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Abstract

We present the solutions for displacements and stresses subjected to a vertical point load in a continuously inhomo-

geneous transversely isotropic half-space with Young’s and shear moduli varying exponentially with depth. Planes of transverse

isotropy are assumed to be parallel to the horizontal surface. The solutions for the half-space are obtained by superposing the

solutions of two full spaces, one with a point load in its interior and the other with opposite traction of the first full space along the

z ¼ 0 plane. The Hankel transform in a cylindrical co-ordinate system is employed for deriving the solutions. However, the resulting

integrals for displacements and stresses involve polynomial, exponential function, and Bessel function that cannot be given in closed

form; hence, numerical techniques are adopted in this work. In order to check the accuracy of numerical procedures, the

comparisons are carried out with the homogeneous solutions of Liao and Wang, and the calculated results agree with those to nine

decimal places. Furthermore, two illustrative examples are presented to elucidate the effect of inhomogeneity, and the type

and degree of rock anisotropy on the vertical surface displacement and vertical normal stress in the inhomogeneous isotropic/

transversely isotropic rocks subjected to a vertical concentrated force acting on the surface. The calculated results show

that the induced displacement and stress are decisively influenced by the inhomogeneity, and the degree and type of material

anisotropy. The proposed solutions can more realistically simulate the actual stratum of loading problem in many areas of

engineering practice.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In general, the magnitude and distribution of the
displacements and stresses in rock are predicted by using
solutions that model rock as a linearly elastic, homo-
geneous and isotropic continuum. However, for rock
masses cut by discontinuities, these solutions should
account for anisotropy. From the standpoint of
practical considerations in engineering, anisotropy rocks
are often modeled as orthotropic or transversely
isotropic medium. Besides, the effects of deposition,

overburden, desiccation, etc., can lead geological media,
which exhibit both inhomogeneity and anisotropic
deformability characteristics. The type of elastic inho-
mogeneity is a useful approximation for modeling
certain problems of geotechnical interest [1]. In this
work, an elastostatic loading problem for a continuously
inhomogeneous transversely isotropic half-space with
Young’s and shear moduli varying exponentially with
depth is relevant.

The solutions of displacements and stresses for
various types of applied loads to homogeneous and
inhomogeneous isotropic/anisotropic full/half-spaces
have played an important role in the design of
foundations. However, it is well known that a point
load solution is the basis of complex loading problems
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for all constituted materials. A large body of the
literature was devoted to the calculation of displace-
ments/stresses in isotropic media with the Young’s
or shear modulus varying with depth according to
the power law, the linear law, and the exponential law,
etc. The related works prior to 1960 can be found in
Griffith [2], Fr .ohlich [3], Holl [4], Borowicka [5],
Mikhlin [6], Ohde [7], Klein [8], Koronev [9,10],
Mossakovskii [11], Popov [12], and Olszak [13], etc.;
a more recent survey of the existing solutions for an
inhomogeneous isotropic half-space is summarized
in Table 1. Table 1 indicates the types of inhomogeneity,
analytical or numerical solutions presented, and
possible restrictions on Poisson’s ratio in the solutions.
Corresponding to the isotropic solutions, the literature
contributions to the inhomogeneous transversely
isotropic half-space are very limited. The lack of
analytical/numerical solutions is primarily because
of the mathematical difficulties involved. A summary
of the available solutions for an inhomogeneous
anisotropic material is given in Table 2. To the best of
the authors’ knowledge, no solutions for displacements
and stresses in a transversely isotropic half-space
subjected to a point load with Young’s and shear
moduli varying exponentially with depth have been
presented. Utilizing the approaches proposed by Liao
and Wang [94], the solutions of displacements and
stresses in the Hankel domain for the continuously
inhomogeneous transversely isotropic full and half-
spaces subjected to a vertical point load are derived,
respectively. These solutions indicate that the displace-
ments and stresses in an inhomogeneous transversely
isotropic full/half-space induced by a point load are
affected by the inhomogeneity, and the type and degree
of material anisotropy. The actual expressions for
displacements and stresses can be obtained by taking
the numerical inversion of the Hankel transforms.

However, the resulting integrals involve products of
Bessel functions of the first kind, an exponential
function, and a polynomial, which cannot be given in
closed form; hence, the numerical integrations are
required. The numerical techniques are adopted from
Longman’s [95,96] as well as Davis and Rabinowitz’s
[97] methods. In order to check the accuracy of
numerical procedure, the presented solutions are then
simplified as the homogeneous solutions [94] by
approaching the inhomogeneity parameter k to zero.
The calculated results agree with those [94] to nine
decimal places. Two illustrative examples, a point load
acting on the surface of an inhomogeneous isotropic/
transversely isotropic half-space are given to show the
effect of inhomogeneity, and the type and degree of rock
anisotropy on the vertical surface displacement and
vertical normal stress.

2. Displacements and stresses in an inhomogeneous

transversely isotropic full space

To solve the displacements and stresses in an
inhomogeneous transversely isotropic full space
induced by a single concentrated force, we follow
the approach of Liao and Wang [94] for the correspond-
ing homogeneous full space. Fig. 1 depicts that a
cylindrical co-ordinate system (r; y; z) is chosen such
that z-axis is normal to the free surface of the
inhomogeneous transversely isotropic material. The
X–Y plane of a Cartesian co-ordinate system is parallel
to the r � y plane. The anisotropic medium possesses
inhomogeneous elastic properties, and can be assumed
to vary from point to point along the z-axis within
the solid [77]. Then, the expression of stress–strain for
a continuously inhomogeneous transversely isotropic
medium in a cylindrical co-ordinate system is given
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Nomenclature

Cij (i; j ¼ 126) elastic moduli or elasticity constants
(Pa)

E; E0; n; n0; G0 engineering elastic constants of trans-
versely isotropic materials (Pa)

h the buried depth, as seen in Fig. 2 (m)
Jn( ) Bessel function of the first kind of order n

(dimensionless)
k the inhomogeneity parameter (1/m)
Pz a vertical point load in a cylindrical co-

ordinate system (N)
r; y; z a cylindrical co-ordinate system (m,

radian, m)

R; Y; Z body force components in a cylindrical co-
ordinate system (N/m3)

u1; u2 roots of the characteristic equation (dimen-
sionless)

Ur; Uz displacement components (m)

Greek symbols

err; eyy; ezz normal strain components (dimensionless)
gry; gyz; grz shear strain components (dimensionless)
srr; syy; szz normal stress components (Pa)
try; tyz; trz shear stress components (Pa)
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Table 1

Existing analytical/numerical solutions for inhomogeneous isotropic media

Types of inhomogeneity Author Analytical or numerical solutions Poisson’s ratio

E ¼ mEza or G ¼ mGza (0pap1) Rostovtsev [14] Settlement due to an elliptical, a circular,

and a paraboloid of revolution load

n ¼ 1=ð2þ aÞ

Lekhnitskii [15] Radial stress for plane strain and

generalized plane stress

General

Popov [16] Surface displacement due to a circular

load

General

Rostovtsev [17] Stresses and displacements for plane and

axisymmetric problems

General

Zaretsky and Tsytovich [18] Contact stress beneath a rigid strip n=1/2

Kassir [19] Stresses and displacement due to

axisymmetric twisting deformation

(Reissner–Sagoci problem)

