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A novel Backus-Naur-form- (BNF-) based method to automatically generate test programs from
simple to complex ones for advanced microprocessors is presented in this paper. We use X86 ar-
chitecture to illustrate our design method. Our method is equally applicable to other processor
architectures by redefining BNF production rules. Design issues for an automatic program gener-
ator (APG) are first outlined. We have resolved the design issues and implemented the APG by a
top-down recursive descent parsing method which was originated from compiler design. Our APG
can produce not only random test programs but also a sequence of instructions for a specific module
to be tested by specifying a user menu-driven file. In addition, test programs generated by our APG
have the features of no infinite loop, not entering illegal states, controllable data dependency, flex-
ible program size, and data cache testable. Our method has been shown to be efficient and feasible
for the development of an APG compared with other approaches. We have also developed a coverage
tool to integrate with the APG. Experimental evaluation of the generated test programs indicates
that our APG, with the guidance of the coverage tool, only needs to generate a small number of test
programs to sustain high coverage.

Categories and Subject Descriptors: B.5.2 [Register-Transfer-Level Implementation]: Design
Aids—Verification

General Terms: Verification

Additional Key Words and Phrases: Advanced microprocessor, automatic program generator, BNF,
compatibility verification, coverage, top-down recursive descent parsing method

1. INTRODUCTION

With rapid improvement of hardware manufacturing technologies and the help
of computer-aided design (CAD) tools, superscalar microprocessors become
more and more powerful and faster. Although design time can be shortened
in a modern design environment, the verification effort grows exponentially
as microprocessors become more complicated. That is, the total development
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Fig. 1. Functional blocks of a Pentium Pro microprocessor.

(design and verification) cycle is still not shortened as quickly as the improve-
ment of the design environment. In addition, an X86-compatible microprocessor
needs to meet the following important characteristic: being able to run all oper-
ating systems (OSs) and applications that an Intel microprocessor can run. This
makes the design and verification of an X86-compatible microprocessor more
difficult. Thus compatibility verification becomes a key issue in the develop-
ment of an X86-compatible microprocessor. Under time-to-market pressure, we
must have a proper verification methodology for X86-compatible microproces-
sor development flow. Therefore, our objective is designing an APG (automatic
program generator) to shorten the verification cycle.

In this paper, we use Pentium Pro as our experimental target to illustrate
our design method. Our method is equally applicable to other non-X86 pro-
cessor architectures. Pentium Pro is a superscalar microprocessor and is thus
more complex than previous versions of X86 microprocessors [Intel Corpora-
tion 1996b]. It can decode three X86 instructions and executes five micro oper-
ations per cycle and has a long pipeline that allows high clock speed. With the
help of accurate branch prediction and the outfit of ROB (reorder buffer), MOB
(memory order buffer), and RS (reservation stations), Pentium Pro can execute
instructions out of order. Figure 1 shows the functional blocks of Pentium Pro
[Intel Corporation 1996b].

Verification of such a huge design is very costly and time-consuming. There
are many test programs to be written [Thatte and Abraham 1980; Brahame and
Abraham 1984]. However, it is very time-consuming to write all test programs
manually. This brings about the necessity of developing an APG to speed up the
verification work [Klug 1988; Savir and Bardell 1984; Al-Arian and Nordenso
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1989; Thatte and Abraham 1980; Brahame and Abraham 1984]. In this paper,
we present a novel Backus-Naur-form- (BNF-) based method to automatically
generate test programs for X86 microprocessors. The instructions in the test
programs generated by the APG must be carefully arranged to prevent the
programs from reaching an illegal state [Miyake and Brown 1992, 1994]. That
is, the generated test programs should be meaningful and useful for verifying
a microprocessor design. Design issues for developing an APG are described
first. We resolve the design issues and realize our APG by a top-down recursive
descent parsing method [Fischer and LeBlance 1988]. The APG can produce not
only random test programs but also instruction sequence-specified and module-
specified test programs. Note that besides generating tests for each specified
module, our APG can also generate tests to verify the interconnects between
modules by specifying a user menu-driven file that involves multiple modules.
We have also implemented an integrated APG & coverage tool to experiment
and evaluate the quality of the APG.

The organization of the paper is as follows: Section 2 introduces the basic
concept of our method. The top-level view of the pattern generation is illustrated
in Section 3. Existing approaches are reviewed in Section 4. In Section 5, we
discuss APG design issues and our design method. The details to implement
the APG are presented in Section 6. We demonstrate an integrated debugging
environment for verification in Section 7. Then, an integrated APG & coverage
tool and some experimental results are presented in Section 8. Finally, Section 9
gives concluding remarks.

