control
systems can be classified as either: 1) agent side or 2) manager
side. Since some device vendors are beginning to build web
server software into their agent-side devices, the manager-side
users can monitor these devices directly using web browsers
through the hypertext transfer protocol (HTTP) [1]–[4]. How-

Manuscript received April 10, 2003. Manuscript received in final form
July 1, 2003. Recommended by Associate Editor P. Mosterman. This work was
supported in part by the National Science Council, R.O.C. under Grant NSC
90-2213-E-009-101 and in part by the MOE Program for Promoting Academic
Excellence of Universities under Grant 91-E-FA06-4-4.

The authors are with the Department of Electrical and Control Engineering,
National Chiao-Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail: plhsu@
cc.nctu.edu.tw).

Digital Object Identifier 10.1109/TCST.2004.824287

ever, as more and more devices are networked in automated
manufacturing systems, managing information on all of theses
devices becomes increasingly difficult. The overall system
needs a mechanism not only to monitor its devices but also
to effectively manage them. One approach to manage diverse
network elements is to use the simple network management
protocol (SNMP), a standard protocol now widely supported
by device vendors for their products such as routers, bridges,
and printers [5], [6]. However, in real industrial applications,
many basic and major components such as sensors, motors,
and programmable logic controllers (PLC) still do not support
SNMP for remote applications. Therefore, this paper presents
a systematic design approach to embed SNMP agents into
remote devices so as to achieve remote monitoring and control
through a standard network protocol.

The unified modeling language (UML) is a language for
specifying, constructing, visualizing, and documenting the
elements of a software-intensive system [7]. It defines the no-
tation and semantics to describe systems using object-oriented
and meta-modeling concepts in the spirit of the multiparadigm
modeling [8]. Each model in the UML describes one aspect of a
system, and the combination of the various models adequately
describes the entire system. However, although UML is con-
venient for modeling a complex system, UML is not equipped
with the necessary techniques for analyzing a system’s qualita-
tive and quantitative properties [9]. One of the major problems
in using UML for the formal specification of systems is that the
semantics of UML are imprecise and vague. Particularly, the
UML has no execution semantics and the current behavioral
specifications in UML are primitive. UML also lacks tools and
analysis support for behavioral models [9]–[11]. On the other
hand, the Petri net (PN) is a graphical-mathematical tool used
to model and analyze various systems, especially for systems
with parallel and concurrent activities [12]–[16]. PN provides
qualitative analysis for system properties such as reachability,
liveness, boundedness, and conservativeness. Moreover, by
introducing time functions into the PN to form a timed PN,
quantitative analysis can then be performed [14], [15]. PN
complements the UML in a number of ways. First, it provides a
powerful and rich visual formalization for specifying behavior
in general, and concurrent behavior in particular. Second, it
provides an executable notation, something that UML currently
lacks. Statechart is the model that most closely resembles PN
in the UML. However, Statechart describes state machines
that are finite state systems whereas PN can be extended to
present infinite state systems. Furthermore, PN has, in contrast

1063-6536/04$20.00 © 2004 IEEE

294 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

Fig. 1. The systematic development procedure for SNMP agents.

to UML Statechart, precise semantics and powerful analytical
methods [14], [15]. This is why, in this paper, the PN is adopted
to obtain a dynamic and analyzable model for large-scale and
long-distance distributed systems. With this approach, both
qualitative and quantitative analyses can be applied to achieve
reliable remote monitoring and control.