General

Rostovtsev and Khranevskaia [20] Stresses and displacements for plane and

axisymmetric problems

General

Kassir [21] Surface displacements and stresses due to

a general-shaped cylindrical rigid punch

n ¼ 1=ð2þ aÞ

Carrier and Christian [22] Displacements and stresses due to a

circular load by FEM

n ¼ 1=2

Puro [23] Displacements due to axisymmetric loads General

Popov [24] Displacements due to vertical/horizontal

circular punches

General

Booker et al. [25] Displacements and stresses due to

vertical/horizontal surface line and point

loads

General

Booker et al. [26] Surface displacement due to strip, ring,

and circular loads

General

Oner [27] Displacements due to vertical/horizontal

point, circular and rectangular loads

General

Booker [28] Surface displacement due to a

rectangular load

General

Giannakopoulos and Suresh [29] Analytical and numerical solutions for

stresses and displacements due to a

vertical point load

n ¼ 1=ðaþ 2Þ

Giannakopoulos and Suresh [30] Analytical and numerical solutions for

stresses and displacements due to rigid

axisymmetric indentors

n ¼ 1=ðaþ 2Þ

Stark and Booker [31] Surface displacements due to a uniform

vertical/horizontal load on an arbitrarily

shaped area by numerical technique

General

Stark and Booker [32] Surface displacements due to a uniform

vertical/horizontal load on a rectangular

area by numerical technique

General

Yue et al. [33] Displacements and stresses due to

vertical/horizontal point loads for a

layered half-space by backward transfer

matrix method

n ¼ 1=ðaþ 2Þ

Holzl .ohner [34] Displacements and stresses for a non-

linear half-space due to strip loads

General

E ¼ E0ða þ bzÞc or G ¼ G0ða þ bzÞc Plevako [35] Displacements for plane problems n ¼ 1=ð1þ cÞ
Plevako [36] Displacements due to vertical/horizontal

point loads

General

Chuaprasert and Kassir [37] Surface displacement and stresses for

Reissner–Sagoci problem

General

Chuaprasert and Kassir [38] Displacements and stresses due to a

uniform circular load

n ¼ 1=ð2þ cÞ

Kassir and Chuaprasert [39] Stresses and displacements due to the

axisymmetric problem of a rigid punch

General

Dhaliwal and Singh [40] Stresses and displacements for Reissner–

Sagoci problem

General

Harnpattanapanich and

Vardoulakis [41]

Numerical surface displacements of a

rectangular footing for consolidation

problems

General

C.D. Wang et al. / International Journal of Rock Mechanics & Mining Sciences 40 (2003) 667–685 669



ARTICLE IN PRESS

Table 1 (continued)

Types of inhomogeneity Author Analytical or numerical solutions Poisson’s ratio

Rajapakse and Selvadurai [42] Stresses and displacement due to rigid

circular and cylindrical foundations

General

Jeng and Lin [43] Water wave-induced pore pressure on a

pipeline problem by FEM

General

E ¼ E0 þ lz or G ¼ G0 þ lz Gibson [44] Displacements and stresses due to strip

and circular loads

n ¼ 1=2

Gibson et al. [45] Stresses and displacements for plane

strain and axisymmetric problems

n ¼ 1=2

Brown and Gibson [46] Surface displacement due to a strip or

circular load

General

Awojobi and Gibson [47] Stresses and displacements for plane

strain and axisymmetric problems

General

Brown and Gibson [48] Surface displacement due to a

rectangular load

General

Carrier and Christian [49] Settlement and stresses due to a rigid

circular plate by FEM

General

Gibson [50] Surface displacement of uniformly

circular loads

n ¼ 1=2

Alexander [51] Vertical displacement due to a circular

load

n ¼ 1=2

Calladine and Greenwood [52] Displacements and stresses for plain

strain and axisymmetric problems

n ¼ 1=2

Brown and Gibson [53] Surface displacement for a layer of finite

depth due to a rectangular load

n ¼ 0; 1/3, 1/2

Rajapakse [54] Stresses and displacements due to an

interior arbitrarily axisymmetric vertical

load

n ¼ 1=2

Rajapakse [55] Stresses and displacements due to a

partially or fully embedded axially loaded

rigid axisymmetric inclusion

n ¼ 1=2

Chow [56] Vertical displacement of the smooth,

rigid rectangular foundation by FEM

General

Rajapakse and Selvadurai [57] Axisymmetric elastic response of circular

footings and anchor plates

n ¼ 1=2

Dempsey and Li [58] Surface displacement of rectangular and

strip footings by numerical approach

n ¼ 1=3

Yue et al. [33] Displacements and stresses due to a

circular load for a layered half-space by

backward transfer matrix method

n ¼ 1=2

E ¼ E0 þ E1exz or G ¼ G0 þ G1exz Ter-Mkrtich0ian [59] Stresses and displacements due to a

circular load

General

Rowe and Booker [60] Settlements due to strip footings by finite

layer method

General

Rowe and Booker [61] Settlements due to circular footings by

finite layer method

General

Row and Booker [62] Displacements and stresses by finite layer

method

General

Selvadurai et al. [63] Displacement for Reissner–Sagoci

problem

General

Vrettos [64] Displacements for SV/P surface wave

problem

General

Vrettos [65] Stresses and displacements due to an

interior time-harmonic vertical point load

General

Vrettos [66] Displacements due to vertical/horizontal

time-harmonic surface line loads

General

Selvadurai [67] Settlement due to a rigid circular

foundation

General

Giannakopoulos and Suresh [29] Analytical and numerical solutions for

stresses and displacements due to a

vertical point load

n ¼ 1=ðxþ 2Þ

Giannakopoulos and Suresh [30] Analytical and numerical solutions for

stresses and displacements due to rigid

axisymmetric indentors

n ¼ 1=ðxþ 2Þ
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as follows:

srr

syy
szz

tyz

trz

try

2
6666666664

3
7777777775

¼

C11 C11 � 2C66 C13 0 0 0

C11 � 2C66 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

2
6666666664

3
7777777775

err

eyy
ezz

gyz

grz

gry

2
6666666664

3
7777777775
e�kz

ð1Þ

where k is referred to as the inhomogeneity parameter;
Cij (i; j ¼ 126) are the elastic moduli or elasticity
constants of the medium, and can be in terms of five
independent elastic constants E; E0; n; n0 and G0 as

C11 ¼
Eð1� ðE=E0Þu02Þ

ð1þ uÞð1� u� ð2E=E0Þu02Þ
; C13 ¼

Eu0

1� u� ð2E=E0Þu02
;

C33 ¼
E 0ð1� uÞ

1� u� ð2E=E 0Þu02
; C44 ¼ G0; C66 ¼

E

2ð1þ uÞ
;

ð2Þ

where

1. E and E0 are Young’s moduli in the plane of
transverse isotropy and in a direction normal to it,
respectively;

2. n and n0 are Poisson’s ratios characterizing the lateral
strain response in the plane of transverse isotropy to
a stress acting parallel or normal to it, respectively;

3. G0 is the shear modulus in planes normal to the plane
of transverse isotropy.

The differences between the homogeneous transver-
sely isotropic elastic constants [94] and inhomogeneous
ones adopted in this paper can be summarized in
Table 3. It is clear that, for the inhomogeneous
transversely isotropic medium described by Eq. (1), only
three (E; E 0; and G0) of five engineering elastic constants
exponentially depend on the inhomogeneity parameter
k; the two Poisson’s ratios are constants. Furthermore,
depending upon the parameter k; we have the following
three different situations:

(1) k > 0; denotes a hardened surface, whereas E; E0;
and G0 decrease with the increase of depth.