2. BASIC CONCEPT

We first overview the top-down recursive descent parsing method in compiler
design. A BNF is simply a set of rewriting productions [Fischer and LeBlance
1988; Holub 1990]. A production is of the form A → B C D · · · Z . A is the left-
hand side (LHS) of the production; B C D · · · Z is the right-hand side (RHS) of
the production. A production is a rule that any occurrence of its LHS symbol
can be replaced by the symbols on its RHS [Fischer and LeBlance 1988; Holub
1990]. Thus the production

<program> → .model small <small block>

states that a program is required to be a small block started with a .model
small. Two classes of symbols may be used in a BNF: nonterminals and ter-
minals. Nonterminals are often delimited by <and>. All nonterminals must
be replaced by a production with terminals. In addition, terminals are never
changed. Recursive descent parsing is a parsing technique used in compilers.
The basic concept of recursive descent parsing is that each nonterminal has
a parsing procedure, which can be recursively called, that can recognize a to-
ken sequence [Fischer and LeBlance 1988; Holub 1990]. In a parsing proce-
dure, nonterminals and terminals can be matched. Although non-context-free
language constructs may be more powerful, we restrain the grammar to be
context-free for parsing efficiency. Since the APG needs to generate numerous
test programs, we opt for parsing efficiency. Those language constructs that
cannot be generated by the context-free grammar will be expressed as macros.
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Fig. 2. Basic concept of our method.

The overall purpose of a set of productions (a BNF) is to specify what se-
quences of terminals (tokens) are legal. So, we can construct useful and mean-
ingful test programs in a top-down manner by defining a BNF. The path tra-
versed by a recursive descent parsing procedure will build up a parse tree. The
selection of special parse trees will construct special test programs. That is, the
features of generated test programs can be controlled. Figure 2 shows the basic
concept of our method. Figure 2(a) means that we can build up a parse tree for
a legal source program. Figure 2(b) means that a legal assembly program can
be generated by an APG using a BNF. We can construct a test program with
specific characteristics by selecting a particular parse tree.

3. TOP-LEVEL VIEW OF THE PATTERN GENERATION

Figure 3 shows the top-level view of the pattern (test program) generation.
Users can control the APG by a user menu-driven file. This file will be first
parsed by the APG preprocessor. The APG preprocessor will then generate
some patterns to initialize the values of operands (e.g., registers). These initial
patterns will be used for generating specific exceptions. The APG preprocessor
will also decide some important parameters, such as the degree of data depen-
dency and the program size based on the user menu-driven file. Besides doing
those things, the APG preprocessor will generate direction vectors for the pat-
tern generator with BNF kernel to generate the test programs we need. The
pattern generator with BNF kernel is the main part of our APG. In the pattern
generator with BNF kernel, the BNF production rules are used to generate
valid test programs.

4. EXISTING APPROACHES

Three representative automatic program generators are first reviewed: the
multiprocessor test generator (MPTG) [O’Krafka et al. 1995], the model-based
test generator (MBTG) [Lichtenstein et al. 1994; Aharon et al. 1995], and the
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Fig. 3. Top-level view of the pattern generation.

Architecture Verification Programs Generator (AVPGEN) [Chandra et al. 1995].
MPTG is a deterministic test generator [O’Krafka et al. 1995]. It generates sets
of test cases that are guaranteed to cause specific events to happen. MPTG
does this by employing the cache coherence protocol as its abstract machine
model. This enables test specifications to directly control the occurrence of very
specific sequences of cache events. MPTG is very powerful in cache verification;
however, its verification scope is too limited. It needs to be coupled with a ran-
dom (generally pseudorandom) test generator, such as MBTG, for exhaustive
verification for most of the simulation cycles [Malik et al. 1997].

MBTG uses expert-system techniques to develop a test program generator
for design verification of hardware processors [Lichtenstein et al. 1994]. The
test program generator models an instruction semantically rather than syn-
tactically. An instruction is modeled by a tree with semantic procedures at the
root, operands and suboperands as internal nodes, and length, address, and
data expressions as leaves. Traversing the instruction tree in a depth first or-
der will generate instructions for test. Although MBTG is an excellent test
program generator for resolving three essential difficulties in the generation
process [Lichtenstein et al. 1994]—complexity, changeability, and invisibility—
its ability to handle a specific instruction sequence is too weak. It was aimed
toward verifying individual instructions [Malik et al. 1997]. Many exceptions
such as stack overflow and page faults can only be created by executing a spe-
cific instruction sequence. And if we want to generate a specific instruction
sequence to verify some functional blocks, such as a cache in a design, it is not
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easy to do so with MBTG. In addition, MBTG needs to maintain a large heuris-
tic database [Lichtenstein et al. 1994]. AVPGEN [Chandra et al. 1995] uses
concepts like symbolic execution, constraint solving, and biasing techniques to
generate tests. A complex language called SIGL is provided for the user to con-
trol the generation of test programs. AVPGEN provides a very detailed way
for the user to control the test pattern generation that causes it to be hard to
maintain, which will be described in Section 5.7.