As mentioned above, a remote monitoring system consists
of the agent and manager sides. The present approach develops
SNMP agents based on the UML modeling with PN analysis. As
shown in Fig. 1, the use-case diagram and sequence diagram in
UML are used to capture the SNMP requirements corresponding
to the monitoring and control specifications at the stage of
functional and interactive analyses. Then, at the stage of static
structural modeling, the class diagram is applied to describe the
static relationships of the system. Subsequently, the PN model
is constructed according to the above models such that both
qualitative and quantitative analyses of the system’s dynamic
behavior can be performed. Finally, at the architectural design
stage, the deployment diagram is modeled to capture the physical
relationships among software and hardware components, and
the obtained models are implemented using Java and ladder dia-
grams on the industrial PLC [17], [18]. The design procedure in
Fig. 1 is a type of “round-trip” engineering, in which all models
may be developed in an iterative and incremental way through a
repeated cycle of analysis, design, implementation, and testing.
Therefore, the proposed approach is quite flexible and it allows
making some alterations, such as changing the requirements
or fixing a design flaw. A case study of an environmental
monitoring system for the mobile switching center (MSC) is
provided in this paper to illustrate the proposed approach.

II. REQUIREMENTS OF SNMP AGENTS

The SNMP is an application-level protocol that offers
network management services in the transmission-control
protocol/internet protocol (TCP/IP) suite [6]. It is based on a
client/server relationship in which the client issues requests to

the server and the server processes requests and responds to the
client. The SNMP network management system includes four
key components: 1) management station; 2) management agent;
3) management information base (MIB); and 4) management
protocol. A management station uses the management pro-
tocol to request management agents performing management
operations on MIB objects. Essentially, each MIB object is
a data variable that represents the manageable attribute. A
management station can monitor and control remote elements
by retrieving or changing the value of MIB objects of the man-
agement agent via the SNMP protocol. The management agent
synchronously responds to requests from the management
station and may further asynchronously provide important
but unsolicited information (e.g., the alarm conditions) to the
management station in the monitoring and control center.

In the management station as shown in Fig. 2, three basic
types of SNMP messages are issued on behalf of a management
application:

• GetRequest;
• GetNextRequest;
• SetRequest;

where the first two are variations of the get function. All three
messages are transmitted with protocol data units (PDU) and ac-
knowledged by the agent in the form of GetResponse message
passed to the management application. In addition, an agent
may issue a trap message in response to an event that affects
the MIB and the underlying managed resources. Since SNMP
relies on user datagram protocol (UDP), which is a connection-
less protocol and has high transmission efficiency for small data
packets, SNMP is itself connectionless. No ongoing connec-
tions are maintained between a management station and agents.
Moreover, in the standard SNMP, since traps from the agent
are not acknowledged by the manager, there must be a mech-
anism to ensure that conditions in devices requiring attention
are not missed. Therefore, we further design and implement the
following two messages based on SetRequest to respond to the
following traps:

• TestRequest;
• TrapAck.

When an alarm condition occurs, the designed SNMP agent will
send the corresponding trap message to the manager periodi-
cally. The TestRequest message is used to check the alarm con-
ditions in order to avoid false alarms, while the TrapAck mes-
sage is used to confirm alarms. When an alarm is reported to the
manager, the manager may use TestRequest to reset the alarm.
If the physical input for such an alarm is still high, the same
alarm trap message will be sent again. On the other hand, after
an alarm trap is sent, the manager may use the TrapAck message
to confirm the alarm and the SNMP agent will then be disabled
to send the same trap message periodically.

Two major advantages are obtained due to the utilization of
SNMP for remote monitoring and control as follows.

1) Delocalization of the monitoring stations: the manage-
ment stations can be arbitrarily located anywhere through
the Internet. Also, integration of a large number of moni-
toring devices in a given station becomes possible.

2) Ease of Access: the remote manager can access the local
industrial devices easily via the standard SNMP protocol.

LEE AND HSU: SNMP AGENTS FOR REMOTE MONITORING AND CONTROL VIA UML AND PETRI NETS 295

Fig. 2. The simple network management protocol (an extension of [6]).

Fig. 3. Functional analysis with the use-case diagram.

III. UML-BASED MODELING FOR SNMP AGENTS

In the proposed approach, UML modeling and PN analysis
are used to develop SNMP agents for remote monitoring
and control. Then, the Java language and ladder diagrams
are adopted to implement the system on an industrial PLC
practically.

