
E L S E V I E R

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

European Journal of Operational Research 104 (1998) 593-600

T h e o r y and M e t h o d o l o g y

The/3-assignment problems *
G e r a r d J. C h a n g a,., P e i - H s i n H o b

a Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC
b lntel Corporation, 2111 N.E. 25th Avenue, JFT-I02, Hillsboro, OR 97124, USA

Received 8 January 1993; accepted 8 October 1996

Abstract

Suppose G = (S, T, E) is a bipartite graph, where (S, T) is a bipartition of the vertex set. A B-assignment is an edge
set X C_ E such that degx(i) = 1 for all i E S. The cardinality ,a-assignment problem is to find a ,a-assignment X which
minimizes fl(X) = max~r degx(j). Suppose we associate every edge with a weight which is a real number. The bottleneck
B-assignment problem is to find a ,a-assignment X that minimizes fl(X) and maximizes the minimum edge weight on X.
The weighted B-assignment problem is to find a ,a-assignment X that minimizes ,a(X) and maximizes the total weights of
edges in X. This paper presents O(ISIIEI)-time algorithms for the cardinality and the bottleneck ,a-assignment problems
and an O(ISI21TI + ISllTI2)-time algorithm for the weighted ,a-assignment problem. (~) 1998 Elsevier Science B.V.

Keywords: Assignment; Bottleneck; Augmenting path; I.abel

1. Introduction d e g x (i) = l for a l l i E S ,

Chang and l e e [3] posed the following kind of
assignment problem. Suppose there is a set S of n jobs
and a set T of m workers. Information as to whether
or not a worker is qualified for a job is known in
advance. The problem is to assign jobs to workers
such that the maximum number of jobs a worker has
is minimized. To distinguish this problem from the
traditional assignment problem [1,6-8], it is termed
the fl-assignmentproblem. This problem is formulated
in terms of bipartite graphs as follows. Consider the
bipartite graph G = (S, T, E) in which (S, T) is a
bipartition of the vertex set, and (i, j) E E if and only
if worker j is qualified for job i. A B-assignment is
an edge set X C_ E such that

* Supported in part by the National Science Council under grant
NSC77-0208-M009-21.

* Corresponding author. E-mail: gjehang@math.nctu.edu.tw

where degx(i) is the degree of i in the subgraph of
G induced by X. This implies that for any job i there
exists exactly one worker j such that (i, j) E X, and
therefore job i is assigned to worker j . To apply B-
assignments in scheduling problems, see [2].

Let B(X) denote the maximum number of jobs a
worker has in a B-assignment X, i.e.,

B(X) = max degx(j) .
jET

The cardinality B-assignment problem is to find a B-
assignment x which minimizes B (x) ; this minimum
value is denoted by B(G). This study also takes ac-
count of the following variations of the cardinality
B-assignment problem. In these variations, each edge
(i,j) is associated with a weight wq, which can be
interpreted as the profit accruing to a worker j by ex-
ecuting job i. The bottleneck B-assignment problem

0377-2217/98/$19.00 (~) 1998 Elsevier Science B.V. All fights reserved.
PII S 0 3 7 7 - 2 2 1 7 (9 7) 0 0 0 0 8 - 8

594 G.J. Chang, P.-H. Ho/European Journal of Operational Research 104 (1998) 593-600

is to find a B-assignment X with B(X) = B(G) by
which the minimum weight of an edge in X is maxi-
mized. The weighted B-assignment problem is to find
a B-assignment x with B (x) = B(G) by which the
sum of the weights of all edges in X is maximized.
Without loss of generality, it is assumed that G has a
B-assignment, i.e., each vertex in S has a degree of at
least one.

Chang and Lee [3] gave an O(ISI2[Tl2)-time al-
gorithm for the cardinality B-assignment problem.
Chang [2] offered an O(IS[2[Tl2)-time algorithm
for the weighted B-assignment problem. This paper
presents o(Is l lEI)- t ime algorithms for the cardinal-
ity and the bottleneck B-assignment problems and an
o (Is121TI + I SliT[2) -time algorithm for the weighted
B-assignment problem. Strong duality theorems for
these problems are incidentally verified.

2. The cardinality r-assignment problem

A partial B-assignment is an edge set X c E such
that degx(i) ~< 1 for all i E S. The proposed algo-
rithm for the cardinality B-assignment problem starts
with the empty partial B-assignment x = 0 and adds
one edge to X every iteration until an optimal B-
assignment is found.