Next, we review the following papers, which can provide an up-to-date view
of test program generation. In Aharon et al. [1991], an RTPG (random test
program generator) was built, which was used from the early stages of the de-
sign until its successful completion. It provided a biasing technique to create
a subset that provides high confidence in the correctness of the design. In our
approach, we use the user menu-driven file and APG preprocessor to achieve
the same purpose. Bin et al. [2002] dealt with the generation of test programs
as a constraint satisfaction problem (CSP) and developed techniques for the
problem. In contrast, our constraint-solving system for the problem is the user
menu-driven file and APG preprocessor. A reloading technique was presented
in Bin et al. [2002]. The drawback of the reloading techniques is that it intro-
duces an interference into the test [Adir et al. 2001]. In order to avoid fixed code
patterns, an idea of distancing the reloading instruction from the instruction
that uses the resource value was shown. In our approach, we can apply appro-
priate BNF production rules and techniques like loop-exit code and resource
locking to prevent the generated test patterns from entering illegal states. In
Fournier et al. [1999] presented a methodology that relies on a verification plan.
The verification plan induces sets of tests that carry out the verification tasks.
Our methodology relies on appropriate BNF production rules. We can use the
user menu-driven file to control the process of test pattern generation. Adir
and Shurek [2002] discussed collisions for multiprocessor verification. Colli-
sions occur when different processes access a shared resource. How the results
of such collisions can be presented in test programs was described. Our APG fo-
cuses on uniprocessor verification. In Adir et al. [2002], a technique that defines
unexpected events together with their alternative program specifications was
proposed. When an event is detected, its corresponding alternative specification
is added into the test program. Again, we use appropriate BNF production rules
and techniques like loop-exit code and resource locking to prevent the gener-
ated test patterns from entering illegal states. Emek et al. [2002] presented an
MBTG, X -Gen, targeted at systems and System-on-Chip (SoC). X-Gen provides
a framework and a set of building blocks for system-level test case generation.
The comparison between our BNF-based APG and the MBTG will be discussed
in Section 5.7.

5. DESIGN ISSUES AND DESIGN METHOD

Our design method addresses the following issues: user-controlled APG, branch
handling, test program for data dependency, instructions appearing together
requirement, bounded program size, and test for data cache. At the end of this
section, we will compare our APG with MBTG.
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Fig. 4. Instruction classification into types.

5.1 User-Controlled APG

The types of test programs generated by an APG can be specified by users. In or-
der to verify a design more comprehensively, three types of test programs can be
defined. They are random, module-specified, and instruction sequence-specified
test programs. Randomness is an effective way to generate test programs for
complicated situations where even experienced functional designers can hardly
figure out the details [Miyake and Brown 1994].

5.1.1 Random Test Programs. Random test programs, if carefully de-
signed, can verify all combinations of instructions [Johnes et al. 1991; Hu et al.
1994; Turumella et al. 1995]. But they tend to get into illegal states (e.g., jump
to an undefined location, too many push without pop, etc.). Besides, extremely
complicated test cases, which we really want to test, occur at rare situations.
Therefore, the frequency of specified test cases hit by fully random test pro-
grams is very low. Since the simulation speed of a functional model written
in a hardware description language is very slow, a fully random APG may be
timing-consuming for functional verification.

5.1.2 Instruction Sequence-Specified Test Programs. Test programs with
specific sequences of instructions are needed to test a specific module. Because
it is not easy to generate a specific sequence of instructions randomly, an APG
should be capable of generating a specific sequence of instructions based on
a user menu-driven file [Miyake and Brown 1994]. Any legal combinations of
instructions should be generated by an APG. Two levels of hierarchical infor-
mation (instruction type, instruction) are shown in Figure 4. We classify the
instructions of X86 assembly language into five types. They are ALU, data
movement, branch, subroutine, and push/pop. Each instruction type includes
some instructions. In the figure, information about operand modes are also
added to each instruction. When generating test programs, users can specify a
user menu-driven file to control what sequence of instructions can be generated
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Fig. 5. Example of a user menu-driven file.

by an APG. Figure 5 shows an example user menu-driven file. A sequence may
contain instruction types (e.g., alu) and particular instructions (e.g., mov). In
this menu-driven file, we can see that 60% of instructions in a generated test
program are for a specific sequence test. Among them, 50% of all sequence tests
are alu-data movement-branch sequence tests, and the rest are add-sub-jmp se-
quence tests. We can also see that when add instruction is chosen, operand 1
(OP1) will be ax and operand 2 (OP2) will be bx. By carefully setting the ini-
tial values of the operands, the execution of this add instruction will cause an
overflow exception.

5.1.3 Module-Specified Test Programs. Module-specified test programs
can be used to test a specific module design. In an X86-compatible micropro-
cessor case, the test flow may be IFU, ID, RS, ALU (including IEU and FEU),
and ROB. Before we test ALU, we must make sure IFU, ID, and RS are work-
ing correctly. An APG should have an option of generating test programs for a
specific module of a design. Figure 5 shows that 30% of instructions in a test
program are for specific module tests. Among them, 30% of specific module tests
are for ALU tests, 50% for BTB tests, and 20% for RS tests. Another 10% of test
programs (excluding the specific sequence test and the specific module test) are
randomly generated by the APG.

From a functional test point of view, we divide the instructions into five
types. These types may not fully match physical modules. Thus, there must be
a mapping from instruction types to physical modules, as shown in Figure 6. For
example, if we want to test BTB, we should increase the percentage of branch
instructions. After the APG reads the specific module test part of a user menu-
driven file (like Figure 5), it maps physical modules to instruction types (like
Figure 6) and then chooses the desired instructions.

5.2 Branch Handling

Two strategies, loop-exit code and resource locking, are used to resolve the prob-
lem of infinite loop generation. The former was proposed in [Miyake and Brown
1994]. We propose the latter to overcome the limitations of the former.

