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Protein function is structurally determined, but analyzing the structure of a protein is 

both difficult and time-consuming. The authors look at the natural instincts of protein 
secondary structures, which used to be analyzed in terms of their statistical relationship 
with a single amino acid. Several schemas are offered for identifying regular patterns 
among various types of secondary protein structures. The schemas employ genetic algo-
rithms based on a steady-state strategy. Two disjunctive data sets were used to verify fit-
ness. The paper concludes with some illustrations of significant schemas produced as part 
of this study, with brief explanations of their significance. 
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1. INTRODUCTION 
 

The latest version of the Protein Information Resource (PIR) database (updated on 
June 3, 2002) contains 233,236 protein sequences. In comparison, the Protein Data Bank 
(PDB) only contains 18,455 protein structures since they are much more difficult to 
determine. The secondary structures of proteins are now considered crucial to 
understanding their tertiary structures [1-5]; however, even though secondary structure 
data is often used in protein recognition and protein structure prediction [6-11], few 
attempts have been made to determine shared secondary structure patterns. Based on 
studies describing statistical regularity between single amino acids and various 
secondary structures [12], some researchers have suggested that secondary structure 
formation may, at least to a certain degree, be determined by sequential amino acid 
interaction [13]. Here we will propose a representative schema for amino acid 
interactions as an aid in analyzing the relationship between them and various protein 
secondary structures. 
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A schema can be regarded as a sequential pattern. According to its general 
definition, a sequential pattern is a frequently occurring pattern related to time or other 
sequences, and schema differences are often expressed in terms of positions. Agrawal 
and Srikant introduced the concept of mining sequential patterns from a set of 
market-basket data [14]. Sequential pattern mining methods make use of variations in a 
priori-like (statistics-based) algorithms , with different researchers using different 
parameter settings and constraints [15-18]. Traditional statistical methods identify 
significant patterns or rules according to their frequencies in data sets; in contrast, a 
schema also considers distinguishability. 

In the absence of a widely applied data mining method, we adopted a genetic 
algorithm based on a steady-state strategy. This approach is based on genetic algorithms 
as described by John Holland [19], whose work is associated with natural selection 
principles. The computational aspect of this method, which entails a great deal of random 
searching, is considered both powerful (because of its fitness function) and flexible 
(because of its problem encoding capability) [20-24]. We adopted a genetic algorithm 
approach for two reasons: a) it allows for the design of a fitness function that considers 
frequency and distinguishability (as opposed to traditional data mining methods that 
emphasize frequency only); and b) unlike traditional data mining methods (which lack 
crossover and mutation operators), genetic algorithms are more useful in determining 
regularity over a training set. 

The paper is organized as follows. Section 2 gives an overview of our approach. In 
section 3, we describe the methodology in our experiment and analyze our results. Fi-
nally, we discuss some issues related to our study in section 4. 

2. METHODS 

2.1 Schema 
 
Protein secondary structures are generally designated as H (alpha helix, 3/10 helix, 

pi helix), E (beta bridge, beta ladder), and L (turn, bend) [25]. Biologists acknowledge 
that the behavior of any amino acid in a protein sequence is susceptible to adjacent 
amino acids, but little work has been done to identify the regularity of these interactions. 
To address this problem, we applied Holland’s schema theory [19] while using schemas 
to reflect regularity. A schema is a bit string in which a bit is either an amino acid or an 
asterisk that represents any amino acid. Fig. 1 shows an example of a schema in which 
the first and last positions are both amino acid A, and amino acid L is in the center. We 
only focused on schemas that are nine amino acids in length. 
 
 

A＊＊＊Ｌ＊＊＊A 
H 

 
Fig. 1. Schema example. 
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Secondary structures are thought to be related to molecular interaction; a schema 
represents the most stable molecular configuration in terms of Van Der Waal’s forces 
and hydrogen bonds. The schema shown in Fig. 1 could be associated with the helical 
structure, which may be determined by interactions among the amino acids A (first posi-
tion), L (middle position), and A (final position). Our goal was to identify significant 
schemas that can be used to characterize various protein secondary structures. This is a 
non-trivial task because a) the number of necessary schemas is unknown, b) the schema 
length varies, and c) a measure is needed to evaluate the schema’s quality.  