(2) k ¼ 0; is referred to as the conventional homo-
geneous condition [94].

(3) ko0; denotes a soft surface, whereas E; E0; and G0

increase with the increase of depth.

The expressions of strain–displacement relations for
small strain conditions in a cylindrical co-ordinate
system are:

err ¼ �
qUr

qr
; ð3Þ

eyy ¼ �
Ur

r
�

1

r

qUy

qy
; ð4Þ

ezz ¼ �
qUz

qz
; ð5Þ

gry ¼ �
1

r

qUr

qy
�

qUy

qr
þ

Uy

r
; ð6Þ
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Table 1 (continued)

Types of inhomogeneity Author Analytical or numerical solutions Poisson’s ratio

Vrettos [68] Stresses and displacements due to a static

vertical surface point load

General

Jeng and Lin [43] Water wave-induced pore pressure on a

pipeline problem by FEM

General

G ¼ G0e
�xr George [69] Stress field due to torsional loads General

G ¼ G0razb Singh [70] Stress and displacement for Reissner–

Sagoci problem

General

Dhaliwal and Singh [71] Griffith crack problem in an infinite solid

under shear

General

G ¼ G0�h=ðh � zÞ Awojobi [72] Settlement of a circular foundation General

Awojobi [73] Stresses and displacements for plane

strain problem

General

G=constant Gibson and Sills [74] Stresses and displacements due to point

and circular loads

n ¼ f ðzÞ
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gyz ¼ �
qUy

qz
�

1

r

qUz

qy
; ð7Þ

grz ¼ �
qUr

qz
�

qUz

qr
; ð8Þ

where Ur; Uy and Uz are radial, tangential and vertical
displacement, respectively.

Also, the partial differential forms of equilibrium
equations are

qsrr

qr
þ

1

r

qtry

qy
þ

qtrz

qz
þ

srr � syy
r

¼ R; ð9Þ

qtry

qr
þ

1

r

qsyy
qy

þ
qtyz

qz
þ

2try

r
¼ Y; ð10Þ
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Table 2

Existing analytical/numerical solutions for inhomogeneous anisotropic media

Types of inhomogeneity Author Analytical or numerical solutions Poisson’s ratio

G0 ¼ mz; E ¼ aG0; E0 ¼ E=l Gibson and Kalsi [75] Surface displacement for axisymmetric problem

(transverse isotropy)

Incompressible

E ¼ az; E0 ¼ bz; G0 ¼ gz Gibson [50] Surface displacement due to general surface

pressure (orthotropy)

Incompressible

E ¼ az; E0 ¼ bz; G0 ¼ gz Gibson and Sills [76] Surface displacement for plane strain problem

(orthotropy)

Incompressible

G ¼ mz cos y Calladine and Greenwood

[52]

Displacements and stresses for plain strain

problem (transverse isotropy)

Incompressible

E0 ¼ E0 � r0z; zozc; E0 ¼
E0 � r0zc þ rðz � zcÞ; z > zc

Rowe and Booker [61] Parametric study of settlements due to a

circular footings by finite layer method

(transverse isotropy)

General

Cii ¼ Giir
b (i ¼ 4; 6) Erguven [77] Displacement, stresses, and torque for

Reissner–Sagoci problem (transverse isotropy)

General

Cylindrical anisotropy Tarn and Wang [78] Fundamental solutions for torsional problems General

Cii ¼ Giir
aelz and Cii ¼

Giir
aðz þ cÞb (i ¼ 4; 6)

Tarn and Wang [79] Fundamental solutions for torsional problems

(transverse isotropy)

General

Cii ¼ Giir
bðz þ cÞa (i ¼ 4; 6) Erguven [80] Deformation and shear stresses in the semi-

infinite solid for an axisymmetric torsional

problem (transverse isotropy)

General

Cii ¼ Gii cosh
2 kz (i ¼ 4; 6) Erguven [81] Deformation and shear stresses in the semi-

infinite solid for an axisymmetric torsional

problem (transverse isotropy)

General

C44 ¼ G0e
2kz; C66 ¼ G

0

0e
2kz Erguven [82] Displacement and stresses for axisymmetric

fundamental solutions (transverse isotropy)

General

Cii ¼ Giir
b cosh2 kz Erguven [83] Surface displacement and stress for Reissner–

Sagoci problem (transverse isotropy)

General

E ¼ m0zm Kumar [84] Surface displacement for plane strain opening

problem by finite/infinite element method

(transverse isotropy)

General

Cii ¼ Giir
b (i ¼ 4; 6) Erguven [85] Displacement and stresses for the Reissner–

Sagoci problem (transverse isotropy)

General

E ¼ m0zm Kumar [86] Displacements and stresses due to point and

circular loads by finite/infinite element method

(transverse isotropy)

General

C44 ¼ G0ð1þ mzÞa or C44 ¼ G0e
bz;

C66 ¼ gC44

Rajapakse [87] Displacement for an axisymmetric torsion

problem (transverse isotropy)

General

Transversely isotropic and layered

half-space

Yue and Wang [88] The transfer matrix approach to solve the

fundamental solutions

General

Transversely isotropic and layered

half-space

Pan [89] The vector functions and propagator matrix

methods to solve the deformations by point

dislocations

General

Transversely isotropic and layered

half-space

Pan [90] The vector functions and propagator matrix

methods to solve the deformations by general

surface loads

General

Transversely isotropic and layered

half-space

Pan [91] The vector functions and propagator matrix

methods to solve the deformations by point

loads

General

General anisotropic and layered

half-space

Yang and Pan [92] Fourier transforms and Stroh formalism General

General anisotropic

inhomogeneous full-space

Martin et al. [93] Analytical method General
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qtrz

qr
þ

1

r

qtyz

qy
þ

qszz

qz
þ

trz

r
¼ Z; ð11Þ

where R; Y; Z are the components of the body forces
per unit volume on the co-ordinate directions, r; y and z;
respectively. A static point load with components (Pr;
Py; Pz), acting at the origin of the co-ordinate for a full
space can be expressed as the form of body forces:

R ¼
Pr

r
dðrÞdðyÞdðzÞ; ð12Þ

Y ¼
Py

r
dðrÞdðyÞdðzÞ; ð13Þ

Z ¼
Pz

r
dðrÞdðyÞdðzÞ; ð14Þ

where d( ) is the Dirac-delta function.
Substituting Eq. (1) and Eqs. (12)–(14) into Eqs. (9)–

(11), and adopting the strain–displacement relations
(Eqs. (3)–(8)), then Eqs. (9)–(11) can be regrouped as the
Navier–Cauchy equations for an inhomogeneous trans-
versely isotropic material.