5.2.1 Loop-Exit Code. Infinite loop generation may occur if the instruction
randomly selected by an APG is a backward branch and the jump condition
is not handled carefully. This is because randomly generated instructions are
difficult to use to control a microprocessor state, such as condition codes for
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Fig. 6. Relationship between physical modules and APG-generated instruction types.

Fig. 7. Concept of loop-exit code.

branch instructions. In order to avoid infinite loops, a loop-exit code is used
Miyake and Brown [1994]. Figure 7 shows the concept of the loop-exit code and
an example code. A loop-exit code is generated whenever a backward branch
is selected. This loop-exit code has a loop counter and jumps to the next block
when the counter reaches zero. The target of the backward branch instruction
is always a loop-exit code, so the test program can exit the loop. In this example
code, the loop-exit code will jump to block1 if ex data countsdown to zero.

5.2.2 Resource Locking. Although the generation of infinite loops is pre-
vented by a predefined loop-exit code, it also introduces limitations on testing
the whole family of loops. Therefore, we present a new approach to generate the
whole family of loops without limitations. First, we deduce under what condi-
tions infinite loops may exist. Only conditional jump instructions are illustrated
here. If a backward jump instruction is always taken because the condition to
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Fig. 8. An example of resource locking.

jump is always true or always false, we may have an infinite loop. That is,
the combination of the following two elements may result in an infinite loop: a
backward jump instruction and the condition that makes the jump taken. Ver-
ification is incomplete without testing backward jumps. The basic idea behind
eliminating infinite loops is to prevent the loop condition from being always
false or always true, and this is the basis of resource locking.

Figure 8 shows an example of resource locking. In Figure 8(a), the conditional
jump instruction at line 15 is a backward jump. If EFLAG ZF is zero when the
jump instruction is executed, this conditional jump is taken. To prevent ZF
being always zero in this block, we must know which instruction is the last
instruction that may change ZF to 1 and is executed before that backward
jump. In Figure 8(a), it is XOR at line 14. Because we want to force the result of
XOR changes every iteration, two things must be done: locking the operands of
XOR and changing the values of these operands. If we didn’t lock the operands
of XOR, there might be the chance that the value of XOR would be increased by
4, while another instruction would decrease it by 4 in the same iteration, and
thus an infinite loop would occur. Figure 8(b) shows a revised test program. In
Figure 8(b), BX is replaced by CX and instruction DEC AX at line 14 is inserted
for changing the result of XOR at line 15. Instructions for storing some registers
temporarily are also inserted at the proper positions when there is no available
register for replacement. In the following, we show how to prevent infinite loops
step by step. To make it clear, we also use Figure 8 as an example.

(1) Check if the current generated instruction is a jump instruction. If it is
not, it will not have an infinite loop. If it is, check if it is a backward jump
instruction. If so, we may have an infinite loop in the test program. In
Figure 8(a), the instruction at line 15 is a backward jump instruction that
we want to find.

(2) Find out under what condition the jump instruction will be taken. In
Figure 8(a), the jump instruction is taken when EFLAG ZF is zero.
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(3) Find out which instruction is the last instruction and is executed before
the jump instruction and may change the value of ZF. In Figure 8(a), this
instruction is XOR at line 14.

(4) Find out which instruction is the target of the backward jump instruction.
In Figure 8(a), it is LABEL1: at line 1.

(5) Lock the operands AX and BX, of XOR, at line 14. This means that all
operands of instructions between LABEL1 at line 1 and XOR at line 14
cannot use AX and BX as their operands. Therefore, in Figure 8(a), BXs at
lines 2, 4, 10, and 11 are replaced by CXs, which have the same size as BXs.
We can lock the resources we want because all the resources are under our
control.

(6) If there is no register with the same size available, some restoration opera-
tions are needed to free a register. In Figure 8(a), there is no need for such
an operation.

(7) Insert an instruction that can change the result of XOR in an iteration. In
Figure 8(a), DEC is inserted at line 14.

By these steps, a test program with no infinite loop is generated in Figure 8(b).

5.3 Test Program for Data Dependency

Data dependency may seriously affect the pipeline behavior. Many microproces-
sor errors occur in the pipeline design. So it is necessary to set some conditions
to construct a test program with a different degree of data dependency. There
are three types of data dependency. They are read after write (raw), write after
read (war), and write after write (waw) [Hennessy and Patterson 1996; Hwang
1993]. The way to control the degree of data dependency is to restrict the num-
ber of available operands. The fewer the number of available operands, the
more data dependency there will be in a test program. Figure 9(a) shows the
three types of data dependency. In each instruction, the operator uses operand1
and operand2 as operands and stores the result back to operand1. For example,
“add ax, bx” is the addition of registers, ax and bx, and the sum is stored back
to ax. In Figure 9(a), there is a raw data dependency relation between operands
r1 and r4, if r1 is the same as r4. Also, if r1 is identical to r3, waw will occur.
Because r1 must be read when executing op1, war data dependency will occur
as well. The war relation between r2 and r4 exists if r2 and r4 are the same. We
conclude that there are three situations of data dependency in two instructions
(r1 = r4, r1 = r3, r2 = r4), and they are represented by three arrows, as shown
in Figure 9(a). Note that read-read appearances are not considered as a data
dependency case.

