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Stable Shaft-Sensorless Control of
Permanent Magnet Synchronous Motors
Using a Sliding Torque Observer*

Rong-Hwang HORNG** and Kan-Ping CHIN**

Two nonlinear sliding observers are developed for speed-sensorless control of
permanent magnet synchronous motors. One of the observers estimates the rotor
position and velocity based on the measurement of the motor current, while the other
estimates load torque as well as rotor position and velocity. The lower bounds of the
sliding gain, which guarantee the existence of the sliding manifold, and the upper
bounds, which guarantee the stability of the digital implementation of the sliding
observers, are also presented. Both theoretical analyses and experimental results
demonstrate that, regardless of the observer used for speed-sensorless control, the
steady-state velocity error converges even when an external load torque is applied to
the rotor. However, when an external load is present, the position estimation error of
the control system with torque estimation and compensation is significantly smaller

than that of the system without torque estimation and compensation.

Key Words: Permanent Magnet Synchronous Motor, Shaft-Sensorless Control,
Sliding Torque Observer, Stability Analysis

1. Introduction

Due to rapid progress in magnetic materials,
power electronics, microprocessor technology and
advanced control theory, ac permanent magnet syn-
chronous motors (PMSM) have recently replaced dc

"motors as the new workhorse of industry. The speed
of a synchronous motor is well known to be control-
lable in an open-loop simply by supplying phase volt-
ages with an appropriate frequency. On the other
hand, closed-loop servo control using position and
velocity measurements has been widely adopted to
enhance control precision, bandwidth and robustness.
In a servo controlled motor, rotor position is usually
measured with an encoder or a resolver, while rotor
velocity is either measured with a tachometer or
derived from position information. Since these shaft-
mounted motion sensors are either fragile or bulky,
and always expensive, it is desirable to replace these
hardware sensors with software “state observers”.

Early research on shaft-sensorless synchronous
motor control typically estimated the rotor position
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by analyzing the current and voltage waveforms™®.
However, this approach can only determine a few
discrete angles and is not applicable to high-speed
closed-loop control. Meanwhile, another research®
developed rotor angle detection methods based on
measuring back emf. However, these methods are
inapplicable at low speeds and are sensitive to mea-
surement noise. Recently, observer-based rotor posi-
tion and velocity estimation methods have received
considerable attention owing to their high accuracy
and broad range of application. States such as the
position and velocity of a motor are computed using a
mathematical model of the motor and phase voltage
and current measurements. Since all mathematical
models are inevitably idealized and inaccurate, a
compensation (innovation) term must be added to the
observer to correct the observation error. Different
observer theories essentially arise from different tech-
niques of designing the innovation terms.

For speed sensorless synchronous motor control,
Jones & Lang® and Low, Lee & Chang® developed
observers based on Luenberger’s theory®. Since the
mathematical model of a PMSM is nonlinear, the
observers based on the linear Luenberger’s observer
theory were only locally stable. Meanwhile, Cho,
Hong, Oh & Youn designed a sliding observer in a
rotor reference frame using the theory proposed by
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Walcott & Zak®. Since the transformation of phase
currents from the fixed stator reference frame to the
rotating rotor reference frame is position dependent,
the overall stability of the observer is not guaranteed
when the position is also obtained through observa-
tion. Furuhashi, Sangwongwanich & Okuma®, Hsu®?
and Hu, Zhu, Li & Gao®? developed nonlinear sliding
observers in the stator reference frame based on
Utkin’s theory®? of linear sliding observer design.
The observer in Ref. (9 ) utilized only the equations of
the electrical subsystem, and was unstable at low
speed and high load torque. Meanwhile, full-order
sliding observers were derived in Refs.(10) and (11).
However, none of the above studies analyzed the
ability of the observers to reject disturbance torque,
which appears in almost all applications of the shaft-
"sensorless drives. Also, none of the above studies
considered the stability of the closed-loop system and
restriction of the innovation gain due to the d1g1ta1
implementation of the ohserver. :

This study presents a different approach to posi-
tion-and-velocity sensorless control of PMSM using a
sliding observer. A torque estimation term is added to
the observer in addition to the usual position and
velocity estimation terms, and load torque is compen-
sated according to the torque estimation. The sliding
gain is well known to have to be lower-bounded to
guarantee the existence of the sliding manifold and
the stability of the sliding observer. However, during
digital implementation, the sliding gain also needs to
be upper-bounded to maintain the stability of the
closed-loop system with the digital controller. This
study also presents the upper bounds of the sliding
observer obtained through discrete-time analysis of
the linearized error dynamics of the closed-loop
speed-sensorless control system.

