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This paper proposes a genetic algorithm, called the heterogeneous selection genetic algorithm (HSGA), 
integrating local and global strategies via family competition and edge similarity, for the traveling salesman 
problem (TSP). Local strategies include neighbor-join mutation and family competition, and global strategies 
consist of heterogeneous pairing selection and edge assembly crossover. Based on the mechanisms of 
preserving and adding edges, the search behaviors of neighbor-join mutation and edge assembly crossover are 
studied. The proposed method has been implemented and applied to 17 well-known TSPs whose numbers of 
cities range from 101 to IJ,509. Experimental results indicate that this approach, although somewhat slower, 
performs very robustly and is very competitive with other approaches in the best surveys. This approach is 
able to find the optimum, and the average solution quality is within 0.00048 above the optima of each test 
problem. 

Keywords: Edge assembly crossover; Heterogeneous pairing selection; Family competition; Genetic algorithm; 
Neighbor-join mutation; Traveling salesman problem 

1 INTRODUCTION 

The traveling salesman problem (TSP) is a well-known NP-hard optimization problem which 
requires the detennination of the shortest route passing through a set of M cities under the 
condition that each city is visited exactly once. TSPs raise important issues because many 
problems in science, engineering, and bioinfonnatics fields, such as routing, scheduling 
problems, flexible manufacturing systems, physical mapping problems [2], and phylogenetic 
tree construction [15] can be fonnulated as TSPs. 

A large number of approaches have been developed for solving TSPs. They can be 
roughly divided into local and global search methods. The local search algorithms, such 
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298 H.-K. TSAI et al. 

as 2-opt and 3-opt [17), and the Lin-Kemigan heuristic [18], are efficient but may get 
stuck at local minima. Some stochastic approaches, including simulated annealing [14], 
Hopfield neural networks [11], tabu search [34], and evolutionary algorithms 
[6, 8, 19, 20, 35], have been proposed to reduce the disadvantage of local search methods. 
However, these approaches often converge more slowly than local search methods. 

A very promising direction among these stochastic search approaches is the 
evolutionary algorithm, considered as a global search mechanism. It is based on the ideas 
borrowed from genetics and natural selection. An evolutionary algorithm is a generally 
adaptable concept for problem solving that is especially well suited for solving difficult 
optimization problems, where traditional optimization methods are less efficient. Genetic 
algorithms [9), evolution strategies [4], and evolutionary programming [7] are three main 
independently developed but strongly related evolutionary algorithms. Because the 
original evolutionary algorithms are not very efficient for some specific application 
domains, one trend is to incorporate local search techniques into evolutionary algorithms 
to improve solution quality ( 10, 33 ]. Such a hybrid approach may possess both the 
global optimality of the evolutionary algorithm as well as the convergence of the local 
search. 

To further improve the above evolutionary approaches, the present authors applied two key 
mechanisms to evolutionary algorithms: ( 1) incorporating multi-genetic operators, including 
local and global search mechanisms, each compensating for the others' disadvantages; 
(2) maintaining the population diversity naturally. Previous results have demonstrated that 
these mechanisms are useful for some continuous optimization problems [31 ), training neural 
networks (29], thin-film optical coatings (30], and flexible ligand docking [32]. Two special 
ideas for TSPs were also considered: preserving good edges [20) and adding new edges into 
the offspring [28]. 

This paper proposes an evolutionary algorithm, called the heterogeneous selection 
genetic algorithm (HSGA), by applying the above four ideas for solving TSPs. The 
HSGA consists of a new neighbor-join mutation (NJ), an edge assembly crossover 
(EAX) [20), a new crossover pairing selection, named heterogeneous pairing selection 
(HpS), and a family competition. The NJ mutation, viewed as a local search mechanism, 
has properties of both mutation and recombination. The EAX, viewed as a global search 
mechanism. has been considered as a useful crossover operator for TSPs [S, 16, 2S, 28]. 
The EAX and the NJ mutation generate the offspring by preserving good edges from par­
ents and adding new edges based on heuristics. The lipS selects two parents for crossover 
operators to reduce the premature convergence effect based on the edge similarity of a 
population. Finally, the family competition, derived from (I+ A)- ES [4] and the 
Lin-Kemigan heuristic, acts as a local search procedure. The main difference in methodol­
ogy between the present work and previous studies [27] is the addition of the lipS selec­
tion and the NJ mutation. 

The method was applied to 17 well-known traveling salesman problems [24] whose 
numbers of cities range from 101 to 13,509 cities. The experimental results 
indicate that the solution quality of the JISGA stays within 0.00048 of the optima of 
the test problems, and is more robust than comparative approaches. The analysis results 
also show that the perfonnance of the NJ mutation and the lipS selection is very 
promising. 