We are going to derive an expression to estimate the degree of data depen-
dency (D(n, k)), where n is the number of instructions and k is the number of
operands. It means the occurrence probability of data dependency. The combi-
natorics is to express the relative degree of data dependency in terms of number
of instructions and number of operands. Without loss of generality, we make
some assumptions. First, we assume the operands of instructions are a two-
column format, as shown in Figure 9(a). Second, we estimate the degree of data
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Fig. 9. Data dependency graphs.

dependency in a basic block. A basic block is a linear sequence of instructions
that contains no branch except at the very end [Fischer and LeBlance 1988].
No branch in the middle of a basic block is permitted. Every programs can
be represented as a series of basic blocks, linked together by branch instruc-
tions [Fischer and LeBlance 1988]. Four requirements for D(n, k) are shown,
as follows:

(1) D(n1, k) < D(n2, k) if n1 < n2;
(2) D(n, k1) > D(n, k2) if k1 < k2;
(3) D(n, k) = 1 if k = 1 and n → ∞;
(4) D(n, k) = 0 if k → ∞.

Figure 9(b) shows the data dependency relation of three instructions. There
are nine arrows in the dependency graph of three instructions (( 3

2 ) + 3×(3−1) =
9). The equation means that there are ( 3

2 ) arrows between r1, r3, and r5 and
3 × (3 − 1) for the rest. Figure 9(c) shows the data dependency relation of n
instructions. The number of arrows in n instructions is

(
n
2

)
+ n × (n − 1) = 3

2
× (n) × (n − 1). (1)
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Fig. 10. Degree of data dependency for n = 5 and n = 100.

If there are k operands, the average number of arrows in n instructions is

3
2

× (n) × (n − 1)

k
. (2)

The total number of possible arrows considering data dependency and no data
dependency is (

2n
2

)
. (3)

Thus, we can define the degree of data dependency, D(n, k), as

D(n, k) = 4
3

×

3
2

× (n) × (n − 1)

k(
2n
2

) (4)

= 2
k

× (n − 1)
(2n − 1)

. (5)

4
3 in Equation (4) is a scale factor and is used to adjust D(n, k) to 1 as k = 1
and n → ∞. Figure 10 shows the data dependency for n = 5 and n = 100,
respectively. In real cases, the operands can be chosen from general registers,
segment registers, and memory locations. In our experimental results, if D(n, k)
is larger than 0.5, the generated test program has heavy data dependency.
Decreasing the number of operands will increase D(n, k).

5.4 Instructions Appearing Together Requirement

Some instructions always appear together. For example, push/pop, call/ret/
subroutine definition, jump to label/label definition, memory access/memory

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 1, January 2004.



118 • Wu et al.

Fig. 11. Instructions appearing together requirement.

data definition, etc. Figure 11 shows an example of the instructions appearing
together requirement. When the je label1 instruction is selected, we must decide
on the location of lable1. In addition, if lable1 is a backward branch location,
we also have to insert a loop-exit code, as discussed above. The second operand
in the mov instruction is a memory data location (data1). If the operand type
is memory data, we must define it in the data segment. When generating a
call instruction, the corresponding subroutine must be defined. Also, a push
instruction must appear together with a pop instruction.

5.5 Bounded Program Size

The size of a test program generated by an APG should be bounded in a range,
but not fixed in size. For example, when generating a call instruction, a subrou-
tine definition should be completed before the test program generation termi-
nates. All instructions included in the instructions appearing together require-
ment discussed above have the same restriction. The program size problem
can be resolved naturally in our approach by setting different probabilities, as
shown in Figure 12. In the following, we derive the mean of a program size,
N . The parameter, l , is used to represent the average number of generated
instructions for different instruction types. Therefore,

N = p × s × (l ) + p × r × p × s × (2l ) + · · · + pk × r (k−1) × s × (kl ) + · · · (6)

=
∞∑

k=1

pn × r (k−1) × s × (kl ). (7)
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Fig. 12. Controlling program size by setting different probabilities.

As k → ∞, we have

N = s × p × l
(1 − pr)2 (8)

= p × (1 − r) × l
(1 − pr)2 , (9)

where s = 1 − r.
Thus, we can get a simple expression to estimate the program size:

N ≈ l
(1 − r)

for p ≈ 1. (10)

The usefulness of program size estimation will be clear in Figure 28.

5.6 Test for Data Cache

Since a data cache is prone to design errors, we must pay special attention to
the testing of the data cache. Three operations should be verified for data cache
testing. They are cache hit, cache miss, and cache replacement. Figure 13 shows
a test for cache hit and cache miss. In this instruction sequence, it will cause
some cache hits and cache misses. Figure 14 shows a test for cache replacement.
The cache architecture is assumed to be four-way set-associative. We use a base
pointer, bp, to locate the base address and the offset addresses. These memory
addresses all map to the same cache set. For example, in Figure 14, the base
pointer points to the address of data1. The number of sets in the cache is k. The
data located in the addresses [bp], [bp] + k × 1, [bp] + k × 2, . . . , and [bp] + k × i
(where i is an integer constrained by memory size) will all map to the same set,
set 0. Thus, the fifth memory access instruction addressed to these locations
will cause a cache replacement.
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Fig. 13. Test for cache hit/miss.