2. Sliding Observer

It is well-known that sliding observers potentially
offer advantages similar to those of sliding control-
lers, in particular inherent robustness of parametric
uncertainty and easy application to important classes
of nonlinear systems®®®, Utkin proposed a sliding
observer for linear systems in Ref.(12). A sliding
observer for nonlinear systems can also be derived
based on Utkin’s approach :

Consider the following nonlinear system :

%zf(x, iwd)=f (1)
%=g(x, iu,d)=g S (2)

where iER” denotes the measurable states, xX€R"
represents the states to be observed, usR? is the
control input, and dER? denotes the disturbance
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input. If the sliding manifold is defined as:
S=i—i=0

The following sliding observer is proposed for the

system (1)-(2):

x=f(%,i, W) +Gw=f+Gw (3)
i=g(®,iuw-w=g—w (4)
where

w=Ks-sgn(8S), Ks>0
is the innovation term, Ks denotes the sliding gain;
and GER™" represents the observer gain matrix.
Subtracting (1) - (2) from (3) - (4) obtains the
error dynamics of the observer :

e=f—f+Gw (5)

S=g—g—w (6)
where e=X—x represents the error of the observed
states. Suppose Ks is very large, then the stability of
Egs.(5) - (6) can be analyzed in a slow time-scale

by letting
s 1 1
0=f T=% (7)

By substituting Eq.(7) into Eqs.(5) and (6), the
error dynamics in the slow time-scale become

2 _ 5 1)+ G sen(s) (8)
ﬁ—a(g g)—sgn(S) (9)
When 6—0 (i.e. Ks—©), Eqs.(8) and (9) become
e G sgn(s) (10)
%: —sgn(S) (11)

The stability of Eq.(11) can easily be shown by choos-
ing a Lyapunov function

_Llar,
V=58"8.

The time derivative of V is
V=87-8=—87-sgn(8)=—[8|<0, VS=+0 (12)
Hence, when §=0, the observer states will reach the
sliding manifold and all elements of S will converge to
zero within a finite period. Since the solution of the
differential Eq.(9) continuously depends on its
parameters, all elements of S will converge to approx-
imately zero when ¢ is sufficiently small (or Ks is
sufficiently large). Moreover, Ks must at least satisfy
Ks>|g—gl (13)
to guarantee the stability of Eq.(9) and the existence
of the sliding manifold. When the observer states
reach the sliding manifold (i.e., S=0, SZO), the equiv-
alent value of the innovation term is derived from
Eq.(6): ; :
0=g—g—We = Weq:[§_9]8=0 (14)
To derive the error dynamics of the observer, Eq.(14)
is substituted into Eq.(5)
e=[f—f+G(g—g)ls=o S (15)
From Eq.(15), the stability and convergence rate of
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the error of the observer states can be determined by
choosing an appropriate observer gain G.

3. Observers for PMSM

The mathematical model of a smooth air-gap
PMSM in the stator reference frame can be described
by the following equations :

Do — R i B sin(N0) +Fve (16)
‘g;’ = fib KLNa) COS(N(?)'I’%UL) (17)
G=w (18)
w= —KT[]]V( ta SIN(NG) — 7, cos(NG)) *%a)*%
(19)

where i and i» denote the stator phase currents
measured in the fixed a-b reference frame, va and vs
represent the command voltages measured in the a-b
frame, H is the rotor inertia, R denotes the stator
winding resistance, L represents the stator winding
inductance, K is the motor constant, N denotes the
number of magnetic pole pairs, and . represents the
external load torque.
3.1 Velocity observer

In Ref.(14), Wang analyzed the observability of a
nonlinear PMSM model (16) - (19) with phase cur-
rents as outputs and phase voltages as inputs using the
Lie derivative method®® and the result showed that
the nonlinear system is always observable except at
w=0, where the rank of the observability matrix is
not full but equal to 4. This fact makes the observer
gains go to infinity when w=0 as will be discussed
later.