The rest of this paper is organized as follows. Section 2 introduces the evolutionary nature 
of the proposed approach. Section 3 analyzes the characteristics and search behaviors of the 
HSGA. Section 4 shows the comparative results of the IISGA with five hybrid evolutionary 
approaches and with five heuristic methods on eight large TSPs. Concluding comments are 
drawn in Section S. 
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GAs FOR TSPs 299 

2 APPROACH 

2.1 System Architecture o,·eniew 

In this section, the details of the proposed genetic algorithm for TSPs are presented. The 
HSGA has four major mechanisms, including a new crossover pairing selection, named het­
erogeneous pairing selection (HpS), the edge assembly crossover (EAX), a family competi­
tion, and a new mutation operator, called neighbor-join mutation (NJ). The HpS based on the 
edge similarity selects two parents for the EAX crossover. The EAX and the NJ mutation are 
genetic operators considered to be able to preserve and add good edges to generate a child. 
The family competition is a local search mechanism incorporated into the EAX and the NJ 
mutation. These four mechanisms have been studied to balance exploration and exploitation 
in the search space. · 

Figure 1 shows the main steps of the HSGA. N solutions are randomly generated as the initial 
population. Each solution is represented as a random permutation from 1 to M where M is the 
number of cities. After evaluating the fitness, each solution in the population sequentially 
becomes the "family father (s;)" which applies the following steps to generate a child: The 
family father uses the HpS to select itself (s;) and another individual from the population 
based on the edge similarity. These two individuals become the parents of the EAX which gene­
rates only one intermediate offspring (11). The NJ mutation is then executed L times (L is the 
family competition length) to generate a child (c;) by refining the intermediate solution I;. 

Initialize population S with N solutions 

Repeat for each 
individual 
( .. family 
parent sn in s 

Select the pairing individuals 
based on HpS selection 

Generate an intermediate solution 
(11) by applying EAX crossover 

Generate a child (c;) by applying 
NJ mutation on 11 

No 

Insert the better one from Ct and 
family parent (s;) into s.at 

FIGURE I Overview of proposed genetic algorithm (HSGA). 
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300 H.-K. TSAI et al. 

In each pair of family father (s;) and its child ( c1), the one with the better solution survives. Each 
individual (s;) in the population sequentially executes the above steps to generate its child where 
1 :=:: i :=::N. These N solutions become the new population of the next generation. 

The algorithm is terminated when one of the following criteria is satisfied: (1) the maxi­
mum preset search time is exhausted, (2) all individuals of a population represent the same 
solution, or (3) all of the children generated in five consecutive generations are worse than 
their respective family parents. In the following subsections, the HpS selection, the EAX, 
and the NJ mutation are described. 

2.2 Heterogeneous Pairing Selection (UpS) 

For each "family father (s1)", the HpS selects s1 and another individual from the current popu­
lation based on the edge similarity for crossover operators, such as EAX in this paper. The 
HpS is used to the disadvantages of trapping into local optimal by avoiding incest. In evolu­
tionary processes, incest may cause two ill effects: loss of population diversity and ineffective 
execution of crossover operations. The formulation and implementation of the HpS is 
described as follows: Let { s1, s2, ••• , sN} be the current population, E(s1) be the set of the 
edges of St, and IIE(s;)ll be the number of the edges of E(s1). The number of identical 
edges IIT;,Jll of two individuals (s1 and s1) is defined as 

1111.111 = IIE(s;)nE(sJ)II 

For each individuals" let t1 be the average number of identical edges between s1 and the other 
individuals in the population 

1 N 
I,=- L IITi,JII 

N- 1 i=l,J'I'i 
(1) 

where N is the population size. There are two extreme cases for the value of 11: I;= 0 when no 
edge of s, appears in the other individuals and t1 =M when all individuals are the same in the 
population where M is the number of the cities of a TSP. 

For given the individual s1, the HpS selects s1 and another individual s1 with IITi,J 11 :=:: I; for 
the EAX operator. This similarity-based mechanism is useful for keeping the population 
diversity. Our experimental results were consistent with this claim. 

In practical implementation, another method was used to calculate t1 because the time com­
ple_xity of getting all t1 through calculating 11 T1•111 is O(N2 M 2

). At the beginning of each gene­
ratiOn, F(e), the count of edge e appearances in the current population, is calculated in 
advance where e e { E(s1) U E(s2) u ... U E(sN)}. The sum of 11 Ti,J 11 of s1 in the population, 
can be reformulated as 

N N 

I: IITi,JII = L IITi,JII- 111/,;11 
J=l.#l j=l 

= L F(e)-M 
ee£(s,) 

= L (F(e)-1) (2) 
ee£(s,) 

Substituting Eq. (2) into Eq. (1), 11 becomes 

I;= _1_ L (F(e) -1) 
N- 1 ee£(s,) 
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Therefore, all I; can be calculated in O(NM) via looking up the pre-calculated table. Since the 
EAX crossover also uses the information F(e), the extra effort of calculating ft is limited. 