Fig. 14. Test for cache replacement.

5.7 BNF-Based APG Compared with Other Approaches

Since MPTG is a deterministic test generator, we only compare our BNF-
based APG with MBTG [Lichtenstein et al. 1994] and AVPGEN [Chandra et al.
1995]. Figure 15 summarizes the similarities and differences between our APG
and MBTG in five aspects. The two approaches are comparable in terms of
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Fig. 15. A comparison between our BNF-based APG and MBTG.

complexity, changeability, and invisibility. However, our method is superior to
MBTG in terms of maintenance and instruction combinations. MBTG needs to
maintain a large heuristic database and cannot easily generate a specific se-
quence of instructions [Lichtenstein et al. 1994; Malik et al. 1997], as addressed
in Section 4. Our BNF-based APG only needs to maintain a small BNF database,
as described in the following. There are 345 instructions for the Pentium Pro
processor, and we provide each instruction with a production rule. We also pro-
vide some production rules for operands and addressing modes selection. The
total size of the BNF developed is about 550 production rules. In addition, our
APG can generate a specific sequence of instructions easily via the specification
of a user menu-driven file.

In MBTG, a test knowledge base is added to increase the probability to test
corner cases [Lichtenstein et al. 1994]. The knowledge base represents test
engineers’ expertise. This means that test engineers must know what corner
cases are and what kinds of instruction sequences may test corner cases. In
our approach, if test engineers know what kinds of instruction sequences may
test corner cases, they specify them in a user menu-driven file to increase the
probability of generating the corner cases. We also allow test engineers to add
macros to the test programs generated by the APG. A macro is a hand-written
program segment, which is an instruction sequence not easily generated by the
APG. The APG will include the macros in the generated test programs.

Comparing the BNF-based APG with IBM’s AVPGEN [Chandra et al. 1995],
we conclude that the BNF-based APG can do the things done by the AVP-
GEN, like operands initialization and exception control. However, our BNF-
based APG is easier to maintain than the AVPGEN. The AVPGEN needs to
carefully design four blocks: refinement, dispatching, solving, and pattern gen-
eration [Chandra et al. 1995] in order to generate specific exceptions and to
prevent the test program from entering invalid states, while our APG only
needs to maintain the APG preprocessor and BNF production rules, as shown
in Figure 3. The user menu-driven file is easy to prepare and the BNF-based
pattern generator can guarantee that the generated test programs are always
in valid states.
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Fig. 16. A sample BNF.

6. APG IMPLEMENTATION

Figure 16 shows a sample BNF. Action symbols (starting with #) are used to
specify particular tasks. Production numbers are added for ease of discussion.
There are 14 productions in this BNF. Figure 17 is an example assembly test
program generated according to this BNF. There are 20 lines in the test pro-
gram. Note that we have used the X86 processor architecture to illustrate our
design method. However, our method can be easily extended to other processor
architectures (e.g., instructions with three operands). We only need to redefine
BNF production rules, as shown in Figure 16, based on other processor archi-
tectures. In the following, we will trace this BNF and discuss how our APG uses
this BNF to efficiently construct the test program.

6.1 Code Generation

The first production defines that the generation of an assembly program can
be divided into three parts. They are subroutine, main body, and memory data.
In Figure 17, lines 3 to 5 are a subroutine, lines 17 to 18 are memory data, and
the other lines are the main body. The second production says that an assembly
program starts with a string .model small. Production 3 defines that a small
block is constructed with some instructions and delimited by some required
codes (lines 2, 6, 7, 15, 16, 19, and 20 in Figure 17). Production 4 defines that
there are five types of instructions in our test programs. They are alu, branch,
subroutine, data movement, and push/pop. Production 5 says that add is an alu
type instruction and the operands can be register-register or register-memory.
Lines 8 and 13 in Figure 17 are constructed according to this rule. Production 6
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Fig. 17. An example assembly program.

says that four registers can be chosen (ax, bx, cx, and dx ). Production 7 means
that there are two kinds of memory data, byte and word, and that they are
represented as mem8 and mem16. The action symbol, create mem, will define a
memory datum in the data segment. Line 9 in Figure 17 uses a memory location
as the second operand, and line 18 defines the memory datum. Production 8
says that branch instructions can be divided into forward branch and backward
branch. Forward branch is defined in production 9 and backward branch is de-
fined in production 10. We can see that a backward branch creates a label before
a branch operator and adds a loop-exit code after the label definition. Between a
branch operator and the corresponding label, we can insert other instructions.
There is no loop-exit code for forward branch. Line 11 in Figure 17 is a forward
branch, and line 12 defines a label. Production 11 defines a subroutine call. The
action symbol create subroutine will use productions 12 and 13 to generate a
subroutine. We can see that no more subroutine call is allowed in a subrou-
tine. In Figure 17, lines 3, 4, 5, and 10 are generated by these two productions.
Production 14 defines a push/pop structure. Between push and pop, we can
insert other instructions. Lines 12 to 14 are generated by this production.