 
2.2 Algorithm 

 
A decision was made to use steady-state Genetic Algorithms (SSGAs) to search for 

possible schemas because they are frequently used in rule-based systems [26] and sche-
mas can be considered types of rules. Each schema that evolved was used to classify the 
secondary structure of a protein sequence. As shown in Fig. 2, the schemas were en-
coded into the SSGA population. During the evolutionary process, schema that matched 
the established criterion were organized into a schema set and used to analyze protein 
secondary structure regularity in terms of its primary sequence patterns.  
 

 

Schema Set 
Steady-State 
Evolutionary 

Strategy 
Population

 
Fig. 2. Methodology used in this research. 

 
The framework of an SSGA used in our study is illustrated in Fig. 3. As shown in 

Fig. 3, first a chromosome C1 randomly selected from a population. C1 was either mu-
tated or crossed over a second randomly selected chromosome to yield C2. The chromo-
some C3 that was most similar to C2 was then taken from the population for comparison. 
The one with better fitness survived to the next generation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Population Randomly 
Select

Chromosome C1

Crossover

Mutation

Chromosome C2 

Most Similarity with C2

Chromosome C3
Compare with fitness

The Winner

Fig. 3. SSGA flowchart.
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There were several components in our system. They were chromosome encoding, 
population initialization, fitness function, and genetic operators.  

 To reduce the computational complexity, instead of using a single huge population 
of chromosomes, we initialized a population for each amino acid. In a particular popula-
tion for an amino acid, e.g., R, each chromosome represented a potential schema nine 
amino acids in length with the amino acid, R, fixed at the center position, while the oth-
ers were randomly determined. The reason we fixed R at the center of the schema in this 
case was that we wanted to model the interactions between the center R and the other 
neighboring amino acids. During the evolutionary process, the genetic operations, i.e., 
mutation and crossover, were applied to all the positions except the center in order to 
maintain the specificity showing the schemas in each particular population. An illustra-
tion of the 20 populations studied here is presented in Fig. 4. Each schema was associ-
ated with a specific secondary structure determined by its fitness. 

 

……

A R V

F＊W＊R＊QIT

E＊KLR＊C＊＊

H＊CIRIK＊＊

……

20 Populations for 20 amino acids

H 

H 

L

 
Fig. 4. A sample population for amino acid R. 

 
The design of our fitness function was based on the fact that there is a correlation 

between the primary sequence and the secondary structure it forms. To evaluate the fit-
ness of a schema, s, we can first measure its tendency under each secondary structure, 
defined as follows: 

∑
>−

=
thresholdSA

SS
SSSS

SS

iSS

i
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SASA
sTendency

minmax

1)(                           (1) 

where tendency(s)ss is the tendency of schema s to have a particular secondary structure 
ss and SAssi is the alignment score of schema s with a secondary structure ssi in the train-
ing set. SAssmax and SAssmin are the maximum and minimum alignment scores, respectively. 
Note that we only considered those alignments having scores above a specified threshold. 
Alignments with low scores were considered noise. 
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We preferred schemas with greater discrimination power, that is, a good schema 
should have a strong tendency toward a particular secondary structure. Given all the ten-
dencies toward various structures, we defined the fitness as 

 
Fitness(s) = Tendency(s)highest - Tendency(s)second                          (2) 
 

where Tendency(s)highest and Tendency(s)second represent the highest and the second high-
est tendencies of schema s, respectively. 

We adopted a steady-state selection mechanism to choose candidate schemas to par-
ticipate in the evolutionary process. Standard genetic operators, such as uniform cross-
over and multi-point mutation, were applied to generate new populations. The same 
evolutionary process was repeated until the fitness values of the schemas did not im-
prove. After convergence was achieved, from all twenty populations, we combined those 
schemas having high fitness values to form the final significant schema set. These sche-
mas could then be used to classify the secondary structures of new protein sequences. 