2.3 Edge Assembly Crossover 

The EAX [20] is considered a powerful crossover operator [ 5, 16, 25, 28]. It has two important 
features: preserving parents' edges with a novel approach and adding new edges with a greedy 
method, analogous to a minimal spanning tree. Several issues, such as the selection mechanism 
and heuristic methods, influencing EAX performance have been discussed [21,22,27,28]. 
This paper retains the main spirit of the EAX and used the HpS to replace the random pair selec­
tion (RpS), which was the original selection mechanism of the EAX genetic algorithm. The 
EAX is considered as the global search strategy in our proposed algorithm. 

The EAX is briefly described here. Two individuals, denoted as A and B, are selected as the 
parents. The EAX first merges A and B into a single graph denoted G. The EAX travels G to gen­
erate many AB-cycles by alternately picking edges from parents A and B. According to the heur­
istic and random selection rules, some of the AB-cycles are selected to generate a quasi solution 
which contains some disjointed subtours. Then, the EAX uses a greedy method to merge these 
disjointed subtours into a valid solution. This solution is returned if the fitness of this solution is 
better than its parents. Otherwise this procedure is repeated until a solution is found that is better 
than both A and B, or L children are produced where L is the family competition length. 

2.4 Neighbor-Join Mutation 

A new mutation operator, called neighbor-join (NJ) mutation, is proposed to improve an 
intermediate solution generated by the EAX. The NJ mutation constructs a new solution 
by stealing edges from other individuals in the population or by considering the geometric 
information. The NJ mutation is inspired by the inver-over mutation [26] and by analyzing 
the TSP search space [23). The main difference between the inver-over mutation and other 
mutations is that it inherits edges both from its parent and from other individuals in the cur­
rent population. On the other hand, according to the analysis of the optimal tours of some 
TSPs [23 ], most of the links in the optimal tours were found to be neighbor cities of each city. 

Figure 2(a) outlines the steps of the NJ mutation. By giving the input of an individual s; 
and the family competition length L, the NJ mutation generates L children from the start solu­
tion St. The NJ mutation applies the following steps to generate a child: First a city c is ran­
domly selected from St. With equal probability, another city c' is randomly selected either 
from the geometrically nearest three neighbors of the city c or the neighbor cities of c of 
another individual, which is randomly selected from the population. If the edge between 
cities c and c' is not in s1, connect the cities c and c' and generates four possible types 
shown in Figure 2(b). The NJ mutation generates four candidates by sequentially executing 
each type. Among these four candidates and s;, only the one with the best objective value is 
selected as the parent of the next loop of the NJ mutation. 

For Types I and 11, the invert operator is used to connect the cities c and c' as shown in 
Figure 2(b). For Types Ill and IV, a greedy method was applied to merge two disjoint sub­
tours into a valid solution. The greedy method works as follows: Let v; represent a city, 
(vt. vj), i :f. j, represent an edge, and w(vt, Vj) be the edge length of (v;, vj). At the same 
time, let (v" Vr+t) and (V8 , V8 +J) be the edges of the subtours G, and G9 , respectively. We 
find a pair of new edges, (v" v,+t) and (v .. , Vr+t) to connect these two subtours, G, and 
G .. , into a legal tour by maximizing the value of the following equation 

w(vro Vr+l> + H{Vs. Vs+t)- w(v, Vs+ I)- w(vs. Vr+t) Vr, s; re G, and se G .. 
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1. fnput: famil~ competition length L anJ un indi,iJuul s1 

l. rrpeat L times 
2.1 randomly select a city c from s1 

u if (rand0 > 0.5) 
Randomly select anodlfl' .individual from 
current popuiatim. Randomly select the city c' 
coonecting to c in the selected individual 

the randomly select the city c • from the gecmetric 
nearest three cities of c. 

%.3 if the city c • docsn •t cmnect to c in s1 

a. Gcnc:ra1e four candidates by camccting c' md 
c (see Fig. 2.(b)). 

b. Select th~ on~ •ith lowest fitness from .r. md 
these four candidates to replace .r. as the 
parent or next loop. 

J.m.....r. 
(a) 

- i 0 

1
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~o 1o)r f 1 f.[:s-(~I'! ·~ 

~ ~· 

' c· 

r, _;. ... --- ___ Lr_r~ 
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r ~r.-;; ~.-(, j 7f, r-; IEfD 
AAw-'ify 

(;f, f~,_~~(,}zT~ l 1Ta:;II 
~ c· 

{b) 

FlGURE Ua) The nrighborjoin mllbtion algorithm. (b) Four type-s or conncc1ing cities(' and c' in the NJ lt1llbtioo The results ofTypc I and 1)-pe n are obbincd via the invm opmdion. 
The results of Type m and Type IV an: consttucmJ by arplying a greedy mdhod (sec tnt) fium two subcoun.. 
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The new edges, (v" ,._.,)and (v .. vr+1), replace the original edges, (v" vr+1) and (v,, v,+1), to 
form the new solution. In fact. only the nearest 20 cities of each city are considered. 