According to the procedure outlined above, the
sliding manifold and corresponding innovation terms
must first be defined as

S, ta—1a wa)  (Kssgn(Sa)
s={gl=li im0 w= (=] }
Sy 1o~ 1 Wey Kssgn(Sb)

The sliding observer is constructed as follows :

fo= ~%ZQ+K—[{V@ sin(VG) +%ya— we (20
{b:—%’rKTNca cos(NO)+Fv,—ws  (21)
9= (22)
H= ~KT§V( Fasin(NO)— 5 cos(NE) —L-a

-+ G1 Wat GzY/Ub (23)

where Gi and G: denote the observer gains. The error
dynamics of the observer are obtained by subtracting
(16) - (19) from (20) - (23) :

Sa= 25+ B 5 sin(V8) — 0 sin(N6)) — w,
(24)
S,= _§Sb ﬁK—Z{v(CD cos(NG) — w cos(NG)) — ws
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: (25)
e 8= Ew (26)

= _K_]é\f( Za sin(N) — iq sin(NO) — 7, cos(NG)
+is cos(NO)) B ewt G+ Grws +% (27)

Let
Ks,mm=max{‘—f;—N(c§ sin(V8) — w sin(NH))‘,

iK_LN(@ cos(NG)— w cos(NG))

] (28)

the observer states will reach the sliding manifold, i.e.,
S=0 and S=0 for K;>Ksmn Under the circum-
stances, the equivalent value of the innovation terms
becomes ‘

wa:K—LN(@ sin(N8)— w sin(NG)) (29)

wb:—Ll]Jv(cT) cos(N8)— v cos(NG)) (30)

To determine the gains Gi and Gs, Egs.(29), (30)
must first be substituted into Eq.(27) to obtain the
error dynamics of the states requiring observation.
The error dynamics are then linearized around the

observer states, ¢ and @ :

Cu=— {%_KT]Y(Gi sin{NG)— G, cos(Né’))}ew

+KNZ{%( Gi cos(NG) + G, sin(N§))

—LH( 1q cos(NO)+ 7, sin(Né))}eg +% (31)

If the eigenvalues of Eq.(31) are both chosen as
negative real numbers, —As and —Aw, then Eq.(31)
becomes

éw+(/10+/1m)ew+/10/1wee=f—;[ (32)

The observer gains' Gi and G: are determined by
solving Eqs.(31) and (32) :

{Gl}:[cos(Né) N& sin(N§) }

G sin(NG)

— N@ cos(NG)
HL@( ia cos(NG)+ 7, sin(NG)) —

ﬁ(g_ (/1&+/10))>
Noted that @ is in the denominators of the equations
when calculating the observer gains, Gi and G: by the
fact that the system is unobservable at o=0.

From Eq.(32), when Ks—0, the position and the
velocity estimation errors will both converge to zero
if the system contains no load torque. On the other
hand, if the load torque is a constant, then the velocity
error still converges to zero, while the steady-state
position error remains constant :

o= 7L
" HAokw

The magnitude of the position estimation error can be
reduced by increasing As, Ao and Ks. For the further

LAsAw
KN*@
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reduction of the position estimation error, a torque
observer is presented below.
3.2 Torque observer ‘

In Ref.(14), Wang obtained the same result as
discussed in the previous section when the PMSM
model (16) - (19) is augmented with the fifth equa-
tion :

=M cos(NG+ ¢) (33)
where M and ¢ are any constants. Theoretically, the
observer can be designed to remain stable under both
constant torque and periodically varying torque.
" Hence, position, velocity and periodically varying load
torque can all be observed. In practice, provided the
period of the load torque variation significantly
exceeds the sampling period of the observer, the load
torque can be considered to be a constant during a
given sample period. Consequently, by letting M=
$=01in Eq.(33) the sliding observer (20) - (23) can be
augmented with a constant torque observer