A. Functional Analysis With the Use-Case Diagram

A use-case diagram is used to capture the basic functional
requirements of the system. As shown in Fig. 3, it consists
of three actors and nine use cases. The actors, drawn as stick
figures, represent users and other external systems that interact
with the described system. The use cases, drawn as ellipses,
represent the scenarios of the system. A scenario is a sequence
of steps describing interaction between a user and a system.

Basically, an SNMP Manager can perform the following five
use cases:

• GetRequest;
• GetNextRequest;
• SetRequest;
• TestRequest;
• TrapAck;

where GetNextRequest is an extension of GetRequest; TestRe-
quest and TrapAck are specialized from SetRequest. Any one of
the above five requests will cause the SNMP Agent to carry out
HandleRequest, including GetResponse, to result in a response
to the request. On the other hand, as soon as Managed De-
vice lies in the AlarmCondition, the SNMP Agent will perform
SendTrap to report the alarms. Then, the SNMP Manager can
carry out TestRequest to check the alarm conditions in order to
avoid false alarms, and may perform TrapAck to confirm the
alarm and then take the necessary control actions.

296 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

Fig. 4. Interaction analysis with the sequence diagrams for (a) the Request scenario and (b) the Trap scenario.

B. Interactive Analysis With the Sequence Diagram

A sequence diagram shown in Fig. 4 is used to model the
object interaction in a system. Whereas the use-case diagram
enables modeling of scenarios, the sequence diagram indicates
details of the scenario including the objects and classes used to
implement the scenario and messages passed between objects.
Within a sequence diagram, an object is shown as a box at the
top of a vertical dashed line, called the object’s lifeline, repre-
senting the life of the object during the interaction. Messages

are represented by horizontal arrows and are drawn chronolog-
ically from the top of the diagram to the bottom.

Fig. 4(a) shows the sequence diagram for the Request sce-
nario, which includes the five types of requests (GetRequest,
GetNextRequest, SetRequest, TestRequest, and TrapAck) de-
scribed in the use-case diagram in Fig. 3. At the first stage, the
SNMP Manager may send a request to the SNMP Agent. Then,
the SNMP Agent will invoke the Request Listener to create a
threaded object, Request Handler, to carry out the request. The
Request Handler then performs the specified actions on the

LEE AND HSU: SNMP AGENTS FOR REMOTE MONITORING AND CONTROL VIA UML AND PETRI NETS 297

Managed Device through the Device Handler, and then sends
a response to the SNMP Manager. After finishing the request,
the threaded object Request Handler will delete itself so as to
release resources for the system.

For the Trap scenario as shown in Fig. 4(b), the Condition
Checker iteratively scans the status of the Managed Device
through the Device Handler and checks its condition (the
asterisk indicates the iteration in UML). If the condition is un-
desirable or faulty, Condition Checker will send a requestTrap
message to the SNMP Agent. Then, SNMP Agent will invoke
the Trap Listener to create a Trap Handler, a threaded object,
which carries out the request. The Trap Handler sends the trap
to SNMP Manager asynchronously (the half-arrowhead symbol
indicates an asynchronous message in UML) and then deletes
itself to release the resources for proceeding use. When SNMP
Manager receives the trap message, it will send a request of
TestRequest to check the alarm condition, or perform TrapAck
to confirm the alarm.

IV. REMOTE MONITORING AND CONTROL OF AN MSC

A. Description of a Mobile Switching Center

In wireless cellular communication systems, the service
area is generally covered by many cells with base stations,
and the clusters of cells are connected to mobile switching
centers (MSCs). Each MSC receives encoded speech and
data packets transmitted from the traffic channels in the base
stations and provides call control, processing, and access to
the public switched telephone network [19]. Since the remote
MSC plays an important role in mobile communications, the
environmental conditions, emergency management, and safety
of such large-scale and long-distance distributed systems are
essential considerations. In the present design, an SNMP-based
remote monitoring and control system, as shown in Fig. 5,
is developed to provide real-time data on device status and
environmental conditions in the MSC. Also, the embedded
SNMP agents detect abnormal conditions in the MSC and
report alarms to three de-localized management stations.
Furthermore, necessary control actions may be taken through
the Internet.