3 SO~IE CIIARACfERISTICS OF IISGA 

This section discusses some characteristics of the IISGA; first the parameter settings, then the 
mechanisms ofkeq>ing the population diversity ofiiSGA with lipS and random pair selection 
(RpS) are analyz.ed. RpS, the original selection mechanism of the EAX genetic algorithm [20], 
is considered as an efficient mechanism for maintaining the population diversity [28]. Finally 
the search behaviors of the IISGA with NJ mutation and 2-opt are discussed. 

For ease of analysis, let /ISGA(p" 1'2· p3) denote that the HSGA used the p 1 crossover 
operator, the p2 selection, and the PJ mutation operator. For example, 1/SGA(EAXJ/pS, 
NJ), or IISGA, is the proposed approach applying the EAX crossover, the lipS section, and 
the NJ mutation. /ISG • ..f(E.AX.RpS,None) represents the original EAX genetic algorithm, 
using the EAX crossover and random pair selection. "'None"' denotes that no operator is 
used in the respective operator. Each method with different operators has been implemented 
in C++ and executed on a Pentium Ill SOO MHz personal computer with single processor. 
Table I gives the test problem names selected from TSPLIB [24] along with number of cities 
and the optimal tour lengths. 

3.1 Paramtttr Settings 

As introduced in Section 2. the population size (N) and the family competition length (L) 
are the main parameters in the algorithm. To decide the parameter values, various values 
of these two parameters were tested on IS TSP problems selected from TSPLIB [24). 
Figure 3 shows the relationship between the population size and the average error rate on 
problems attJJ2 and fn/U6/. The required CPU time is proportional to the population 
size and the average error rate is reduced when the population size increases. Generally, 
the IISGA has similar curves for all testing problems. As a result of the experiments, the 
population size is set to the number of cities of a TSP when the number of cities is smaller 
than I 000, and is set to half the number of cities of a TSP when the number of cities is larger 
than I 000, as a tradeoff between solution quality and convergence time. 

TABLE I The Tested Problem Names with Number of 
Cilia and Optimal Tour Lengths. 

eiiiOI 
kroa."'O 
linJIS 
pcb-1-12 
lnS32 
uS74 
nt$15 
u724 
nt78J 
vml084 
pcbii7J 
ui4J2 
vm1748 
prl392 
pcbJ038 

No. of cities 

101 
200 
318 
442 
532 
514 
515 
724 
783 

1084 
1173 
1432 
1748 
2392 
3038 

Optimal tour length 

629 
29,368 
42.029 
50,778 
27,686 
36,905 

6773 
41,910 

8806 
239.297 
56,892 

152,970 
336,556 
378,032 
137,694 
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r~ ~r--------;--m-~~-53_; _ _, 
04 06 08 I 1.2 

Population size (.\')!City number 
0.2 1.4 

0,()00.1()()~ 
g 0·000300 111532 

g0000200 
101 

0.000100 ,_.. rn14461 

0.000000 
0.2 0.4 0~ . 08 I 1.2 

Population stze (\')/City number 
1.4 

(a). (b). 

FIGURE 3 The relationships among the average time, average error rate, and the population size of HSGA tested 
on problems arrSJ2 andjil/4461. (a) is the relation between the population size and the average time and (b) is the 
relation between the population size and the average error rate above the optima. 

To understand the influence of the family competition length (L) in the EAX and the NJ 
operators, the performance of the HSGA was observed with various lengths. Figure 4 
shows the relationship between the performance and the family competition length (L) 
on 15 TSP problems where the values of L are set to 5, 20, and 50. Each problem was 
tested in 30 distinct trials. For each problem the HSGA has the worst performance 
when L is 5. The improvement of the solution quality of the HSGA is not significant 
when L exceeds 20. In practice, the longer L is, more time is required for the HSGA. 
Therefore, L is set to 20 in this paper. 

3.2 Analysis of the HpS 

To investigate the ability of the HpS for keeping the population diversity, the edge entropy 
and the average edge similarity of a population were used to analyze the search behavior 
of the HSGA with different selection mechanisms, HSGA(EAX,RpS,none) and 
IISGA(EAX,HpS,none). The edge entropy of a population is given as 

- LF(e)logz F(e) (3) 
eeX N N 

where X= {E(st) U E(s2 ) u ... u E(sN )}, F(e) is the count of the number of appearances of 
edge e in the current population, and N is the population size. A larger value of the edge entropy 

30 

2S 

~ 20 
·::: 

] IS 
·a 
010 

s 

m 
::: 
2 

,-: 
a 
> .... 
0 
0 

r"' :;· 
~ 
oc 

~.... ~ § ~ g ~ £ ~ : £ 8 ~ 
~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ 8 