C11
q2

qr2
þ

1

r

q
qr

�
1

r2

� �
þ

C66

r2
q2

qy2
þ C44

q2

qz2

	 

Ur

þ
ðC11 � C66Þ

r

q2

qrqy
�

ðC11 þ C66Þ
r2

q
qy

	 

Uy

þ ðC13 þ C44Þ
q2Uz

qr qz
� kC44

qUr

qz
þ

qUz

qr

� �

¼ �
Pr

r
dðrÞ dðyÞ dðzÞ; ð15Þ

ðC11 � C66Þ
r

q2

qr qy
þ

ðC11 þ C66Þ
r2

q
qy

	 

Ur

þ C66
q2

qr2
þ

1

r

q
qr

�
1

r2

� �
þ

C11

r2
q2

qy2
þ C44

q2

qz2

	 

Uy

þ
ðC13 þ C44Þ

r

q2Uz

qy qz
� kC44

qUy

qz
þ

1

r

qUz

qy

� �

¼ �
Py

r
dðrÞ dðyÞ dðzÞ; ð16Þ

ðC13 þ C44Þ
q2

qr qz
þ

1

r

q
qz

� �
Ur þ

ðC13 þ C44Þ
r

q2Uy

qy qz

þ C44
q2

qr2
þ

1

r

q
qr

þ
1

r2
q2

qy2

� �
þ C33

q2

qz2

	 

Uz

� k C13
qUr

qr
þ C13

Ur

r
þ

1

r

qUy

qy

� �
þ C33

qUz

qz

	 


¼ �
Pz

r
dðrÞ dðyÞ dðzÞ: ð17Þ

In this work, considerations are given to

(1) axial symmetry about the z-axis, and the displace-
ments and stresses are independent of tangential co-
ordinate y;

(2) only Pz acting in the medium (Pr ¼ Py ¼ 0).

Then, Eqs. (15)–(17) will reduce to

C11
q2Ur

qr2
þ

1

r

qUr

qr
�

Ur

r2

� �
þ C44

q2Ur

qz2

þ ðC13 þ C44Þ
q2Uz

qrqz
� kC44

qUr

qz
þ

qUz

qr

� �
¼ 0; ð18Þ
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Table 3

The differences between the homogeneous and inhomogeneous

transversely isotropic elastic constants

Homogeneous [94] Inhomogeneous

E Ee�kz

E0 E0e�kz

n n
n0 n0

G0 G0e�kz

a full-space
Pz

x 

θ r y X 

Pθ σ zz

Pr

 zθ zr

Y θz

Uθ Ur

Uz σθθ θr  rθ rz σrr

Z 

τ τ

ττ

τ

τ

Fig. 1. (Pr; Py; Pz) acting in a full space.
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ðC13 þ C44Þ
q2Ur

qr qz
þ

1

r

qUr

qz

� �
þ C44

q2Uz

qr2
þ

1

r

qUz

qr

� �

þ C33
q2Uz

qz2
� k C13

qUr

qr
þ

Ur

r

� �
þ C33

qUz

qz

	 


¼ �
Pz

2pr
dðrÞ dðzÞ: ð19Þ

In particular, the Hankel transform has found a wide
usage for solving the solutions of axisymmetric half-
space as the radial co-ordinate r ranges from 0 to N

[98]. Hence, the displacements Ur and Uz in Eqs. (18)
and (19) are transformed by a system of proper Hankel
transformations [99,100] with respect to r of order 1 and
0, respectively, in the following:

U�
r

U�
z

( )
¼

Z
N

0

r
UrJ1ðxrÞ

UzJ0ðxrÞ

( )
dr; ð20Þ

where JnðxrÞ denotes a Bessel function of the first kind of
order n (n ¼ 0; 1), and x is the transform parameter.

Then, Eqs. (18) and (19) are rewritten by a system of
ordinary differential equations as follows:

�C11x
2 � kC44

d

dz
þ C44

d2

dz2

	 

U�

r

� ðC13 þ C44Þ
d

dz
� kC44

	 

xU�

z ¼ 0; ð21Þ

�kC13 þ ðC13 þ C44Þ
d

dz

	 

xU�

r

þ �C44x
2 � kC33

d

dz
þ C33

d2

dz2

	 

U�

z ¼ �
Pz

2p
dðzÞ:

ð22Þ

The homogeneous solutions of Eqs. (21)–(22) are
obtained by solving the simultaneous ordinary differ-
ential equations as

U�
r ðHÞ ¼ A1e

�u1xz þ A2e
u1xz þ A3e

ðkþu2xÞz þ A4e
ðk�u2xÞz;

ð23Þ

U�
z ðHÞ ¼ B1e

�u1xz þ B2e
u1xz þ B3e

ðkþu2xÞz þ B4e
ðk�u2xÞz;

ð24Þ

where

u1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � 4Q

p
2

s
; u2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � 4Q

p
2

s
;

S ¼
C11C33 � C13ðC13 þ 2C44Þ

C33C44
;

Q ¼
C11

C33
:

Ai and Bi (i ¼ 1B4) are determined by substituting
Eqs. (23) and (24) into Eqs. (21) and (22). Then,
Eqs. (23) and (24) can be expressed in terms of Bi

(i ¼ 1B4) as follows:

U�
r ðHÞ ¼S1B1e

�u1xz þ S2B2e
u1xz

þ S3B3e
ðkþu2xÞz þ S4B4e

ðk�u2xÞz; ð25Þ

U�
z ðHÞ ¼ B1e

�u1xz þ B2e
u1xz þ B3e

ðkþu2xÞz þ B4e
ðk�u2xÞz;

ð26Þ

where

S1 ¼
�½ðC13 þ C44Þu1x

2 þ kC44x�

½ð�C11 þ C44u2
1Þx

2 þ kC44u1x�
;

S2 ¼
½ðC13 þ C44Þu1x

2 � kC44x�

½ð�C11 þ C44u2
1Þx

2 � kC44u1x�
;

S3 ¼
½ðC13 þ C44Þu2x

2 þ kC13x�

½ð�C11 þ C44u2
2Þx

2 þ kC44u2x�
;

S4 ¼
�½ðC13 þ C44Þu2x

2 � kC13x�

½ð�C11 þ C44u2
2Þx

2 þ kC44u2x�
:

In order to derive the particular solutions of Eqs. (21)
and (22), defining two displacement functions as follows
(for z > 0; the sign of z is downward positive):

U�
r ðPÞ ¼ C1e

�u1xz þ C2e
u1xz þ C3e

ðkþu2xÞz þ C4e
ðk�u2xÞz;

ð27Þ

U�
z ðPÞ ¼ D1e

�u1xz þ D2e
u1xz þ D3e

ðkþu2xÞz þ D4e
ðk�u2xÞz:

ð28Þ

The undetermined coefficients Ci and Di (i ¼ 124) can
be obtained by the method of variation of parameters
[101]. The general solutions are the sum of the
homogeneous and the particular solutions. The con-
stants Bi (i ¼ 124) can be determined by the condition
that the effect of the point load must vanish at infinity.
Therefore, the final resulting expressions of general
solutions for U�

r and U�
z are

U�
r ¼

�Pz

4pC33C44

½ðC13 þ C44Þu1xþ kC44�

u1½ðk þ u1xÞ
2 � u2

2x
2�

e�u1xz

(

�
½ðC13 þ C44Þðk � u2xÞ � kC44�

u2½ðk � u2xÞ
2 � u2

1x
2�

eðk�u2xÞz

)
; ð29Þ

U�
z ¼

Pz

4pC33C44

ðC44u2
1xþ kC44u1 � C11xÞ

u1½ðk þ u1xÞ
2 � u2

2x
2�

e�u1xz

(

þ
ðC44u2

2x� kC44u2 � C11xÞ

u2½ðk � u2xÞ
2 � u2

1�
eðk�u2xÞz

)
: ð30Þ

The desired solutions for the displacements Ur and Uz in
the inhomogeneous transversely isotropic full space can
be obtained by taking the inverse Hankel transform with
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respect to x in the following:

Ur

Uz

( )
¼

Z
N

0

x
U�

r J1ðxrÞ

U�
z J0ðxrÞ

( )
dx: ð31Þ

From Eqs. (29), (30), (3)–(8) and (1), the vertical and
shear stresses for axisymmetric problem in the Hankel
domain are expressed as

s�zz ¼ � C13xU�
r þ C33

dU�
z

dz

� �
: ð32Þ

t�rz ¼ �C44
dU�

r

dz
� xU�

z

� �
: ð33Þ

The resulting expressions for the vertical normal and
shear stresses are given as follows:

t�rz ¼
�Pz

4pC33

ðC13u2
1 þ C11Þx

2

u1½ðk þ u1xÞ
2 � u2

2x
2�
e�u1xz

(

þ
ðC13u2

2 þ C11Þx
2 � 2kC13u2xþ k2C13

u2½ðk � u2xÞ
2 � u2

1x
2�

eðk�u2xÞz

)
:

ð35Þ

The expressions for displacements U�
r (Eq. (29)), U�

z

(Eq. (30)) and stresses s�zz (Eq. (34)), t
�
rz (Eq. (35)) in the

inhomogeneous transversely isotropic full space include
integrals, which have to be obtained by taking the
numerical Hankel inversion theorem with respect to x of
order 1, 0, 0, and 1, respectively. In this study, the
inverse Hankel transforms were evaluated by means of
68 points Gauss quadrature formula [102]. The detailed
numerical integrations to estimate the displacements
and stresses will be elucidated in Section 4.

3. Displacements and stresses in an inhomogeneous

transversely isotropic half-space

Since the half-space problem is of particular interest
to the geotechnical engineering, a point load acting in
the interior (including on the surface) of a half-space is
considered in this section. The solutions for displace-
ments and stresses in an inhomogeneous transversely
isotropic half-space are derived by the principle of
superposition as shown in Fig. 2. Fig. 2 depicts that a
half-space is composed of two full spaces, one with a
point load in its interior and the other with opposite
traction of the first full space along z ¼ 0: The traction
in the first full space along z ¼ 0 is due to the point load.
The solutions for the half-space are thus obtained by
superposing the solutions of the two full spaces. That is,

the solutions can be derived from the governing
equations for a full space (including the general
solutions (I) and homogeneous solutions (II)) by
satisfying the free traction on the surface of the half-
space. The solutions for displacements U�

r and U�
z in

the half-space can be directly obtained by the principle
of superposition of general solutions (Eqs. (29) and (30))
by shifting jzj to jz � hj and being denoted by U 0

r�ðGÞ and
U 0

z�ðGÞ; and homogeneous solutions (Eqs. (25) and (26))
in which Bi (i ¼ 124) are denoted by B0

i ði ¼ 124Þ; and z

is replaced by (z � h) as follows [94]:

Ur ¼U 0
r�ðGÞ þ S1B

0
1e

�u1xjz�hj þ S2B
0
2e

u1xjz�hj

þ S3B
0
3e

ðkþu2xÞjz�hj þ S4B
0
4e

ðk�u2xÞjz�hj; ð36Þ

Uz ¼U 0
z�ðGÞ þ B0

1e
�u1xjz�hj þ B0

2e
u1xjz�hj

þ B0
3e

ðkþu2xÞjz�hj þ B0
4e

ðk�u2xÞjz�hj: ð37Þ
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stress free

zP zP

(0, 0, h) (0, 0, h) (0, 0, h)

Z Z Z

(I) (II)

Fig. 2. Pz acting in the interior of a half-space.

s�zz ¼
Pz

4pC33C44

½C33C44u3
1 þ ðC2

13 þ C13C44 � C11C33Þu1�x
2 þ kC44ðC33u2

1 þ C13Þx

u1½ðk þ u1xÞ
2 � u2

2x
2�

e�u1xz

(

þ
½C33C44u3

2 þ ðC2
13 þ C13C44 � C11C33Þu2�x

2 � kð2C33C44u2
2 þ C2

13 � C11C33Þxþ k2C33C44u2

u2½ðk � u2xÞ
2 � u2

1x
2�

eðk�u2xÞz

)
; ð34Þ
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For a half-space with free traction on the bounding
plane, the boundary conditions in the Hankel domain
can be expressed in the forms of Eqs. (32) and (33) as

s�zz z¼0j ¼ �C13xU�
r � C33

qU�
z

qz

	 
����
z¼0

¼ 0; ð38Þ

t�rz z¼0j ¼ �C44
qU�

r

qz
� xU�

z

� �	 
����
z¼0

¼ 0: ð39Þ

For solving Eqs. (36) and (37), the coefficients B0
i ði ¼

124Þ can be determined by assuming the displacements
Ur and Uz tend to zero as z tend to infinity; hence, B0

2

and B0
3 are both zero. However, the remaining

coefficients B0
1 and B0

4 are obtained by the transformed
boundary conditions (Eqs. (38) and (39)) as follows:

B0
1 ¼

�Pz

4pC33C44

½ð�C11 þ C44u2
1Þxþ kC44u1�D1

u1½ðk þ u1xÞ
2 � u2

2x
2�D

e�2u1xh

(

þ
½ð�C11 þ C44u2

1Þxþ kC44u1�D2

u2½ðk � u2xÞ
2 � u2

1x
2�D

e½k�ðu1þu2Þxh�

)
;

ð40Þ

B0
4 ¼

�Pz

4pC33C44

½ð�C11 þ C44u22Þx� kC44u2�D3

u1½ðk þ u1xÞ
2 � u22x

2�D
e½k�ðu1þu2Þx�h

(

þ
½ð�C11 þ C44u2

2Þx� kC44u2�D4

u2½ðk � u2xÞ
2 � u2

1x
2�D

e2ðk�u2xÞh

)
; ð41Þ

where

D ¼fC13½ðC13 þ C44Þu1xþ kC44�

þ C33u1½ð�C11 þ C44u2
1Þxþ kC44u1�g

� fðk � u2xÞ½ðC13 þ C44Þu2x� kC13�

þ ½ð�C11 þ C44u2
2Þx

2 � kC44u2x�g

þ fu1½ðC13 þ C44Þu1xþ kC44�

� ½ð�C11 þ C44u2
1Þxþ kC44u1�g

� fC13½ðC13 þ C44Þu2x
2 � kC13x�

� C33ðk � u2xÞ½ð�C11 þ C44u2
2Þx� kC44u2�g; ð42Þ

D1 ¼fC13½ðC13 þ C44Þu1xþ kC44�

� C33u1½ð�C11 þ C44u2
1Þxþ kC44u1�g

� fðk � u2xÞ½ðC13 þ C44Þu2x� kC13�

þ ½ð�C11 þ C44u2
2Þx

2 � kC44u2x�g

� fu1½ðC13 þ C44Þu1xþ kC44�

þ ½ð�C11 þ C44u2
1Þxþ kC44u1�g

� fC13½ðC13 þ C44Þu2x
2 � kC13x�

� C33ðk � u2xÞ½ð�C11 þ C44u2
2Þx� kC44u2�g; ð43Þ

D2 ¼ 2ðk � u2xÞfC13½ðC13 þ C44Þu2x� kC13�2

þ C33½ð�C11 þ C44u2
2Þx� kC44u2�2g; ð44Þ

D3 ¼ 2u1xfC13½ðC13 þ C44Þu1xþ kC44�2

þ C33½ð�C11 þ C44u2
1Þxþ kC44u1�2g; ð45Þ

D4 ¼ � fC13½ðC13 þ C44Þu1xþ kC44�

þ C33u1½ð�C11 þ C44u2
1Þxþ kC44u1�g

� fðk � u2xÞ½ðC13 þ C44Þu2x� kC13�

� ½ð�C11 þ C44u2
2Þx

2 � kC44u2x�g

þ fu1½ðC13 þ C44Þu1xþ kC44�

� ½ð�C11 þ C44u2
1Þxþ kC44u1�g

� fC13½ðC13 þ C44Þu2x
2 � kC13x�

þ C33ðk � u2xÞ½ð�C11 þ C44u2
2Þx� kC44u2�g: ð46Þ

Finally, the displacements in Hankel domain for an
inhomogeneous transversely isotropic half-space sub-
jected to a vertical point load Pz that acts at z ¼ h