We chose a building complex as our target system. In this
system, 24 temperature sensors, 24 humidity sensors, 4 power
sensors, 4 current sensors, 4 voltage sensors, and 256 binary
sensors for security (e.g., burglar alarms) are connected to two
PLCs in the MSC to be monitored. Twelve alarm conditions are
considered in the present monitoring system:

• fire alarm;
• wateriness alarm;
• burglar alarm;
• temperature alarm;
• humidity alarm;
• electric voltage alarm;
• electric current alarm;
• power equipment alarm;
• power supplier alarm;
• dynamo alarm;
• uninterruptible power supply (UPS) alarm;
• air conditioner alarm.

Fig. 5. The SNMP-based remote monitoring and control system.

Moreover, six control actions can be operated remotely if spe-
cific alarm signals are issued:

• emergency door control (open/close);
• dynamo control (power on/off);
• UPS control (power on/off);
• air conditioner control (off/wind/low/middle/high);
• setting limitations of temperature and humidity;
• enable/disable alarms.

Under normal operation, air conditioners are locally controlled
to achieve desirable temperature and humidity within the speci-
fied ranges. As faults occur and are detected, corresponding con-
trol actions are taken by a total of 140 actuators. The actions that
can be performed in the present remote monitoring and control
system include: 1) open emergency door; 2) adjust air condi-
tioner; 3) power on dynamos; and 4) power on UPSs. Moreover,
the hardware specifications provide three management stations
and two PLC controllers for safety in case of crashes among
local agents and remote managers.

B. Static Structural Modeling

The class diagram shown in Fig. 6 provides the main static
structural models of the system. It is developed using informa-
tion collected in the use-case diagram and sequence diagram dis-
cussed in Section III. A class diagram describes the types of ob-
jects in the system and the various kinds of static relationships
that exist among them. It also shows the attributes and operations
of a class and the constraints on how objects are connected.

Fig. 6 is a class diagram of the SNMP-based monitoring
and control system. It represents the static structure and object
relations of SNMP agents for remote monitoring and control
of the MSC. The SnmpManager class has five operations
corresponding to the five types of requests as depicted in the
use-case diagram. The SnmpAgent class has the composition
relation (represented as a black diamond) with three classes:
RequestListener, TrapListener, and ConditionChecker. The
composition relation indicates that the composite is explicitly
responsible for the creation and destruction of the contained ob-
jects. RequestListener can create a RequestHandler, which has
five operations for the five types of requests, in order to process
the request and respond to the SnmpManager. TrapListener
may create a TrapHandler, which gets the IP addresses of trap

298 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

Fig. 6. The class diagram of the SNMP-based monitoring and control system.

managers, sets the hosts, ports of trap managers, and sends the
Trap to report alarms to trap managers. The ConditionChecker
uses the DeviceHandler to access the managed devices through
the DataTable, which reflects the real input/output (I/O) status
of managed devices and saves system variables, such as MIB
mapping information and required limits (e.g., limitations as to
temperature and humidity).

After real-time status checking, ConditionChecker obtains ei-
ther the Normal or Alarm condition. As noted in Fig. 6, the
Alarm object has 12 subobjects, such as FireAlarm, Waterines-
sAlarm, etc. As soon as an alarm condition occurs, SnmpAgent is
requested to create a TrapHandler to send a trap to the managers.
The MgdDevice has a generalized relation with the Sensor and
Actuator. In the present case, the remote controllable actuators
are emergency doors, dynamos, UPSs, and air conditioners. In
addition, certain system variables such as limitations on temper-
ature and humidity can be set remotely, and all alarms can also
be remotely enabled and disabled. The Sensor class is “inher-
ited” by the BinarySensor and AnalogSensor, the latter of which

includes TemperatureSensor, HumiditySensor, etc. The class di-
agram can be developed and modified in an iterative fashion,
through a repeated cycle of analysis, design and implementa-
tion, and then returning to the first stage of the cycle, as shown
previously in Fig. 1.