6.2 Structure of a Test Program

Figure 18(a) shows the structure of a test program. We can see that there are
other push/pop structures inside a push/pop. Branch instructions may have the
same structure. These two types of instructions must be carefully considered to
prevent the test program from entering illegal states. For example, Figure 18(b)
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Fig. 18. Structure of a test program.

Fig. 19. Using a direction vector to guide the traverse path of a parse tree.

shows an illegal test program. After the instruction, jmp label2, is executed,
the instruction sequence jumps to the middle of a push/pop structure. This
causes a pop being executed without a push first. If this situation occurs too
many times, the stack may overflow and the verification task may be crushed.
In our top-down recursive descent parsing method, this structure problem can
easily be resolved. By productions 9 and 14 in Figure 16, it is not possible to
generate a test program like Figure 18(b). The two productions emphasize that
a push must appear together with a pop, and this structure will never be broken
by branch instructions.

6.3 User-Controlled Part

We have discussed (in Sections 5.1.2 and 5.1.3) that the generation of instruc-
tion sequence-specified test programs and module-specified test programs can
be controlled by user menu-driven files. We use a direction vector to define the
traverse path of a parse tree and to generate a specific sequence of instruc-
tions. That is, we force the APG to go through a particular path so that the
required instructions can be generated. Figure 19 shows that, by defining a
direction vector, we can obtain a specific sequence of test instructions (add-sub-
jmp). A direction vector can be derived according to a user menu-driven file
(e.g., as in Figure 5). Thus, we can generate instruction sequence-specified and

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 1, January 2004.



BNF-Based Automatic Test Program Generator • 125

Fig. 20. Verification flow between PC and workstation.

module-specified test programs by user menu-driven files. If we want to gener-
ate test programs with high data dependency, we may confine the traverse path
of a parse tree to use a subset of operands. In addition, the test engineers need
to cooperate with the design engineers to get the information about instruction
sequence generation based on microarchitecture knowledge. After that, the test
engineers can write a user menu-driven file to guide the APG to automatically
generate an instruction sequence based on microarchitecture knowledge.

6.4 Other Types of Test Programs Not Included in Our APG

There are other types of test programs that are not suitable to be automatically
generated by an APG, for example, the X86 test programs in protected mode.
Protected mode testing is one of the most difficult parts of X86-compatible mi-
croprocessor verification. Some special actions must be taken—for example,
initialization—in order to switch a PC into the protected mode. Thus, these
kinds of test programs are not feasible to be generated by an APG. The reso-
lution of generating these kinds of test programs is to use the macro-include
method. That is, we prepare some macros and include them in the test programs
generated by the APG.

7. INTEGRATED DEBUGGING ENVIRONMENT FOR VERIFICATION

Figure 20 shows the verification flow between a PC and a workstation. In the
PC, the APG generates a t.asm assembly program and then the assembler
(MASM) assembles the assembly program. After successfully assembling the
t.asm file, the assembler produces a t.com or t.exe file. Then the tracer traces
the t.com or t.exe file and saves the golden results in a log file. In the work-
station, the microprocessor Verilog model runs the executable file (t.com or
t.exe) using a simulator from the PC and saves the simulation results. After
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Fig. 21. Integrated debugging environment for verification.

comparing the results from the PC and the workstation, we can check if the
test program generated by the APG is correctly executed by the microprocessor
Verilog model. In this way, the microprocessor Verilog model can be verified and
debugged.

Figure 21 shows an integrated debugging environment for verification. This
environment contains a smart debugger to compare the execution (expected)
results of test programs from the PC and the microprocessor Verilog model. If
a mismatch occurs, which instructions have caused this error should be figured
out. In this test case, the user menu-driven file of this test program is shown in
Figure 5. We can see that when executing instruction 22, the overflow flag on
the PC is not equal to the one on the microprocessor Verilog model. The bug is
then reported along with this test program for further debugging.

8. INTEGRATED APG & COVERAGE TOOL AND EXPERIMENTAL RESULTS

In this section, we present our integrated APG & coverage tool and demonstrate
some experimental results.

8.1 Our Integrated APG & Coverage Tool

Our APG has been integrated with a coverage tool, a test program pool, and a
simulator, TR [Liu 1999], as shown in Figure 22. We explain each component
as follows:

—Automatic test program generator: At the first run, no coverage report is
available. The APG generates a test program by following the directions of

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 1, January 2004.



BNF-Based Automatic Test Program Generator • 127

Fig. 22. System configuration of our integrated APG & coverage tool.

the user menu-driven file. This generated program is then sent to the test
program pool and the simulator, TR. On subsequent runs, coverage reports
about the previously generated test programs are collected. Based on the cov-
erage reports, the APG will try to generate instructions that rarely appeared
or were not generated before. The generation process is terminated when a
specified coverage is achieved.

—Test program pool: Whenever the APG generates a new test program, it sends
the test program to this pool. This component collects all generated test pro-
grams and forms a test suite. This test suite can be used to test compatible
microprocessor designs.

—Simulator: The simulator, TR [Liu 1999], is used to simulate the execution
of a generated test program. It can record all executed instructions. This
information is then sent to the coverage tool for analysis.