(measured from the surface) are expressed as follows:

U�
r ¼

�Pz

4pC33C44

½ðC13 þ C44Þu1xþ kC44�

u1½ðk þ u1xÞ
2 � u2

2x
2�

e�u1xjz�hj

(

þ
½ðC13 þ C44Þu2x� kC13�

u2½ðk � u2xÞ
2 � u2

1x
2�

eðk�u2xÞjz�hj

�
½ðC13 þ C44Þu1xþ kC44�D1

u1½ðk þ u1xÞ
2 � u2

2x
2�D

e�u1xðzþhÞ

�
½ðC13 þ C44Þu1xþ kC44�D2

u2½ðk � u2xÞ
2 � u2

1x
2�D

eðk�u1xÞze�u2xh

�
½ðC13 þ C44Þu2x� kC13�D3

u1½ðk þ u1xÞ
2 � u2

2x
2�D

eðk�u2xÞze�u1xh

�
½ðC13 þ C44Þu2x� kC13�D4

u2½ðk � u2xÞ
2 � u2

1x
2�D

eðk�u2xÞðzþhÞ

)
; ð47Þ

U�
z ¼

Pz

4pC33C44

½ð�C11 þ C44u2
1Þxþ kC44u1�

u1½ðk þ u1xÞ
2 � u2

2x
2�

e�u1xjz�hj

(

þ
½ð�C11 þ C44u2

2Þx� kC44u2�

u2½ðk � u2xÞ
2 � u2

1x
2�

eðk�u2xÞjz�hj

�
½ð�C11 þ C44u2

1Þxþ kC44u1�D1

u1½ðk þ u1xÞ
2 � u2

2x
2�D

e�u1xðzþhÞ

�
½ð�C11 þ C44u2

1Þxþ kC44u1�D2

u2½ðk � u2xÞ
2 � u2

1x
2�D

eðk�u1xÞze�u2xh

�
½ð�C11 þ C44u2

2Þx� kC44u2�D3

u1½ðk þ u1xÞ
2 � u2

2x
2�D

eðk�u2xÞze�u1xh

�
½ð�C11 þ C44u2

2Þx� kC44u2�D4

u2½ðk � u2xÞ
2 � u2

1x
2�D

eðk�u2xÞðzþhÞ

)

ð48Þ

From Eqs. (47), (48), (3)–(8) and (1), the vertical normal
and shear stresses in Hankel domain for the half-space
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can also be expressed as

t�rz ¼
�Pz

4pC33

ðC11 þ C13u2
1Þx

2

u1½ðk þ u1xÞ
2 � u2

2x
2�
e�u1xjz�hj

(

þ
½ðC11 þ C13u2

2Þx
2 � 2kC13u2xþ k2C13�

u2½ðk � u2xÞ
2 � u2

1x
2�

eðk�u2xÞjz�hj

þ
ðC11 þ C13u2

1Þx
2

u1½ðk þ u1xÞ
2 � u2

2x
2�

D1

D
e�u1xðzþhÞ

þ
½ðC11 þ C13u2

1Þx
2 � kðC13 þ C44Þu1x� k2C13�

u2½ðk � u2xÞ
2 � u2

1x
2�

�
D2

D
eðk�u1xÞz�u2xh

þ
½ðC11 þ C13u2

2Þx
2 � 2kC13u2xþ k2C13�

u1½ðk � u1xÞ
2 � u2

2x
2�

D3

D
eðk�u2xÞz�u1xh

þ
½ðC11 þ C13u

2
2Þx

2 � 2kC13u2xþ k2C13�

u2½ðk � u2xÞ
2 � u2

1x
2�

D4

D
eðk�u2xÞðzþhÞ

)
:

ð50Þ

The displacements U�
r (Eq. (47)), U�

z (Eq. (48)) and
stresses s�zz (Eq. (49)), t�rz (Eq. (50)) in the inhomoge-
neous transversely isotropic half-space can also be
obtained by taking the numerical inversion of Hankel
theorem with respect to x of order 1, 0, 0, and 1,
respectively. The infinite integrals involving products of
Bessel function of the first kind of order n (n ¼ 0; 1), an
exponential function, and a polynomial, in Eqs. (29),
(30), (34), (35) for the full space, and in Eqs. (47)–(50)
for the half-space, are listed in Table 4. It seems that
several terms in Table 4 cannot be given in closed form
that requires numerical integrations. The related numer-
ical procedures to calculate the induced displacement
and stress in an inhomogeneous transversely isotropic

half-space by a vertical point load will be illustrated in
Section 5.

4. Numerical integrations

The integrals in Table 4 involve polynomial, expo-
nential function, and Bessel function of the first kind of
order n (n ¼ 0; 1). It seems that several terms cannot be
presented in closed form because those where the
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s�zz ¼
Pz

4pC33C44

½ðC33C44u2
1 þ C2

13 þ C13C44 � C11C33Þu1x
2 þ kC44ðC33u2

1 þ C13Þx�

u1½ðk þ u1xÞ
2 � u2

2x
2�

e�u1xjz�hj

(

þ
½ðC33C44u2

2 þ C2
13 þ C13C44 � C11C33Þu2x

2 � kð2C33C44u2
2 þ C2

13 � C11C33Þxþ k2C33C44u2�

u2½ðk � u2xÞ
2 � u2

1x
2�

eðk�u2xÞjz�hj

�
½ðC33C44u2

1 þ C2
13 þ C13C44 � C11C33Þu1x

2 þ kC44ðC33u2
1 þ C13Þx�

u1½ðk þ u1xÞ
2 � u2

2x
2�

D1

D
e�u1xðzþhÞ

�
½ðC33C44u2

1 þ C2
13 þ C13C44 � C11C33Þu1x

2 þ kðC13C44 þ C11C33Þx� k2C33C44u1�

u2½ðk � u2xÞ
2 � u2

1x
2�

D2

D
eðk�u1xÞz�u2xh

�
½ðC33C44u2

2 þ C2
13 þ C13C44 � C11C33Þu2x

2 � kð2C33C44u2
2 þ C2

13 � C11C33Þxþ k2C33C44u2�

u1½ðk � u1xÞ
2 � u2

2x
2�

D3

D
eðk�u2xÞz�u1xh

�
½ðC33C44u2

2 þ C2
13 þ C13C44 � C11C33Þu2x

2 � kð2C33C44u2
2 þ C2

13 � C11C33Þxþ k2C33C44u2�

u2½ðk � u2xÞ
2 � u2

1x
2�

D4

D
eðk�u2xÞðzþhÞ

)
;

ð49Þ

Table 4

Terms that require numerical integrations in the presented solutions

Bessel function of first kind of order n (n ¼ 0; 1)