V. PN MODELING AND ANALYSIS

In order to obtain a verifiable dynamic model for real appli-
cations, we use the PN model replacing the Statechart in UML.
This allows us to perform both qualitative and quantitative
analyseson thedeveloped remote monitoring and control system.

A. Dynamic Behavioral Modeling

Based on the sequence diagram and class diagram con-
structed using UML, information can be extracted to build a PN
model. The simplified PN of the remote monitoring and control
system for the mobile switching center is shown in Fig. 7.
It consists of 30 places and 28 transitions. Corresponding

LEE AND HSU: SNMP AGENTS FOR REMOTE MONITORING AND CONTROL VIA UML AND PETRI NETS 299

Fig. 7. The PNs of the SNMP-based monitoring and control system.

notations are described in Table I. For example, the dynamic
behavior of the RequestHandler in Figs. 4(a) and 6 is modeled
as p9-p15 and t6-t13 in Fig. 7. The software package PETRI
Maker is adopted to verify the qualitative and quantitative prop-
erties of the PN model because of its graphical representation,
ease of manipulation, and its ability to perform structural and
performance analyses [20].

B. PN Analysis

In our qualitative analysis, validation results via the PN mod-
eling show the present design to be live and bounded. The live-
ness property means that the system can be executed properly
without deadlocks, while the boundedness property means that
the system can be executed with limited facilities (e.g., limited
request buffer size). For quantitative analysis, appropriate pa-
rameters such as the time period and the probability of an alarm
occurring are assigned for the timed PN modeling. Simulation
results show that t1, t12, t13, and t25, drawn with dark sym-
bols in Fig. 7, are critical timed transitions of the system. These
critical time delays are dependent on the transmission rate be-
tween the manager and agent. For example, if the data rate on
the line is 512 K bps, i.e., 64 K characters per second, then the
delay is 1/64 K second per character. Since the SNMP rides over
UDP/IP, of which the maximum packet size is 64 K, the delay
will be 1 s if there is no significant network congestion. On the
other hand, the delay time of t20 can be chosen to avoid sending

a great number of traps to managers in a short time interval for
the same alarm condition. In our case, we choose a delay of 30
s for t20. That means that if an alarm is reported to the manager,
but the agent does not receive an acknowledgment within 30 s
from the manager (i.e., TestRequest or TrapAck), the designed
agent will send the trap again for this alarm condition.

In addition to finding the critical timed transitions, the PN
model can also be used to decide time periods, such as t14 (time
period in which to scan the real I/O status) and t16 (time period
in which to check the data in DataTable), by performing sensi-
tivity analysis based on the p-invariant or static cycle methods
[12], [13].

VI. ARCHITECTURAL DESIGN AND IMPLEMENTATION

A. Architectural Design With the Deployment Diagram

A deployment diagram is used to model the physical relation-
ships among software and hardware components in the deployed
remote monitoring and control system, as shown in Fig. 8. It
includes a set of nodes (drawn as cubes) to represent the com-
putational units and relationships among three main machines:
1) the management station; 2) management agent; and 3) man-
aged devices. The management station uses the SNMP Manager
to communicate with the SNMP Agent through an Ethernet con-
nection, while the management agent uses the Device Handler
to communicate with the managed devices such as sensors and

300 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

TABLE I
NOTATIONS FOR THE PETRI NETS OF THE SNMP-BASED MONITORING SYSTEM.

Fig. 8. Architectural design with the deployment diagram.

actuators through PLC I/O connections or the industrial network
Modbus.