—Coverage tool: By knowing all executed instructions, the coverage tool can
analyze the coverage of a single instruction, instruction combinations, data
dependency, and data cache access. If a specified coverage has been achieved,
the coverage tool will notify the APG. If not, the coverage tool will send a
coverage report to the APG for the next generation process.

Figure 23 shows a coverage tool used to refine and evaluate an APG. The cov-
erage tool keeps track of all signals, states, and exceptions of a design. If there
are some signals that are never touched, some states that are never reached, or
some exceptions that never happen, we then want to change user menu-driven
files to generate test programs to cover those situations. However, if there are
some cases that the APG cannot generate, we should refine the APG to cover
these cases. If such cases are really not feasible to be generated by an APG, man-
ual coding test programs (or macros) is necessary. Thus, a faithful coverage tool
[Fine and Ziv 2003] is very important in developing an efficient APG.

8.1.1 Coverage Reports. The coverage reports in Grinwald et al. [1998]
and Wang and Liu [1998] were of numeric meanings only. We need more in-
formation to guide the APG. Therefore, each instruction is associated with a
3 × 3 coverage matrix. Figure 24(b) shows an example coverage matrix for
SHLD shown in Figure 24(a). There are three addressing modes and three
operands for each instruction. The addressing modes are register, immediate,
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Fig. 23. Refining an APG by a coverage tool.

Fig. 24. (a) A generated instruction SHLD, (b) the 3 × 3 coverage matrix for SHLD reported by
the coverage tool.

and memory (direct, indirect, base, index, and base index) [Intel Corporation
1996a, 1997b]. Operand sizes are 8, 16, and 32 bits [Intel Corporation 1997a].
Each entry in Figure 24(b) stands for a combination of an addressing mode and
an operand size, and may have one of the three values: NotUsed, NotGenerated,
and Generated. If the operand of one instruction cannot be an 8-bit register, the
corresponding entry is marked as NotUsed. If a combination is generated in test
programs, it is marked as Generated. Otherwise, entries are marked as Not-
Generated. For example, if the instruction in Figure 24(a) is executed, a 3 × 3
coverage matrix of SHLD will be reported by the coverage tool, as shown in
Figure 24(b), and the coverage of SHLD is 2

7 .

8.1.2 Flowchart of the Integrated APG and Coverage Tool. The flowchart
of the integrated APG and coverage tool is shown in Figure 25, and we describe
each step as follows:

(1) If there is no instruction that is not analyzed yet in the file returned by the
TR, go to step 2. Otherwise, go to step 3.

(2) Evaluate the coverage of test programs generated. If the desired coverage
has been achieved, notify the APG of this information. Then, the control
returns to the APG.

(3) Read an executed instruction from the file and identify the instruction type
it belongs. If this instruction has any operand, go to step 4. Otherwise, go
to step 5.

(4) Update the 3 × 3 coverage matrix that is associated with the instruction.
Then, go to step 1.

(5) Mark this instruction as 100% covered. Then, go to step 1.
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Fig. 25. Flowchart of the integrated APG and coverage tool.

Fig. 26. The overall coverage of generated test programs without coverage feedback.

8.2 Experimental Results

Figures 26 and 27 show the overall coverage of generated test programs without
coverage feedback and with coverage feedback, respectively. The instructions
generated belong to Integer Instructions [Intel Corporation 1996a]. The aver-
age program size in our experiment is 800 lines and a total of 100 test programs
are generated by the APG. Note that the average program size is determined by
simulation. Figure 28 shows the coverage reaches the maximum when the pro-
gram size exceeds 800 lines. With this information, we can deduce the optimal
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Fig. 27. The overall coverage of test programs with coverage feedback.

Fig. 28. Coverage versus program size.

value of the r variable in the program size expression (Equation (10)), and use
the value in the test program generation process. In Figure 26, after the num-
ber of test programs exceeds six, the coverage increases slowly. Even with 20
test programs, the coverage is only 0.5416. This demonstrates a situation that
generated test programs with low coverage is a serious problem of the APG
without coverage feedback, and it implies that the APG may generate some
instructions repeatedly.

Comparing Figure 27 with Figure 26, we found that the APG with coverage
feedback from the coverage tool can generate higher coverage (0.8334 vs. 0.5416,
60% improved) test programs with a smaller number (20 vs. 16) of test programs
than the APG without coverage feedback.

9. CONCLUSIONS

In this paper, a new BNF-based method to develop an APG has been presented.
We have discussed design issues and have resolved them by our method. An
APG generates test programs according to some predefined production rules.
These rules should be general enough to have high coverage and restricted
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enough to prevent the test programs from reaching illegal states. We have used
BNF to define the production rules and build the APG by the top-down recur-
sive descent parsing method. By this method, the test programs generated by
our APG have the features of no infinite loop, not entering illegal states, con-
trollable data dependency, flexible program size, and being data cache testable.
These features are usually hard to realize but can be easily resolved by our
BNF-based method. According to the experience of practical implementation
and evaluation, our method has been shown to be efficient and feasible for the
development of an APG compared with other approaches. We have also incor-
porated a coverage tool to refine our APG. Experimental results show that our
integrated APG & coverage tool only needs to generate a small number of test
programs to sustain high coverage.
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