~ w QO 00 
Problems 

CLength=S 

~Length=20 

.Length=SO 

FIGURE 4 Performance of the HSGA on IS TSP problems with different search lengths S, 20, and SO based on the 
number finding the optimal solution in 30 trials. The HSGA has the worst performance when L is S and has similar 
performance when L is 20 and SO. 
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implies that the population diversity is higher. Figure S(a) shows the relationships between the 
values of the edge entropy and the number of generations of 1/SGA(EAX.RpS.,none) and 
HSGA(EAX,HpS,none) on the problems att532 and fn/4461. Although these two methods 
have similar trends, the value of the edge entropy of //SGA(EAXJlpS,none) is decreasing 
more slowly than that of HSGA(EAX,RpS,none). In Figure S(a), the value of the edge entropy 
of HSGA(EAX,RpS,none) approaches zero when the number of generation exceeds 75 in 
problem att532 and 180 in problem fn/4461. On the other hand, the edge entropy of 
HSGA(EAX,llpS,none) is greater than that of HSGA(EAX.RpS,none) in both problems. This 
result implies that the HpS is more powerful than the RpS for keeping population diversity. 

To further analyze the HpS effect on population diversity, the average edge similarity of a 
population is given as 

2 N N 

N(N- 1) ~ JJ.t#t 117iJII (4) 

where N is the population size and 11 T1,1 11 is the number of identical edges of two individuals 
(s1 and s1). Figure S(b) shows that the value of the edge similarity obtained by 
//SGA(EAX,HpS,none) increases more slowly than that obtained by llSGA(EAX,RpS.,none) 
on the problems att532 and fn/4461. Almost all individuals in a population generated by 
HSGA(EAX,RpS,none) are the same when the number of the generations exceeds 70 in 
problem att532 and 180 in problemfn/4461. Again l/SGA(EAXJ/pS,none) is able to retain 
the diversity of a population. 
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FIGURE 5 Comparisons of the edge entropy (see Eq. (3)), the edge similarities ofa population (sec Eq. (4)), and 
the ability of generating better children of JISGA(EAX.RpS,none) and IISGA(EAXJipS,none) on the problems 11n5J1 
andfo/4461. (a) The edge entropy of HSGA(EAX.RpS,none) declines faster than that of IISGA(EAXJ/pS,none). The 
larger value of the edge entropy indicates that the population diversity is higher. (b) The average value of the edge 
similarity of HSGA(EAX.RpS,none) grows faster than the latter. (c) The curve of the JISGA!EAX.RpS,none) decreases 
steeply when the number of generations is over 60 in problem att5J2 and 190 in fniU61, but the 
JlSGA(EAXJipS,none) is able to keep the probability over 80%. 
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306 H.·K. TSAI et al. 

TABLE 11 Comparisons Between HSGA(EAX,RpS,none) and HSGA(EAX,IIpS,none) on 15 TSP Problems Taken 
from TSPLIB (24] Based on the Average CPU Time (Time), the Number of Trials Finding the Optimal Solution (Opt 
Times), and Average Solution Qualities (Error) in 30 Trials. 

HSGA(EAXHpS,none) HSGA(EAXRpS.none) 

Problem Time {sec.) Opt. times Error ('A.) Time (sec.) Opt. times Error(%) 

eillOI 1.06 30 0.0000 0.64 30 0.0000 
kroa200 8.96 30 0.0000 5.77 30 0.0000 
lin318 30.99 29 0.0079 19.13 26 0.0291 
pcb442 56.6 30 0.0000 35.89 30 0.0000 
att532 160.01 29 0.0008 102.97 7 0.0373 
u574 172.32 30 0.0000 106.37 30 0.0000 
rat575 198.69 29 0.0005 130.63 21 0.0043 
u724 353.22 27 0.0025 234.08 18 0.0122 
rat783 515.48 30 0.0000 350.67 30 0.0000 
vm10!!4 936.86 28 0.0022 655.15 18 0.0277 
pcb1173 1123.53 30 0.0000 769.54 24 0.0050 
u1432 1714.28 25 0.0019 1214.08 16 0.0145 
vm1748 4336.53 30 0.0000 3142.41 19 0.0189 
pr2392 8635.32 30 0.0000 6081.21 21 0.0049 
pcb3038 19453.3 30 0.0000 13965.04 24 0.0071 

Here the error(%) is defined as (al-eroge-optimrmr/optimum where a1-erage is the average value of the best solutions obtained by both 
methods. 

Figure 5(c) shows the probabilities of generating better children in each generation by 
HSGA(EAX,RpS,none) and 1/SGA(EAX.IlpS,none) on the problems att532 and fn/4461. 
The probabilities of both methods are near lOO% in the early stages. However, the probability 
of HSGA(EAX.RpS,none) declines steeply, while the probability of 1/SGA(EAX.IlpS,none) is 
kept at about 80% even when it has exhausted its search steps. 

Finally the solution quality is a critical factor for evaluating the power of applying the HpS 
with the EAX operator. Table II summarizes the results of both 1/SGA(EAX,R.pS,none) and 
llSGA(EAX,I/pS,none) on 15 TSPs. On average the solution quality of the latter is better 
and more stable than that of the former. l/SGA(EAX,RpS,none) is not stable, especially, 
for hard problems, such as problems att532 and rat575. In contrast, the solutions of 
HSGA(EAX,llpS,none) are very near the optimum for all testing problems. 