B. Implementation With Java Technology

The system modeling and analysis developed in previous
stages provide standard models for implementation of the
present remote monitoring and control technology. Although
UML modeling is not restricted to any particular language in
implementation, Java is preferred due to its object-orientation,
portability, safety, and built-in support for networking and
concurrency. Moreover, Java also possesses several features for
real-time development [21]–[23]. In the implementation of the
present design, we need to translate information from multiple
UML and PN models into the code and database structure.
This translation is not straightforward. However, there is a
close correspondence between Java and UML, and a standard
mapping is described in [24]. Also, a mapping between PN
and Java is described in [25] and a realistic implementation
of PN by using Java is shown in [16]. Moreover, since Java
cannot directly control the I/O devices, the ladder diagram
implemented on the PLC is applied to make the SNMP agent
access the low-level sensors and actuators. The developed
SNMP agent is implemented on the Mirle SoftPLC (80486-100
CPU), which is an advanced industrial PLC with a built-in Java
virtual machine so that it can execute both the Java and ladder
diagrams [17], [18]. Fig. 9 shows the hardware setup during
prototype development.

The developed SNMP-based remote monitoring and control
system in this paper is now operating at an MSC belonging to

LEE AND HSU: SNMP AGENTS FOR REMOTE MONITORING AND CONTROL VIA UML AND PETRI NETS 301

Fig. 9. The hardware setup during prototype development.

Taiwan Cellular Corporation. A total of 316 sensors and 140
actuators are handled by two PLCs with 189 rungs in each
ladder diagram. Under normal operation, the desirable temper-
ature and humidity of the MSC are locally controlled by air
conditioners and only remote monitoring is needed. As any
faults occur in the MSC, the SNMP agents will immediately
send alarm signals to the three remote management stations,
and proper control actions will then be taken to correct the
faults. Thus, environmental conditions in the MSC are super-
vised by the local SNMP agents and can be further monitored
and controlled by the remote manager from great distances
through the Internet.

VII. DISCUSSION

This paper integrates the PN into UML modeling to achieve
design, modeling, analysis, verification, and implementation
of remote monitoring and control systems within a systematic
framework. The results of this study lead to the following
discussion.

1) The models developed here for application to SNMP-
based remote monitoring and control of mobile switching
centers are general models. Since the UML is based on the
object-oriented concept, reusable models can be grouped
into a library to make the design process more efficient
when similar SNMP applications are encountered.

2) Basically, if SNMP traps are allowed to go unacknowl-
edged, SNMP agents cannot guarantee that a critical mes-
sage definitely reaches the management station. In this
paper, TestRequest and TrapAck are further proposed to
respond to the traps and, thus, the present SNMP agents
ensure that conditions requiring attention in the moni-
tored systems or processes are not missed.

3) Security is a prime concern for many network control
systems. Since the basic SNMP provides only trivial au-
thentication, security is particularly an important issue in
the present remote system design. Therefore, user/pass-
word and IP-access policies were adopted to control the
user access in the present approach. In fact, basic SNMP
is better suited for remote monitoring than for remote
control. However, several solutions have been proposed
to improve the access-control policy of SNMP, such as
Secure-SNMP (S-SNMP) and SNMPv3 [26]. Therefore,
improving the security of the remote system in the future
by applying the new SNMP policies should be feasible.

4) The development of computer software for automatic
model transformation, with due consideration given to
model consistency and semantics, has attracted much
attention in recent research [8]. For example, [9] and [10]
have recently reported separately on work to achieve a
transformation from Sequence Diagram and Statechart to
PN. Instead of developing an automatic model transfor-
mation, the present paper provides a systematic design
approach that combines UML modeling, PN analysis,
and Java realization to achieve a large-scale remote
monitoring and control system. The design guidelines
and analysis developed in this paper will be beneficial to
future research into automatic model transformation.