For a partial B-assignment x, a vertex i in S is
exposed if degx(i) = 0 and a vertex j in T is safe if
degx(j) < B (X) , otherwise it is saturated. I fS ~ is the
set of all non-exposed vertices in S, X also is termed
a partial B-assignment of S t. An X-alternatingpath is
a path whose edges are alternately in E - X and X.
An X-augmentingpath is an X-alternating path whose
origin is an exposed vertex in S and whose terminus
a safe vertex in T.

The symmetric difference of two sets A and B is

A A B = (A - B) U (B - A).

The following lemma is readily verified.

Lemma 2,1. l f X is a partial B-assignment of S' and
P is an X-augmenting path starting at vertex i E S -
S ~, then XAP is a partial B-assignment of S t o {i}
and B (X A P) = B (x) .

An X-alternating tree relative to a partial B-
assignment x is a tree which is a subgraph of G and

satisfies the following two conditions. First, the tree
contains exactly one exposed vertex in S, which is
called the root of the tree. Secondly, any path between
the root and a vertex in the tree is an X-alternating path.

The proposed algorithm for the cardinality B-
assignment problem begins with the empty partial
B-assignment. Suppose the partial B-assignment X
obtained so far is not a B-assignment. Then an ex-
posed vertex s in S is located as the root of an X-
alternating tree and vertices and edges are added to
the tree by means of a labeling technique. Eventually,
either a safe vertex in T is added to the X-alternating
tree, or no further vertices or edges may be permitted.
In the former case, an X-augmenting path is found
and the partial B-assignment is augmented. In the
latter case, all vertices in T of the X-alternating tree
are saturated. Now, add an edge (s, t) to X; the value
of B(X) is increased by one. The tree-building pro-
cedure is repeated for ISI iterations until an optimal
B-assignment is obtained. More precisely, we obtain
Algorithm Cardinality (see Fig. 1).

Algorithm Cardinality may be verified by employ-
ing the following dual problem of the cardinality B-
assignment problem. For any A _c S, NG (A) denotes
the set of neighbors of A in graph G. In a B-assignment
x, the vertices of A can be assigned only to vertices
of NG (A), therefore

p(x) >. [IAI/INo(A)I1

by the pigeonhole principle. Consequently, the follow-
ing min-max duality inequality obtains.

Lemma 2.2.

min
X:fl--assignment

f l (X) >1 max [[A[/ ING(A) [] .
AC_S

Theorem 2.3. Algorithm Cardinality works.

Proof, Since X is updated only in Steps (a) and
(b), it continues to serve as a partial r-assignment by
Lemma 2.1 and the definition. After IS] iterations, the
partial r-assignment becomes a r-assignment. Let X*
be the final r-assignment and k* the final k obtained
from the algorithm. Suppose L is the X-alternating
tree rooted at s that forces the value of k to increase
from k* - 1 to k* in Step (b), where X is a par-
tial r-assignment of some A that does not contain s.
N6 (L n S) = L n T by the labeling method in case 1.

G.J. Chang, P-H. Ho/European Journal of Operational Research 104 (1998) 593-600

Algorithm Cardinality
Input: A bipartite graph G = (S, T, E) with bipartition (S, T).
Output: An optimal cardinality B-assignment X with fl(X) = f l (G) .
X,- - 0;
k ~- 0; {* where k =/3(X) at any time ,}
for each s E S do

set all vertices 'unscanned';
erase labels of all vertices;
label s by '0';

(,) if there is an unscanned and labeled vertex i
then {scan i in the following three cases;

ease 1. i E S { , the tree grows from vertices of S to T,}:
label each unlabeled j E T adjacent to i by 'i ';
goto (*);

case 2. i E T and is saturated {* the tree grows from T to S*}:
identify the k edges (i, j l) , (i, j2) (i, jk) of X;
label each jp by T for 1 ~< p ~< k;
goto (.) ;

(a) case 3. i E T and is safe {. an X-augmenting path found *}:
backtrack from i to s by labels to get an X-augmenting path P;
X ~-- XAP;}

(b) else {* all vertices in T of the X-alternating tree are saturated *}
{choose an edge e = (s, t);
X ' , - - X + e ;
k ~--- k + 1;}

endif;
endfor;
output (X, k);
end Cardinality

595

Fig. 1. Algorithm Cardinality.