In summary, the tests demonstrated that the lipS is able to improve the solution quality for 
~he E~X via maintenance of population diversity and provision of a good pairing scheme. It 
ts believed that the HpS may improve the performance for most crossover operators and the 
HpS scheme will be tested on more crossover operators in the near future. 
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FIGURE 6 Comparisons of the ability of adding and preserving good edges of EAX and NJ in HSGA on the 
problemjil1446/. A good edge is defined as an edge appearing In the optimal tour. (a) and (b) are the comparison of 
average added good edges and average preserved good edges by EAX and NJ, respectively. 
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TABLE Ill Comparisons of Various Approaches of our Method Applying Different Operators: HSGA(EAX,HpS,NJ), HSGA(EAX,HpS,2-opt), HSGA(EAX,RpS,NJ), and 
HSGA(EAX,RpS,2-opt). 

HSGA(EAX.HpS.NJ) HSGA (EAX.HpS,l-opt) HSGA(EAX,RpS,NJ) HSGA (EAX.RpS,l-opt) 

Time Opt Error Time Opt Error Time Opt Error Time Opt Error 
Problem (sec.) times ("/o) (sec.) times ("/o) (sec.) times ("/o) (sec.) times ("/o) 

eiliOI 1.07 30 0.0000 1.08 30 0.0000 0.64 30 0.0000 0.65 30 0.0000 
kroa200 9.03 30 0.0000 9.36 30 0.0000 5.79 30 0.0000 5.51 30 0.0000 
lin318 31.33 30 0.0000 31.64 29 0.0079 19.18 30 0.0000 19.34 27 0.0191 
pcb442 56.94 30 0.0000 57.45 30 0.0000 35.96 30 0.0000 37.15 30 0.0000 
attS32 161.93 30 0.0000 167.21 28 0.0017 103:13 24 0.0090 115.32 11 0.0312 
uS74 173.87 30 0.0000 176.35 30 0.0000 106.41 30 0.0000 108.86 30 0.0000 
rat575 198.95 30 0.0000 202.47 29 0.0005 130.61 28 0.0009 129.57 23 0.0031 
u724 355.34 29 0.0005 360.76 23 0.0051 233.91 27 0.0019 227.55 16 0.0059 
rat783 523.21 30 0.0000 524.76 30 0.0000 350.19 30 0.0000 358.03 30 0.0000 
vm1084 949.98 29 0.0016 957.47 23 0.0558 655.52 21 0.0227 669.56 20 0.0099 
pcb1173 1143.75 30 0.0000 1144.88 23 0.0021 771.85 29 0.0005 763.31 27 0.0005 
ul432 1734.85 27 0.0034 1767.42 18 0.0068 1175.05 26 0.0080 1216.63 24 0.0038 
vml748 4418.92 30 0.0000 4423.26 24 O.o456 3053.64 27 0.0074 3205.26" 21 0.0125 
pr2392 8773.49 30 0.0000 8818.56 29 0.0003 6070.45 30 0.0000 6017.36 28 0.0009 
pcb3038 19865.7 30 0.0000 19842.3 30 0.0000 13563.5 28 0.0004 13962.2 25 0.0062 

These methods are tested on 15 TSP problems based on the average CPU time (time), the number of trials that found optimal solutions (opt times), and average solution quality (error) in 30 trials. Here the error(%) 
is defined as (averoge-optimum)foptimum where average is the average value of the best solutions obtained by the test approaches. 
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308 H.-K. TSAl et al. 

3.3 Analysis of Combining EAX and NJ 

To examine the complementary characteristics of EAX and NJ, the abilities of adding and pre­
serving "good edges" (i.e. the edges in the optimal tour) of the EAX and NJ operators was 
measured. Figure 6 shows the results of EAX and NJ for adding and preserving "good 
edges". Figure 6(a) shows that NJ can add more "good edges" than EAX in the early stages, 
while EAX outperforms NJiater. The abilities of preserving "good edges" of these two opera­
tors are similar (Fig. 6(b )), indicating that they able to keep "good edges". These two operators 
can add "good edges" without reducing the ability of preserving "good edges". Although the 
advantages of combining EAX and NJ cannot be theoretically proved, they indeed assisted each 
other in adding and preserving "good edges" in our experiments. 

To further investigate the robustness of incorporating EAX and NJ, the performance of our 
method in combining 2-opt and the NJ mutation with the EAX operator was analyzed. 2-opt is 
also applied as 20 single 2-opt steps. Table Ill shows the results of the methods applying 
different operators for 15 TSP problems. According to Tables 11 and Ill, the methods combining 
2-opt into the EAX, i.e./lSGA(EAX,RpS,2-opt) and /lSGA(EAXJ[pS,2-opt), are limited in respect 
of improving the solution quality. On the other hand, the methods combining the NJ mutation and 
the EAX, i.e.IISGA(EAX,RpS,NJ) and HSGA(EAXJ/pS,NJ), significantly improve the solution 
qualities for all test problems. For example, 1/SGA(EAX,RpS,NJ) and 1/SGA(EAX)/pS,NJ) 
perform better than llSGA(EAX,RpS,none) and 1/SGA(EAXJ/pS, none), respectively. 