Z
N

0

1

k þ ðu1 þ u2Þx
e�u1xzJnðxrÞ dx

Z
N

0

1

k � ðu1 þ u2Þx
eðk�u2xÞzJnðxrÞ dx

Z
N

0

1

k þ ðu1 � u2Þx
e�u1xzJnðxrÞ dx

Z
N

0

1

k þ ðu1 � u2Þx
eðk�u2xÞzJnðxrÞ dx

Z
N

0

x
k þ ðu1 þ u2Þx

e�u1xzJnðxrÞ dx
Z

N

0

x
k � ðu1 þ u2Þx

eðk�u2xÞzJnðxrÞ dx

Z
N

0

x
k þ ðu1 � u2Þx

e�u1xzJnðxrÞ dx
Z

N

0

x
k þ ðu1 � u2Þx

eðk�u2xÞzJnðxrÞ dx

Z
N

0

x2

k þ ðu1 þ u2Þx
e�u1xzJnðxrÞ dx

Z
N

0

x2

k � ðu1 þ u2Þx
eðk�u2xÞzJnðxrÞ dx

Z
N

0

x2

k þ ðu1 � u2Þx
e�u1xzJnðxrÞ dx

Z
N

0

x2

k þ ðu1 � u2Þx
eðk�u2xÞzJnðxrÞ dx
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integrand includes Bessel functions are perhaps the most
difficult to evaluate analytically in engineering analysis.
Besides, the Bessel function is an oscillation function;
numerical integration is often far from straightforward
as an adequate level of computational accuracy can be
difficult to achieve [98]. According to the aforemen-
tioned reasons, various algorithms, like numerical
quadrature, logarithmic change of variables, asymptotic
expansion of the Bessel function, and projection-based
methods have been published [103]. Early attempts at
numerical evaluation of the Hankel transform were
made by Longman [95,96]. He formulated a method
based on Euler’s transformation of slowly convergent
alternating series for the numerical evaluation of
integrals. Blackmore et al. [104] divided the infinite
range of oscillatory integrals into several terms using the
zero points of Bessel function. Namely, such treatment
enabled to keep the Bessel function always positive or
negative, so that after integrating individually and
summing up all contributions, it could improve the
numerical accuracy. Davis and Rabinowitz [97] and
Evans [105] believed that both using the methods of
Longman [95,96] and Blackmore et al. [104] was the
most efficient way to solve this problem. However, Cree
and Bones [103] reviewed a number of algorithms, and
found that the projection-based methods could provide
acceptable accuracy. Recently, Lu and Perng [106]
considered that a point heat source induced thermo-
consolidation problem for an elastic isotropic medium.
They evaluated the inverse Hankel transforms by means
of 68 points Gauss quadrature formula, and concluded
that only the calculation of the first six terms of
Bessel function was accurate enough for engineering
practices.

The method employed in this work is performing
the integration over each of the first 20 half-cycles of
Bessel functions. Euler’s transformation was applied to
this series to speed up rapidly the convergence [95].
The first 20 terms of zeros of Bessel function of the
first kind of order n (n ¼ 0; 1) are quoted from Watson
[107]. Also, the Gauss quadrature formula was utilized
for 68 points of subdivision of each interval in order
to obtain high accuracy of numerical values. The
method proposed by Longman [95] can be expressed
as follows:

Z
N

0

J0ðxÞ dxD
X20
n¼0

Z xnþ1

xn

J0ðxÞ dx: ð51Þ

In each division, the 16 points of Gaussian quadrature
are adopted, and x can be transferred by

x ¼
ðxnþ1 � xnÞt þ xnþ1 þ xn

2
: ð52Þ

Then, revising Eq. (51) with Eq. (52) yields the following
expression:

X20
n¼0

Z xnþ1

xn

J0ðxÞ dxD
X20
n¼0

ðxnþ1 � xnÞ
2

�
X16
i¼1

wiJ0
ðxnþ1 � xnÞti þ xnþ1 þ xn

2

� �" #
: ð53Þ

In order to speed up the convergence, summing up the
values of the former ten terms, and introducing the
Euler’s transformation into the latter ten ones as

Z
N

0

J0ðxÞ dxD
X10
n¼0

Z xnþ1

xn

J0ðxÞ dx

þ
X20
n¼11

Ln�10

2n�10
¼ 0:999999992; ð54Þ

where L is the first advancing row of differences [95],
and n is a constant ranging from 0 to 20. Thus, the
approximate value (0.999999992) calculated by Eq. (54)
is very close to the exact result (is equal to 1).

Regarding the singularities involved in Table 4, they
can be solved by means of the Taylor’s theorem
expansion as [97]

f ðxÞ ¼
Z b

a

f ðtÞ
t � x

dt ¼
Z b

a

f ðtÞ � f ðxÞ
t � x

dt þ
Z b

a

f ðxÞ
t � x

dt

¼
Z b

a

f ðtÞ � f ðxÞ
t � x

dt þ f ðxÞ log
b � x

x � a

¼
Z x�e

a

f ðtÞ � f ðxÞ
t � x

dt þ
Z b

x�e

f ðtÞ � f ðxÞ
t � x

dt

þ f ðxÞ log
b � x

x � a
þ 2ef 0ðxÞ þ

e3

9
f 000ðxÞ þ? ; ð55Þ

where x is a singular point, e is a tiny parameter, and a; b

are the lower and upper limits, respectively.

5. Illustrative example

This section presents a parametric study to confirm
the derived solutions and elucidate the effect of
inhomogeneity, and the type and degree of material
anisotropy on the displacements and stresses. Two
illustrative examples related to a vertical point load
acting on the surface of an inhomogeneous transversely
isotropic half-space are given to show the effect of
various parameters on the vertical surface displacement
and vertical normal stress, respectively. The effect of the
inhomogeneity parameter k; and the degree of aniso-
tropy, specified by the ratios G=G0; E=E0 and n=n0 on the
displacement and stress is considered. Several types of
isotropic and transversely isotropic rocks are considered
as foundation materials. Table 5 lists their elastic
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properties, with G=G0 and E=E0 ranging between 1 and
3, and n=n0 varying between 0.75 and 1.5. The values of
E and n adopted in Table 5 are 50GPa and 0.25,
respectively. The selected domains of anisotropic varia-
tion follow the suggestions of Gerrard [108] and Amadei
et al. [109]. The variation of the proposed solutions for
the inhomogeneity parameter k varies between 0
(homogeneous) and �0.5. The calculated results by
aforementioned numerical approaches, as depicted in
Figs. 3–6, are presented.

Based on Eqs. (29), (30), (34), (35) for the full space,
and Eqs. (47)–(50) for the half-space, a FORTRAN
program was written to calculate the displacement and
stress components due to a point load in an inhomo-
geneous transversely isotropic medium. The presented
solutions indicate that the displacements and stresses are
affected by the inhomogeneity parameter k; and the
degree and type of material anisotropy. In order to
check the accuracy of numerical procedures, the
comparisons are carried out with the homogeneous
solutions [94] (when k ¼ 0), and the calculated results
agree with those to nine decimal places.