?L: Gawa + Gaws (34)
where Gs and G are observer gains. Since load torque
7 is considered to be a state in this case, Egs.(23) and
(27) must also be changed into Eqgs.(35) and (36)
respectively :

b= —K—]{Ivfa Sin(Né)‘I—%‘;b cos(Né)—%a“)
—L it Giwat Gows (35)

éw=—BI(7, 5in(N§)— ic sin(VG) — 4 cos(NG)

+ 7, cos(NB))— ew+ Giwa+ szb+ = (36)

Subtracting (33) from Eq.(34) obtains the error
dynamics of the fifth term:

€r=G3Wa+ G4wb (37)
Under such conditions, the linearized error dynamics
at S=0 and S=0 become

e:w ar 4% Cw ‘ .
€’e = 1 0 0 €s (38) 7
(223 ds s 0 er
where e = T.— 1,
B | KN

®m= *ﬁ+——( Gy sin(NG) — G cos(NG)),
az:KNZ{T( Gy cos(NB) + Gs sin(N@))
L7 cos(NG) + sinuvé))},

aszﬂ( Gs sin(NG)— Gi cos(NG)),
K]\

as= @(Gs cos(NO)+ G, sin(NG)).

By setting the e1genva1ues as —As, —Aw, and —Ac, the
observer gains are solved as:
{Gl}_l:COS(Né) Né sin(NG) :l
Gy Lsin(NG) —N& cos(NG)
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Lis
KN?@

?l;):( 7o cos(NG)+ 7, sin(NG))—

Tt )
{Gs} HLAoAwAz {Sln(N6)+cos(Nc9)}
GJ KN’G |sin(N§)—cos(NG)

where ﬂs:ﬂeﬂwﬂm&rﬂﬂif%h

+A.. Since the system is unobservable at w=0, the
observer gains, Gi, G, Gs, and Gi, become infinite as
the rotating speed, w, is approaching to zero.

Since the eigenvalues of the error dynamics are
three negative real numbers, the position, velocity and
load torque estimation errors all asymptotically con-
verge to zero when Ks—co. However, since Ks is a
large finite number, both the position and load torque
estimation errors converge to small non-zero num-
bers, while the velocity estimation error converges to
ZEero.

, and A4=Ast+ 4w

4. Stability Analysis

This section discusses the local stability of the
linearized error dynamics of the digital implementa-
tion of the speed-sensorless control system except at
w=0, where the system is unobservable. Since the
velocity observer is only a special case of the torque
observer where A: equals zero, only the stability of the
closed-loop speed-sensorless control system based on
the torque observer needs to be discussed.

To ensure local stability at each velocity, the
following procedure is conducted :

1) Substitute the observer gains, Gi, Gs, Gs, and Gu
into Eqgs.(24) - (26), (36) and (37).

2) Replace the estimated states, Za, 75, 0, @, and
7 by Setie, Setis, €+ 0, eotw, and e:+r respec-
tively.

3) Change the innovation terms, wa and ws, and
limit the range of Sz and Ss:

The innovation terms, w. and ws, are discontinu-
ous around S;=0 and S,=0. For analytical simplic-
ity, we and ws are replaced by Ks sat(S o, €) and K sat
(S», €) respectively, where ¢>0 and the function
Kssat(Se, €) is as displayed in Fig. 1. Additionally,

-1

Fig. 1 Function sat(S, &)
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the innovation terms are assumed to force the ' $. = KN?w cos(NG) ot KN sin(N§) o
observer states into a close vicinity of the sliding L L
manifold. As a result, stability analysis is only (f Ks ) S,
required for the small region where S/ <e and |Ss|<

. . . . . . KN?w sin(ING) KN cos(NG)
€. In this region, nonlinear innovation terms can be Se= T ep— I Cw
replaced by linear terms, %‘Sa and Iis Ss. Further- (R KS) S,

‘ L

more, Egs.(24) - (26), (36) and (37) can be rewritten Go—e

as Eqgs.(39) - (43).