In this section, we have demonstrated the robustness and adaptability of the HSGA 
for exploring the search space ofTSPs. The key novelty of the present work is the seamless 
ability of the HSGA to integrate global and local search mechanisms through incorporation 
of a number of genetic operators and selections, each with unique search mechanisms. 

4 COMPUTATIONAL RESULTS 

Following the detailed discussion of the HSGA in the last section, the HSGA was compared 
with five stochastic methods which were efficient approaches for TSPs in our surveys. These 
methods were tested on five TSP benchmark problems, including lin318, pcb442, att532, 
rat783, and pcb3038, shown in Table IV because they have been widely used to compare 
the performance among different algorithms. Our proposed algorithm, 1/SGA(EAX, 
HpS,NJ), was executed in 30 independent runs for each problem. 

Table IV summarizes the results of our method and these five approaches, including the 
ant colony system (ACS) [6], the distance-preserving crossover genetic algorithm (DGA) 
[8), the nature crossover genetic algorithm (NGA) [13], the compact genetic algorithm [3], 
and the EAX genetic algorithm (EGA) [20]. ACS is an ant colony system combined with 
the 3-opt operator; DGA combined the distance-preserving crossover and the Lin­
Kernighan neighborhood; NGA integrated the nature crossover and LK local search [18]; 
CGA mimicked the existence of solutions and combined LK local search; and EGA used 
the EAX crossover. The results of the first four methods were directly summarized from 
Re~s. [3,6, 13]. EGA was implemented based on the original paper to obtain the results 
whtch are slightly better than the results in the original paper [20). 

The best tour length, average tour length, and the group standard deviation of trials were used to 
measure the performance of the comparative methods. The values in parentheses of the best and 
the average tour length represent the percentage error defined as (average-optimum)foptimum, 
where average is the experimental value and optimum is the optimwn of a TSP problem. The 
averoge CPU time is only for reference because each approach is executed on different machines. 
Our HSGA seems slower than other approaches for large TSPs, such as the problem pcb3038. 
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GAs FOR TSPs 309 

TABLE IV Comparisons of our Method (HSGA) with Other Methods, ACS [6], DGA [8], NGA [13], CGA [3], and 
EGA[20] on Five TSP Problems Based on the Best Tour Length, Avemge Tour Length, and the Standard Deviation. 

Best (error%) 
Standard Average 

Problems Methods Average (error %) deviation CPU time 

lin318 ACS 42,029(0.000) 42,029(0.000) 0.00 537 DGA 42,029(0.000) 42033.44(0.011) 13.5 35 NGA 42,029(0.000) 42029.00(0.000) 0.00 36 
CGA 42,029(0.000) 42029.00(0.000) 0.00 12 
EGA 42,029(0.000) 42041.23(0.029) 17.1 19 
HSGA 42,029(0.000) 42029.00(0.000) 0.00 31 

pcb442 ACS N/A N/A N/A N/A 
DGA so, 778(0.000) so, 778(0.000) 0.00 53 
NGA 50, 778(0.000) 50,778(0.000) 0.00 31 
CGA 50, 778(0.000) 50,778(0.000) 0.00 22 
EGA so, 778(0.000) so, 778(0.000) 0.00 36 
HSGA 50,778(0.000) 50,778(0.000) 0.00 56 

att532 ACS 27,693(0.000) 27718.20(0.112) NJA 810 
DGA 27,686(0.000) 27697.58(0.042) 4.80 106 
NGA 27,686(0.000) 27695.61(0.035) 7.10 76. 
CGA 27 ,686(0.000) 27686.00(0.000) 0.00 112 
EGA 27,686(0.000) 27696.33(0.037) 7.92 102 
HSGA 27,686(0.000) 27686.00(0.000) 0.00 160 

rat783 ACS 8818(0.136) 883 7 .90(0.362) NJA 1280 
DGA 8806(0.000) 8806.00(0.000) 0.00 53 
NGA 8806(0.000) 8806.00(0.000) 0.00 35 
CGA 8806(0.000) 8806.00(0.000) 0.00 Ill 
EGA 8806(0.000) 8806.00(0.000) 0.00 351 
HSGA 8806(0.000) 8806.00(0.000) 0.00 515 

pcb3038 ACS N/A N/A N/A N/A 
DGA 137,705(0.008) 137760.55(0.048) 42.8 1880 
NGA 137 ,695(0.00 I) 137765.02(0.052) 45.5 816 
CGA N/A N/A N/A N/A 
EGA 137,694(0.000) 137703.77(0.007) 9.33 13,965 
HSGA 137,694(0.000) 137694.00(0.000) 0.00 19,453 

MN/ A" representJ not available in the original papers. Here the error(%) is defined as (average-optimum )/optimum where average is 
the average values of the best solutions obtained by the test approaches. 