VIII. CONCLUSION

This paper presents an object-oriented approach to achieve
the systematical design and implementation of SNMP agents for
remote monitoring and control systems. In the UML-based de-
sign of the SNMP agents, the use-case diagram and the sequence
diagram are applied to describe the functionalities and interac-
tions, respectively. Then, a class diagram is used to describe
static structures, and the PN model is further applied to verify
the dynamic behavior of the system. In addition, the deployment
diagram is used to model the distribution of physical compo-
nents in the system. Implementation is then accomplished using
the Java language and ladder diagrams on the PLC. For the man-
agement of large-scale and distributed systems, the proposed
multiparadigm approach provides systematic design and imple-
mentation of SNMP agents to achieve remote monitoring and
control by integrating UML modeling and PN analysis.

ACKNOWLEDGMENT

The authors would like to thank Dr. F. Tsai, Engineering
Director of the Industrial Control Business, Mirle Automation
Corporation, Hsinchu Science-Based Industrial Park, Taiwan,
for his great help in developing this work.

REFERENCES

[1] A. Weaver, J. Luo, and X. Zhang, “Monitoring and control using the
Internet and Java,” in Proc. IEEE Int. Conf. Industrial Electronics, San
Jose, CA, 1999, pp. 1152–1158.

[2] R. L. Kress, W. R. Hamel, P. Murray, and K. Bills, “Control strategies for
teleoperated Internet assembly,” IEEE/ASME Trans. Mechatron., vol. 6,
no. 4, pp. 410–416, 2001. Focused section on Internet-based manufac-
turing systems.

[3] G. Q. Huang and K. L. Mak, “Web-integrated manufacturing: Recent
developments and emerging issues,” Int. J. Comput. Integrated Manuf.,
vol. 14, no. 1, pp. 3–13, 2001. Special Issue—Web-Integrated Manu-
fact..

[4] C. Batur, Q. Ma, K. Larson, and N. Kettenbauer, “Remote tuning of a
PID position controller via Internet,” in Proc. American Control Conf.,
Chicago, IL, 2000, pp. 4403–4406.

[5] M. Kunes and T. Sauter, “Fieldbus-Internet connectivity: The SNMP ap-
proach,” IEEE Trans. Ind. Electron., vol. 48, pp. 1248–1256, Oct. 2001.

[6] W. Stallings, SNMP, SNMP2, and CMIP. Reading, MA: Addison-
Wesley, 1993.

[7] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Lan-
guage User Guide. Reading, MA: Addison-Wesley, 1999.

[8] P. J. Mosterman and H. Vangheluwe, “Computer automated multi-
paradigm modeling in control system design,” in Proc. IEEE Int. Symp.
Computer-Aided Control Systems Design, Anchorage, AK, 2000, pp.
65–70.

302 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

[9] M. D. Jeng and W. Z. Lu, “Extension of UML and its conversion
to Petri nets for semiconductor manufacturing modeling,” in Proc.
IEEE Int. Conf. Robotic Automation, Washington, DC, 2002, pp.
3175–3180.

[10] S. Bernardi, S. Donatelli, and J. Merseguer, “From UML sequence dia-
grams and statecharts to analyzable Petri net models,” in Proc. ACM Int.
Workshop Software Performance, Rome, Italy, 2002, pp. 35–45.

[11] B. Bordbar, L. Giacomini, and D. J. Holding, “UML and Petri nets for
design and analysis of distributed systems,” in Proc. IEEE Int. Conf.
Control Applications, Anchorage, AK, 2000, pp. 610–615.

[12] W. M. Zuberek, “Timed Petri nets in modeling and analysis of cluster
tools,” IEEE Trans. Robot. Automat., vol. 17, pp. 562–575, Oct. 2001.

[13] R. S. Srinivasan, “Modeling and performance analysis of cluster tools
using Petri nets,” IEEE Trans. Semiconduct. Manuf., vol. 11, no. 3, pp.
394–403, 1998. Special Section—Petri Nets Semiconduct. Manufact..

[14] R. David and H. Alla, “Petri nets for modeling of dynamics systems-A
survey,” Automatica, vol. 30, no. 2, pp. 175–202, 1994.