In this study, firstly, the influence of inhomogeneity,
and the degree and type of rock anisotropy on the
vertical surface displacement in the half-space is
investigated. Figs. 3a and b present the effect of
inhomogeneity parameter k on the normalized vertical
surface displacement (Uz=Pz) for Rock 1 and Rock 5, as
listed in Table 5, respectively. These figures reveal that
as the degree of inhomogeneity of a rock increases (from
k ¼ 0 to �0.5 (since ko0 denotes a soft surface, whereas
E; E0; and G0 increase with the increase of depth)), the
magnitude of the vertical displacement on the surface
decreases (Figs. 3a and b). Figs. 4a–c plot the rock
anisotropic ratios of G=G0; E=E0; and n=n0 on the
displacement. It is evident that the magnitude of surface
displacement is decisively influenced by rock anisotropy.
Figs. 4a and b show that, for the fixed parameter k

(k ¼ 0; �0.1, �0.5), the vertical displacement on the
surface increases with the increase of G=G0

(E=E0 ¼ n=n0 ¼ 1; for Rocks 1, 2, 3), and E=E0

(n=n0 ¼ 1; G=G0 ¼ 2; for Rocks 2, 4, 5). It reflects that
the displacement increases with the increase of deform-
ability in the direction parallel to the applied load.
However, the ratio n=n0 (E=E0 ¼ 1; G=G0 ¼ 2; for Rocks
2, 6, 7) has little effect on the vertical surface
displacement.

Secondly, the effect of inhomogeneity, and rock
anisotropy on the vertical normal stress in the transver-
sely isotropic half-space is studied. In order to investi-
gate the variation of szz point by point in the r � z

plane, the relation of two non-dimensional factors, r=z

and z2szz=Pz is presented in Figs. 5a–d. In these figures,
increasing the value of k (from k ¼ 0 to �0.5) for
each rock reduces the magnitude of vertical stress
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Table 5

Rock types and their elastic properties

Rock type G=G0 E=E0 n=n0

Rock 1: Isotropy 1.0 1.0 1.0

Rock 2: Transverse isotropy 2.0 1.0 1.0

Rock 3: Transverse isotropy 3.0 1.0 1.0

Rock 4: Transverse isotropy 2.0 2.0 1.0

Rock 5: Transverse isotropy 2.0 3.0 1.0

Rock 6: Transverse isotropy 2.0 1.0 0.75

Rock 7: Transverse isotropy 2.0 1.0 1.5
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Fig. 3. (a) Effect of inhomogeneity parameter k on the normalized vertical surface displacement (Rock 1: isotropy). (b) Effect of inhomogeneity

parameter k on the normalized vertical surface displacement (Rock 5: transverse isotropy).
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considerably. Notably, the normalized stress in some
regions could be larger than one unit when k ¼ 0 and
�0.1 (Fig. 5b). It means that the excessive compressive-
stress may appear in these media. Figs. 6a–c plot the
rock anisotropic ratios of G=G0; E=E0; and n=n0 on the
stress. From these figures, the vertical normal stress
increases with increasing G=G0 (Fig. 6a, E=E0 ¼ n=n0 ¼
1; for Rocks 1–3), but decreases with increasing E=E0

(Fig. 6b, n=n0 ¼ 1; G=G0 ¼ 2; for Rocks 2, 4, 5). Again,
the ratio n=n0 has nearly no influence on the stress
(Fig. 6c, E=E0 ¼ 1; G=G0 ¼ 2; for Rocks 2, 6, 7).

The above examples were presented to elucidate the
solutions and clarify how the inhomogeneity, and the
type and degree of rock anisotropy affect the vertical
surface displacement and vertical normal stress in the

medium. The results show that the displacement and
stress in the continuously inhomogeneous transversely
isotropic half-space subjected to a point load (on the
surface or in the interior) are easily calculated by the
presented solutions. The magnitude and distribution of
vertical surface displacement and stress are both
evidently sensitive to the inhomogeneity parameter k

(Figs. 3a and b, Figs. 5a–d), the anisotropic ratios of
G=G0 (Fig. 4a and 6a), and E=E0 (Fig. 4b and 6b);
however, the ratio of n=n0 has little effect on the
displacement (Fig. 4c) and stress (Fig. 6c). Hence, both
the inhomogeneity and anisotropic deformability must
be considered when estimating the displacements and
stresses in a transversely isotropic full/half-space sub-
jected to applied loads.
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Fig. 4. (a) Effect of ratio G=G0 on the normalized vertical surface displacement (Rocks 1–3). (b) Effect of ratio E=E0 on the normalized vertical

surface displacement (Rocks 2, 4, 5). (c) Effect of ratio n=n0 on the normalized vertical surface displacement (Rocks 2, 6, 7).
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6. Conclusions

The solutions for displacements and stresses in a
continuously inhomogeneous transversely isotropic
full/half-space with Young’s and shear moduli varying
exponentially with depth subjected to a vertical
point load are proposed in this work. These solutions
are limited to planes of transverse isotropy that are
parallel to the horizontal surface of the spaces. The
Hankel transform is employed for solving this problem,
and the desired solutions can be obtained from the
governing equations for a full space by satisfying the

free traction on the surface of the half-space. The
resulting integrals for displacements and stresses associ-
ate with polynomial, exponential function, and Bessel
function of the first kind of order n (n ¼ 0; 1) that
cannot be given in closed form; hence, numerical
integrations are required. The solutions are the same
as the Liao and Wang’s solutions [94] when the
inhomogeneity parameter k is approaching zero. It is
shown that the presented solutions are prominently
influenced by the inhomogeneity, and the degree
and type of material anisotropy. In particular, a
parametric study has been carried out for two
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Fig. 5. (a) Effect of inhomogeneity parameter k on the non-dimensional vertical normal stress (Rock 1: isotropy). (b) Effect of inhomogeneity
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illustrative examples, which has yielded the following
interesting conclusions:

(1) The inhomogeneity considered has a great influence
on the vertical surface displacement and vertical
normal stress. As the degree of inhomogeneity of a
rock increases, there is a decrease in the effect of
loading at some distance from the point where
displacement (Figs. 3a and b) and stress (Figs. 5a–
d) are measured.

(2) The vertical surface displacement increases with
increasing deformability in the direction parallel to
the applied point load (Figs. 4a and b).

(3) The vertical normal stress increases with increase in
G=G0 (Fig. 6a), but decreases with increase in E=E0

(Fig. 6b). Furthermore, the ratio n=n0 has little
influence on the stress (Fig. 6c).

(4) With increase in G=G0; the non-dimensional vertical
normal stress could become larger than one unit
(Fig. 5b, when k ¼ 0 and �0.1). It means that the
excessive compressive stress may appear in these
media.

(5) The magnitude and distribution of vertical surface
displacement and vertical normal stress are both
notably sensitive to the ratios G=G0 (Fig. 4a and 6a),
and E=E0 (Fig. 4b and 6b); however, the ratio n=n0
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Fig. 6. (a) Effect of ratio G=G0 on the non-dimensional vertical normal stress (Rocks 1–3). (b) Effect of ratio E=E0 on the non-dimensional vertical

normal stress (Rocks 2, 4, 5). (c) Effect of ratio n=n0 on the non-dimensional vertical normal stress (Rocks 2, 6, 7).
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has little effect on the displacement (Fig. 4c) and
stress (Fig. 6c).

The calculation of displacements and stresses due to a
point load in an inhomogeneous transversely isotropic
full/half-space is fast and correct by the presented
solutions. These solutions can more realistically simulate
the actual stratum of loading problem in many areas of
engineering practice. Also, they can be applied to
estimate the displacements and stresses in the media
due to an embedded point load for an end-bearing pile,
uniform skin friction, linear variation of skin friction,
and non-linear variation of skin friction for a friction
pile, respectively. Besides, these solutions based on the
assumption of axis symmetry can be extended to solve
the displacements and stresses subjected to circular, and
ring loads, etc. The results will be presented in forth-
coming papers.
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