Cp= —L(er + Bew+ KN?e4(ia cos(NE)+ i, sin(NG)) + KNS, sin(Ng) — KNS, cos(NG))
LKS(B HE (S, sin(N(8+ e))— Ss cos(N(G+ es)))

HKNe
LKS(Sa cos(NV(+ es))+ Ss sin(N (8 + e5)) iz cos(N(G+ e0) + i, sin(N(8 + e5)))
He(w+ ew)
LKS(Kg NE3)(S4 cos(N(0+ es)+ Ss sin(N(8+ es)))
HN?e(w+ew)
LKs(Sa cos(N(8+es)+ S, sin{N(0+ es)))?
HS(Q)"“ em)

. HLKKs . B
er_KNze(co+ew){COS[N(9+€6)]<Sa Se)

+sin[N(0+e5)](Sa+Ss)}
Where Kl /10+/1a)+ﬁz', KQ B/Iw—{_/lw/iz +/10Ar, and ]Q:A
4) Calculate the equilibrium point :

6/1(4)/1'[.

(39)

(40)
(41)

(42)

(43)

Two sets of equilibrium points are found by letting (39) - (43) equal zero. One of the equilibrium points is

located at Se=0, S»=0, ¢u=0, e-=0 and 692%, where M&Z. Meanwhilé, the other one is at

KNew(cos(NG) +sm(Nc9))

Sa= Re+ LK,
S, _ KNew(cos(NG) —sin(NG))
Re+ LK
ew=0
(M4
o= 2N

KNRe(— KNw+ Ri, cos(NG) + Ri, sin(NO) — Ri, cos(N8) + Ri, sin(N9))
+ KLNReKs(2i4 cos(NO)+ i, sin(NG) + 24, sin(ING) — i, cos(NG))

(44)

(45)

_ 1
T Re+ LK)

+ LREK5<BC()  HuKi+ va?z

)

+ L2K3<Ba}+KNia cos(NO)+ KNi, sin(NO) — Huk, +

HE,
N Nw

HK; >

From the above equations, the second equilibrium is a function of the angular position and changes

v 2KNew

accordingly. Additionally, from Egs.(44) and (45), the maximum value of S. and S is bounded by Rl LK.

at the second equilibrium point. Given this bound, and assuming that |S.|<e and |Ss|<e¢, it is concluded that the

second equilibrium exists only when Ks>(Ksmax)e2={(v 2KNw— Re)/L.

5) Derive the linearized error dynamics around each equilibrium point :
A set of equations describing the linearized error dynamics can be derived by linearizing (39) - (43) around

the first equilibrium point :

So=— <R KS)SQ',__*(NCOCOS(N@)@B+SIH(N€)€w)

L

Sp=— <R Ks>5b+ T (N sin{N8)e,—cos(N8) ew)

L

é@zew
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(48)
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KN .
*75111(]\]6) + KNe

su=| Bl COSWNO) ;. coq(NG) + 4, sin(ND))

KSL cos(NG) ( ﬁ)
KN?ew Kty

KN?
+< T 1o cos(N@) ———

_ KK HL
"KN%eow

KL sin(NG) (%;[ﬁ)

K:K.HIL (—

(cos(N§)+51n(N¢9))Sa KN’ew

749

KL cos(NG) <—£+K1>

KNe H _
&Zﬁ)ﬂ(h cos(NO)+ 7 sin(NF)) | Ss

K.L sin(N9) (_ K )
KN?ezw KR,

KIZJVCOS(NQ)‘F
Se+ | +

+

KN* zbsm(Nﬁ))ee gew—%ef : . , (49)‘

cos(NB)—Fsm(Nﬁ))Sb (50)

Similarly, around the second equilibrium point, the linearized error dynamics can be denved as follows :

R Ks KN*

Sa=-— (L >Sa 7 (l)COS(N&—7+2Mﬂ>ee+%MSIH<N6—7+2Mﬁ')Qw (1)

L L

. 2
Sp=— <R KS>Sb+KN wsin<N3—§+2Mn>ee

Co—Cuw

f%v—cos<N¢9 Sz 2M7r>ew (52)
(53)

&#COS(NQ) +KsL cos(N&)(
9KN __ REK;

KN BR RK1>
H HKN ' KN

L + KL sin(NH)(—

+

Hw

KZL2 cos(NG) / B
RNe RS >

KNRe

L H KN
RE“I'LKS KsL <l.a Sin2<Ne) _ SIn(ZN@) \)(R+ KSL )

KiI? sm(N:?)