[15] R. Zurawski and M. C. Zhou, “Petri nets and industrial applications: A
tutorial,” IEEE Trans. Ind. Electron., vol. 41, no. 6, pp. 567–583, 1994.
Special Section—Petri Nets Manufact..

[16] J. S. Lee and P. L. Hsu, “Remote supervisory control of the
human-in-the-loop system by using Petri nets and Java,” IEEE Trans.
Ind. Electron., vol. 50, pp. 431–439, June 2003.

[17] SoftPLC Controller User’s Manual Version 1.2, Mirle Automation
Corp., Hsinchu, Taiwan, 1999.

[18] SoftPLC-Java Programmer’s Toolkit, SoftPLC Corp., Spicewood, TX,
1999.

[19] J. Vucetic and P. Kline, “Signal monitoring system for wireless network
operation and management,” in Proc. SBT/IEEE Int. Symp. Telecommu-
nications, Sao Paulo, Brazil, 1998, pp. 296–300.

[20] A. Godon and F. Bousseau, High-Level Timed PN Simulator, PETRI
Maker 3.1. Angers, France: ISTIA, Univ. Angers, 1996.

[21] E. Bertolissi and C. Preece, “Java in real-time applications,” IEEE Trans.
Nucl. Sci., vol. 45, pp. 1965–1972, Aug. 1998.

[22] K. Nilsen, “Real-time programming with Java technologies,” in Proc.
IEEE Int. Symp. Object-Oriented Real-Time Distributed Computing,
Magdeburg, Germany, 2001, pp. 5–12.

[23] R. F. Mello and C. E. Moron, “A Java real-time kernel,” in Proc. IEEE
Int. Conf. Industrial Electronics, San Jose, CA, 1999, pp. 728–734.

[24] Unified Modeling Language/Enterprise JavaBeans (UML/EJB) Map-
ping Specification, May 2001.

[25] C. Conway, C. H. Li, and M. Pengelly. (2002, Oct.) Pencil: A Petri net
specification language for Java. Math. Dept., Macquarie Univ., Sydney,
Australia. [Online]. Available: http://www.cs.columbia.edu/~conway/
plt/pencil/index.html

[26] D. Zeltserman, A Practical Guide to SNMPv3 and Network Manage-
ment. Upper Saddle River, NJ: Prentice-Hall, 1999.

Jin-Shyan Lee received the B.S. degree in mechan-
ical engineering, in 1997, from National Taiwan
University of Science and Technology, Taipei,
Taiwan, R.O.C., and the M.S. degree in electrical
and control engineering, from National Chiao-Tung
University, Hsinchu, Taiwan, R.O.C., in 1999.
He is currently working toward the Ph.D. degree
in electrical and control engineering at National
Chiao-Tung University.

From July 2003 to June 2004, he has been a Vis-
iting Doctoral Student and assigned as a Research As-

sociate in the Department of Electrical and Computer Engineering, New Jersey
Institute of Technology, Newark, NJ. His current research interests include In-
ternet-based monitoring and control, discrete event systems, supervisory con-
trol, hybrid systems, factory automation, and intelligent transportation systems.

Pau-Lo Hsu (M’92) received the B.S. degree from
National Cheng Kung University, Tainan, Taiwan,
R.O.C., in 1978, the M.S. degree from the University
of Delaware, Newark, in 1984, and the Ph.D. degree
from the University of Wisconsin, Madison, in 1987,
all in mechanical engineering.

Following two years of military service in
King-Men, he was with San-Yang (Honda) Industry
during 1980;V1981 and Sandvik (Taiwan) from
1981 to 1982. In 1988, he joined the Department
of Electrical and Control Engineering, National

Chiao-Tung University, Hsinchu, Taiwan, R.O.C., as an Associate Professor.
He became a Professor in 1995. From 1998 to 2000, he served as the Chairman
of the Department of Electrical and Control Engineering. His research interests
include mechatronics, CNC motion control, servo systems, network-based
control systems, and diagnostic systems.