3. EXPERIMENTS 

3.1 Methodology and Data Sets 
 
Our experiments had two purposes. First, we wanted to verify the positive predic-

tive value of our system; second, we wanted to validate the fitness function. As our sys-
tem was within the supervised learning paradigm, we prepared the training set and test-
ing set, respectively. The training set consisted of 124 protein sequences, each of which 
was more than 80 amino acids in length, and the pairwise similarity was below 25%. 
They were used to train the SSGA to find significant schemas associated with various 
protein secondary structures. The 124 proteins are listed in Table 1. To obtain a positive 
predictive value, we tested the SSGA on the nr-PDB data set created by NCBI after re-
moving those sequences used for training. A positive predictive value was defined as  

matches schema ofnumber 
tionsclassificacorrect  ofnumber  valuepredictive positive =             (3) 

 
Table 1. Training set of 124 proteins used for learning schemas. 

1aaj 1aba 1add 1ads 1apa 1aps 1btc 1c5a 1caj 1ccr 1cdb 1cde 1cgt 1cid 1crl 1cyo 
1dog 1eco 1ede 1ezm 1fdd 1fha 1fhb 1gal 1gpb 1hbq 1hmy 1hra 1ifc 1ipd 1le4 1mgn 
1mup 1ndk 1ofv 1omp 1osa 1phh 1plc 1pyp 1rhd 1rnd 1s01 1sgt 1snc 1spa 1ten 1tlk 
1trb 1ula 1vqb 2aak 2abh 2abk 2ayh 2cbp 2cdv 2cp4 2cpl 2cro 2cts 2cyp 2fox 2liv 
2nrd 2pfl 2phy 2sga 2sim 2snv 2spo 3adk 3dfr 3gbp 3grs 3pgk 3pgm 3tgl 4enl 4fgf 
4gcr 4xis 5nn9 6taa 8abp 8acn 8ilb 9rnt 1291 1aep 1arb 1bw3 1dhr 1eaf 1gky 1gof 
1lis 1nar 1poa 1poc 1ppn 1rcb 1sbp 1tml 1utg 2baa 2cas 2cmd 2ctc 2dri 2end 2mhr 
2mnr 2omf 2pgd 2pia 2por 2rn2 2sas 2stv 2tgi 3chy 3cla 5p21 
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From large databases, biologists have found that there exists some preference of 
secondary structures for each amino acid. We, thus, looked into the finally converged 
twenty populations for similar correlations. The similar correlations could indicate that 
the fitness function we used could approximate real biological meanings, thus justifying 
its use. 
 
3.2 Results 
 

The statistics of the amino acids and secondary structures in the non-redundant Pro-
tein Data Bank are summarized in Table 2. The first two columns present the number of 
occurrences of each amino acid and its percentage in the nr-PDB, and the remaining 
columns show the numbers of occurrences and the percentages of the secondary struc-
tures H, E, and L within the nr-PDB, respectively. 

 
Table 2. Statistics for 20 amino acids in the nr-PDB chain set. 