! K%Z)

e Ks
KN?sw ( Kot N(u>

Tsm(Né’) +KsL sin(N6)<
2KN | RK,

KN BR | RK1>
H HKN ' KN

i +KsL cos(N@)(

T Ret LK, LKL
2Hw

H '~ KNw

(— 10 sin(2NO) + 75+ s cos(ZN&))(R R

RK, )

K‘N3 2
KL) Se

+ Bl Wa)( H+K >

— BR*&— K’ LN*¢Ks—

2
KZL cos(N&)JK K )

2BLReKs—

KN?’sw \"? No

BL’KZ

H

L (54)

+ LREKS( Ho
KNiq sin(N8) — KNio

1
TR L LKLY

KNi, sin(Ng) — KNi, cos(NG) Kz. ZKa) °

No = N?o? He

cos(N9) K, K 2K

2372
L K( o

eTZ%SNKSZ—%(_COS(N@+Sin(N‘9))S“+

6) Compute the states of the PMSM :
The states of the PMSM can be derived from the

mathematical model of the PMSM in the rotor refer-
ence frame®®, as shown below :

KN?zw

dia B} Nigwr+pva (56)
Cézl? :—%'4—%&60*]\7%6&)4‘%04 (57)
& _, (58)
do _ KN B

do KN, D (59)

where iz and 7, denote the stator phase currents
measured in the rotor reference frame, while vz and vq
represent the command voltages measured in the
rotor reference frame.

Let w=constant=+0 and 7a=0, § and ¢ can be
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Now ' N*o* )
B -  2HLEK,
(—cos(NG)—sin(NG))Ss Ret LK. (55)

derived from Egs. (58) and(59). Meanwhile, 7. and 2,
can be derived by transforming i« and i into the
stator reference frame. Consequently, the states of
PMSM can be described by

w=constant#+0.

=6+ w-t

id=0

iq: BC;{’Z*\’[Z'L

i e ol e iy

7) Plot the root loci of the linearized error
dynamics, and analyze the stability of the closed-loop
system :

By substituting the states of the PMSM and the
observer gains into Eqs.(46) - (50) and (51) - (55),
the roots of the error dynamics can be calculated and
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plotted. In Section 3, the desired eigenvalues, As, Aw,
Az, of the observer error dynamics on the sliding
manifold are specified first, and then the observer gain
matrix, G, is calculated from these eigenvalues.
Consequently, the observer gains are determined from
the desired observer behavior. On the other hand, the
sliding gain, Ks, was only required to satisfy Eqgs. (13),
(28), or to be “large enough” to guarantee the exis-
tence of the sliding manifold. However, during digital
implementation, a computer carries out the computa-
tion required by the observer and control laws. Under
such circumstances, Ks not only needs to be lower-
bounded, but also upper-bounded to maintain the
stability of the discrete-time system. Hence, the
range of the sliding gain must be identified to permit
stable digital implementation.

The Delta Transformation method®® is. used to
analyze the stability at the discrete time, since this
method requires minimal modification to transform a
continuous-time model to its discrete-time equivalent.
For instance, the discrete-time models of the continu-
ous—time error dynamics (46) - (50) and (51) - (55)
can easily be obtained by turning all the time-deriva-
tive terms into difference terms :

Sa e A;a
Sb - AYS«b
Aey

T

Aeu)
T

Ae;
T

where 7 denotes the sample pe/riod. Under such
conditions, the eigenvalues of the discrete-time model
is exactly same as those of the continuous-time
model. The continuous-time system is well known to
be asymptotically stable if and only if all the
eigenvalues of the continuous-time system satisfy
Re{p:} <0, where Re{p:} denotes the real part of the
eigenvalue, p.. However, according to the Delta trans-

Cog—

éw_>

€r—

formation theory, for example in Ref. (16), the dis-.

crete-time system is stable if and only if the
eigenvalues of the discrete-time system satisfy 7T| pil?