Table N shows that the HSGA performs more robustly than the comparative methods on 
the test problems. The HSGA is able to find the optimum of the five tested benchmarks for 
each triaL On the other hand, except for CGA, the other comparative approaches are not 
stable for hard problems, such as problems att532 and pcb3038. 

To show the robustness ofHSGA on large TSPs, HSGA was compared with some LK-based 
heuristic methods, including Concorde LK [l ), chained LK (CLK) [1 ], Johnson LK [ 12], itera­
tive LK (ILK) [12], and Tabu search with LK [34], as shown in Table V. These five approaches 
performed well on these test problems according to the results of the "8th DIMACS 
Implementation Challenge: The Traveling Salesman Problem" (http:/ fwww.research.att. 
comf-dsj/chtsp/). All parameters settings of our method follow the descriptions in Section 
Ill (A) except for usal3509, whose population size is set to 4000 due to the memory size. 

Table V shows that HSGA outperforms other LK-based approaches in the test problems. 
The HSGA is able to find the optimum, and the average solution quality is within 0.00048 
above the optimum value for each test problem although the HSGA is somewhat slower than 
these approaches. For the larger problem such as usa13509, ILK is about 50 times faster than 
HSGA with population size equal to 4000. Fortunately, the running time for HSGA is about 
the same as ILK and the average tour length is 20014159 (0.001566) which is slightly better 
than ILK when the population size is 100. 
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310 H.-K. TSAI et al. 

TABLE V Comparisons of our Method (HSGA) with LK-based Methods, Concorde LK [I], Chained LK (CLK) 
[I], Johnson LK (12], Iterative LK (ILK) [12], and Tabu Search with LK [34] on Eight Larger TSP Problems Based 
on the Average Tour length. 

Problem HSGA Concorde LK Jolmson LK ILK CLK Tabu with LK 

vm1084 239,300 245,931 241,449 239,349 239,301 240,238 
(239297) (0.000016) (0.027723) (0.008993) (0.000217) (0.000017) (0.003932) 
pcbll73 56,892 58,110 57,388 56,897 56,984 57,290 
(56892) (optimal) (0.021409) (0.008718) (0.000088) (0.001617) (0.006996) 
ul432 152,975 156,827 155,386 153,122 153,328 153,727 
(152970) (0.000034) (0.025214) (0.015794) (0.000994) (0.002340) (0.004949) 
vml748 336,556 340,206 338,917 336,556 336,721 337,683 
(336556) (optimal) (0.010845) (0.007015) (optimal) (0.000490) (0.003349) 
pr2392 378,032 390,510 385,029 378,597 379,629 380,486 
(378032) (optimal) (0.033008) (0.018509) (0.001495) (0.004225) (0.006492) 
pcb3038 137,694 140,668 139,115 137,861 138,055 138,893 
(137694) (optimal) (0.021599) (0.010320) (0.001213) (0.002622) (0.008708) 
fnl4461 182,567 185,771 184,624 182,814 182,840 184,373 
(182566) (0.000005) (0.017555) (0.011273) (0.001358) (0.001501) (0.009898) 
usa13509 19,992,528 20,486,590 20,236,820 20,015,598 20,022,550 20,160,648 
(19982859) (0.000484) (0.025208) (0.012709) (0.001638) (0.001986) (0.008897) 

The Length of tour is given without brackets and that with error is given in brackets. Here the Error is Defined as (OI'<'roge-
optimum)foptimunr where Dl't'roge is the Average Value of the Best Solutions Obtained by the Test Approaches. 

5 CONCLUSION 

This study has demonstrated that the HSGA is a stable approach for TSPs. From our experi­
ence, we suggest that a global optimization method for TSPs should consist of both global 
and local search strategies as well as implementing the mechanisms of preserving good edges 
and inserting new edges into offspring. In our approach, the edge assembly crossover and 
heterogeneous edge selection are global search strategies; the family competition and the 
neighbor-join mutation are local search strategies. Our experiments indicated that the edge 
assembly crossover and the neighbor-join mutation are able to preserve good edges and 
add new edges. These strategies seem to be able to cooperate closely with each other to 
improve the overall search performance. 

Experiments on 17 benchmark TSPs have verified that the proposed approach is robust and is 
very competitive with algorithms from the best surveys. Our approach is able to find stable opti­
mum solutions for all test TSPs; specifically, it found the optimum over 27 times in 30 indepen­
dent runs for hard problems, such as att532, vm/432, and pcbJOJ8. We believe that the 
robustness of our approach makes it an effective tool for TSPs and potential applications. 

In the future, the HSGA research will be pursued in three directions: (1) development of the 
HpS with some well-known crossover operators; (2) development of the HSGA on several 
bioinformatics applications; and (3) study of a more diverse set of TSPs to determine the 
limits of our HSGA. 
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