 Num % H 
354429 

H% 
35.9%

E 
210513

E% 
21.3%

L 
42111

L% 
42.7% 

A 82743 8.39% 41219 4.18% 13582 1.38% 27942 2.83% 
C 10701 1.09% 3398 0.34% 3095 0.31% 4208 0.43% 
D 57508 5.83% 18068 1.83% 6736 0.68% 32704 3.32% 
E 65288 6.62% 31741 3.22% 9616 0.98% 23931 2.43% 
F 38874 3.94% 13778 1.40% 11807 1.20% 13289 1.35% 
G 73432 7.45% 12872 1.31% 10714 1.09% 49846 5.06% 
H 22508 2.28% 7438 0.75% 4818 0.49% 10252 1.04% 
I 56906 5.77% 20985 2.13% 20959 2.13% 14962 1.52% 
K 57486 5.83% 23243 2.36% 9637 0.98% 24606 2.50% 
L 88394 8.96% 41502 4.21% 20762 2.11% 26130 2.65% 
M 22057 2.24% 9477 0.96% 4944 0.50% 7636 0.77% 
N 43029 4.36% 12045 1.22% 5784 0.59% 25200 2.56% 
P 45803 4.65% 8320 0.84% 4076 0.41% 33407 3.39% 
Q 37829 3.84% 17031 1.73% 6345 0.64% 14453 1.47% 
R 50134 5.08% 21199 2.15% 9545 0.97% 19390 1.97% 
S 57626 5.84% 16779 1.70% 10797 1.09% 30050 3.05% 
T 57004 5.78% 15774 1.60% 14590 1.48% 26640 2.70% 
V 71239 7.22% 22665 2.30% 28564 2.90% 20010 2.03% 
W 13325 1.35% 5150 0.52% 3670 0.37% 4505 0.46% 
Y 34173 3.47% 11745 1.19% 10472 1.06% 11956 1.21% 

 
After the evolutionary process terminated, we checked each of the twenty con-

verged populations to determine the most frequent secondary structures for each amino 
acid. We summarize the results in Table 3. It shows that most of the natural correlations 
between amino acids and preferred structures were also found in the converged popula-
tions with the exception of amino acid Y. Note that all the initial populations were ran-
domly generated. The finding of similar correlations between amino acid preferences and 
particular structures in the final converged populations certainly provides some 
confidence supporting application of the fitness function to SSGA. 
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Table 3. Tendencies of various amino acids to have particular types of secondary 
structures. 

Amino 
acid 

A C D E F G H I K L M N P Q R S T V W Y 

nr-PDB H L L H H L L H
E

H
L

H H L L H H L L E H
L 

H
L 

Result H L
E 

L H H L L H
E

H
L

H H L L H H L L E H
L 

E 

 
The learned schemas from the training set were later tested on the nr-PDB test set to 

measure their positive predictive values. Some of the most significant schemas identified 
in the study are shown in Table 4.  
 

Table 4. Sample schemas with high fitness. 

Schema Secondary 
Structure 

No. of schema 
occurrences in 

nr-PDB 

Positive predictive 
value 

＊＊＊A＊＊LAE Helix 81 97.53% 
＊＊＊＊PP＊＊＊ Loop 2049 95.17% 
＊P＊＊＊PT＊＊ Loop 129 91.47% 
＊＊＊G＊PS＊＊ Loop 201 89.05% 
＊＊VVI＊＊＊＊ Sheet 348 80.46% 
＊＊＊E＊LLR＊ Helix 58 89.66% 
＊＊＊＊＊P＊＊S Loop 2777 79.87% 
＊＊R＊N＊P＊＊ Loop 305 78.69% 
K＊＊＊E＊L＊D Helix 160 76.25% 
＊＊A＊E＊＊＊K Helix 461 75.49% 
＊＊VVL＊S＊＊ Sheet 93 75.27% 

4. DISCUSSION 

Instead of getting in a horse-race with current approaches to protein secondary 
structure prediction, we have attempted to study protein secondary structures from a dif-
ferent point of view by extracting regularity between sequence patterns and various 
structures. This regularity could be used as new features and fed into other prediction 
systems. In this way, SSGA could be used as a preprocessor.  

There are several directions for our future work. First, though sequence schemas 
currently are treated independently, they can be combined to better characterize particu-
lar secondary structures. We plan to either apply different composition operators, e.g. 
Boolean connectives, to combine schemas or use higher-order models, e.g., HMM, to 
reflect the relationships among different schemas more realistically.  
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Second, we can apply SSGA to widely-used protein data sets to generate useful 
schemas as new features for other protein secondary structure prediction tools and to 
verify whether the learned schemas are effective.  

Third, in this paper, GA was applied to find regularity in various protein secondary 
structures, and we have described the learned regularity in terms of sequence patterns. 
However, applying GA and using sequence patterns inevitably incurs process bias and 
representation bias. These biases can either lead to useful inductive leaps or hinder the 
learning/mining process. We plan to evaluate different types of biases and measure their 
usefulness in various protein domains. 
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