+Re{p:}<0. In the pole plane, the stability boundary
of the discrete-time system can be represented as a
circle with a radius that is inversely proportional to
the sample period 7T, at the left-half plane. The
following are the main differences between a discrete-
time system and a continuous-time system :

a) The range of eigenvalues for a stable discrete-
time system is-always smaller than that for a stable
continuous-time system ;
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b)  The magnitude of the eigenvalues for a stable
discrete-time system is always upper-bounded ;

c¢) The higher the sample frequency in a discrete-
time system, the larger the stability range ;

d) A continuous-time system is equivalent to a
discrete-time system with infinite sample frequency.

For example, given the motor parameters listed

in Table 1, the observer gains As=10 Hz, 1,=60 Hz,
A:=2Hz, and the operation conditions w=1 000 rpm,
z:=0N-m, and e=1, then the root loci of the first
equilibrium point from Egs. (46) - (50) when K; varies
from 0 to 8 000 are shown in Fig. 2. Similarly, the root
loci of the second equilibrium point computed from
Eqs.(51) - (55) are illustrated in Fig. 3.

Table 1 Parameters of the Sinano #7CB30-2SE6F motor

No. of pole-pair N=4
Resistance R=25Q
Inductance L= 597x10H

Motor Constant K =5.795x10"V - S/rad
Rotor inertia H= 645x107kg-m?
- Viscous Coeffi. B=8.06x10°N-m -s/rad
4000 "

" 3000}

2000 -~

1000 -

Ks=7590

ok

-1000 -

-2000 -

-3000

000 . . . , ‘ ‘ ‘ . ,

-9000 -8000 -7000  -B00O -5000 -4000 ~3000 -2000 ~1000 0 1000

Fig. 2 Root loci of the error dynamics around the
first equilibrium points
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Consider the root loci of the first equilibrium
point in Fig. 2. The large circle represents the stabil-
ity boundary when the sample frequency is 4 kHz,
while the small circle represents the stability bound-
ary when the sample frequency is 1 kHz. From Fig. 2,
the discrete-time system is locally stable if the sample
rate is 4 kHz and K is smaller than 7590, or if the
sample rate is 1kHz and K is smaller than 1590.
Therefore, an upper bound, (Ksmax)r, exists for each
sample rate (or sample period). Additionally, the
higher the sample rate, the larger (Ksmax)r.

Consider the.root loci of the second equilibrium
point in Fig. 3. An unstable pole exists on the right-
half plane. Consequently, the system is unstable
regardless of the sample rate. From the analyses
above, an upper bound, Ks<(Ksmax)ez=(/ 2KNw
— Re)/L, can be chosen to prevent the appearance of
the second equilibrium point. '

In conclusion, Ks should be bounded by the follow-
ing rules to ensure system stability: ‘

® From Eqs.(13) and (28), K¢ must be larger than
the lower bound, Ksmmn, to guarantee the stability of
Eq.(9) and the existence of the sliding manifold.

® To ensure the stability of the first equilibrium
point, an upper bound, Ks=<(Ksmax)r, should be calcu-
lated for each velocity w and sample rate.

® To prevent a second, always unstable, equilib-
rium point from appearing, another upper bound, Ks<
(Ksmax)r2=(v 2KNw— Re) /L, should also be imposed
on the range of K.

5. [Experiments

The experimental setup includes ‘a Sinano
#7CB30-2SE6F permanent magnet synchronous motor
(whose parameters are listed in Table 1), the power
stage of a Micro Trend UT90 driver, a control card
made in house, and a 586 PC. The control card is
intended to convert the analog phase current measure-
ments into digital signals, decode the encoder signals
and the Hall-effect sensor signals, and generate space
vector pulse width modulation (SVPWM) switching
signals to control the power stage. Meanwhile, the
586 PC is used to compute the control algorithms and

L. =0 - Val g pwM | ol
o8 it 4 -Current pace :
CPUStlrml)ln ::1 Controller Vector signal {PMsM
‘ ontroller - v, \% Gener- ]

k4 ation I
e L]
a-b i,
to
d-q i,
6 -
L Utkin
Sliding [
5,64 Mode
Observer

Fig. 4 Block diagram of the shaft-sensorless speed
controller
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the coordinate transformations for the vector space
between stator reference frame and rotor reference
frame.

Experiments involving closed-loop shaft-sensor-
less speed control are performed using both the veloc-
ity observer, Egs.(20) - (23) and torque observer, Egs.
(20) - (22), (34), (35). Figure 4 displays the block
diagram of the control system. The control algorithm
used in the experiments is the two-loop controller
developed in Ref.(14). Since a nonlinear PMSM
model (16) - (19), (33) is unobservable at w=0 with
phase currents as outputs and phase voltages as
inputs, both observers can’t estimate the states of
motor at @=0. In our implementation of observer, a
small value @ww=1rad/s is used instead of @ when
0<|&|< @ww to obtain observer gains and this will
make the performance not effective at low speeds
(w=0). During the experiments, the position, velocity,
and torque feedback used in the speed controller are
calculated from the observers, and the encoder is only
used to measure the mo'tor velocity and position to
verify the effectiveness of the observers. The sample
rates for the velocity controller and the current con-
troller are 1 kHz and 4 kHz, respectively, while the
bandwidth of the velocity controller and thé current
controller are set at 20 Hz and 300 Hz, respectively.
Additionally, the velocity observer gainé are A=10
Hz, Ao=60 Hz, e=1 and Ks=30X w=1 0007, while the
torque observer gains are the same as the velocity
observer gains, except A-=2 Hz is added to the torque
observer. From the computations that followed the
stability analysis in Section 4, (Ksmax)r=7590, and
(Ksmax)e2=5 331.46. The sliding gain K is set smaller
than the upper bounds. Finally, the velocity command
is a ramp from zero to 1000 rpm in 1.5 seconds as
shown in Figs.5 and 6. During the experiments, a
disturbance torque provided by an electromagnetic

1200 — : T

1000 . »\[\,‘wvu‘ e A""‘V‘U'
800

600

Velocity (rpm)

400 -

200

-200 - . . . .
c 1 2 3 4 5 6

time(s)

Fig. 5 Command velocity and actual motor velocity for
the control system with the position and velocity
observer
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Fig. 8 The lower bound Ksmn for tﬁe control system with
the torque observer
brake is applied to the motor between =3 second and
t=5 second. The lower bounds, Ksmn, in Eq. (28) for
both observers are shown in Figs. 7 and 8, respective-
ly. By setting the sliding gain K larger than the lower
bounds, the sliding surfaces, such as S, for both
observers are around the sliding manifold, S=0 and
SZO, as shown in Figs. 9 and 10. Figures 5 and 6
indicate that, using both observers for sensorless
speed control, the velocity of the motor tracks the
command velocity accurately despite the disturbance
torque. However, when the velocity observer is used

Series C, Vol. 46, No. 2, 2003

time(s)

Fig. 9 The sliding surface S. for the control system with
the position and velocity observer
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Eig. 11 Position estimation error for the control system
.with the position and velocity observer

alone, the estimation error of the rotor position is
quite large if the extérnal torque is present, as shown
in Fig. 11. However, when the torque observer is also
implemented, the estimation error of the rotor posi-
tion is very small even if the external torque is not
zero, as displayed in Fig. 12. The experimental results
neatly confirm the analysis in Section 3.

6. Conclusion
Two nonlinear sliding observers are developed

for speed-sensorless control of PMSM. One of the
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Fig. 12 Position estimation error for the control system
with the torque observer

observers estimates the rotor position and velocity
based on measurements of the current, while the other
estimates the load torque in addition to the rotor
position and velocity. From the observability analy-
sis, the nonlinear systems are always observable
except at @=0. The bounds of the sliding gain that
guarantee the existence of the sliding manifold and
the stability of the sliding observers are also outlined.
It is found that if the sliding gain K is large enough to
guarantee the existence of the sliding manifold, and
also smaller than its upper bound for discrete-time
stability, then the torque observer is locally stable at
each speed except at w=0. Theoretical analyses and
practical experiments both demonstrate that, using
either observer for speed-sensorless .control, the
steady-state velocity error converges even when an
external load torque is applied to the rotor. However,
when an external load is present, the position estima-
tion error of the control system with torque estima-
tion and compensation is significantly smaller than
that of the system without torque estimation and
compensation. This study has demonstrated the feasi-
bility of implementing a trajectory-tracking control-
ler using the novel observer.
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