By Step (b) , all the vertices of T in the X-alternating
tree L are saturated, i.e., degx(j) = k* - 1 for all j C
N ~ (L N T) . Also, Nctxl (LMT) = (LMS) - {s}. Let
A* = LMS. Then, I a * l - - I Z n S I - - (k* - 1) l t n T I +
1 = (k* - 1)IN6(A*) I + 1, and therefore f l (X*) =
k* = [Ia*l/INc(a*)l] . This, together with Lemma
2.2, gives

3(x*) >/ min 3(x)
X:B--assignrnent

>~ max HAI/IN~(A)I1
AC_S

>~ [IA*t/ING(A*) I1 = ~ (X*).

Hence, all inequalities are in fact equalities. This ver-
ifies that X* is an optimal/~-assignment and the algo-
rithm is therefore valid. []

Corollary 2.4.

min f l (X) =max HAI/ING(A)I].
X:fl --assignment A C S

Corollary 2.4. is an equivalent statement of Ed-
monds and Fulkerson's theorem [4]. Note that the
complexity of each iteration in the algorithm is
O(IEI), since constructing of an alternating tree uti-
lizes at most IE I edges and augmenting the assignment
requires O(ISI) time. Hence, the time complexity of
the algorithm is O(ISI IEI).

3. The bottleneck/S-assignment problem

Recall that the bottleneck]~-assignment problem
is to find a /~-assignment X with /~(X) = ~ (G)
that maximizes min{wij : (i , j) E X}. The algo-

596 G.J. Chang, P.-H. Ho/European Journal of Operational Research 104 (1998) 593-600

Algorithm Bottleneck
Input: A bipartite graph G = (S, T, E) and a weight wij for each edge (i , j) E E.
Output: An optimal bottleneck fl-assignment X.
call Cardinality (G); { , to get k* = f l(G) .}
X~-0;
W ~-- (x~; {* where W is the threshold *}
for each s E S do

set all vertices 'unscanned';
erase labels of all vertices;
labels s by '0';
zrj ~ - ~ for all j E T;

(.) if each unscanned and labeled vertex j is in T and ~-j < W
then W ,--- max{Trj : zrj < W}; {, reduce the threshold .}
select an unscanned and labeled vertex i in S or in T with 7ri ~> W;
scan i for three cases;

case 1. i E S:
for each j E T with (i , j) E E - X, ~rj < wij and 7rj < W,

label j by 'i' and ~rj ~-- wij;
goto (*);

case 2. i E T and is saturated, i.e., degx(i) = k*:
identify the k* edges (i , j l) , (i, j2) (i, jk.) of X;
label each Je by 'i' for 1 ~< p ~< k*;
goto (*);

case 3. i E T and is safe, i.e., degx(i) < k*:
backtrack from i to s by labels to get an X-augmenting path P;
X ~- XAP;}

endcase;
endfor;
output (X, W);
end Bottleneck

Fig. 2. Algorithm Bottleneck.

rithm introduced here starts with the empty partial fl-
assignment and a suitable large threshold W. Suppose
that a partial fl-assignment X of some S ~ C_ S has
been obtained at the general step. One tries to find
an X-augmenting path in the subgraph containing all
arcs (i , j) for which w o/> W. To do this efficiently, a
number ~rj is associated with each vertex j E T such
that

7rj = max {wij : (i , j) E E and i is

in the X-alternating tree}.

While growing the X-alternating tree, vertices are la-
beled but no labeled vertex j in T is scanned unless
7rj ~> W. If augmentation is possible, a partial fl-

assignment of S ~ U {s} results, where whether a ver-
tex of T is safe or not is determined by f l (G) = k*,
which is obtained from algorithm Cardinality. If aug-
mentation is not possible, the threshold W is reduced
to the maximum value of zrj strictly less than W. This
permits adding at least one vertex to the tree. Even°
tually, augmentation must occur, or otherwise by an
argument similar to Theorem 2.3, f l (G) > k*, which
is a contradiction.

The precise algorithm, Algorithm Bottleneck, is
given in Fig.2.

For the reasons adduced in the cardinality case,
the time complexity of Algorithm Bottleneck is
also o(ISIIEI). The algorithm is verified again by
a primal--dual approach. Let H denote a subgraph

G.J. Chang, P.-H. Ho/European Journal of Operational Research 104 (1998) 593-600 597

obtained from G by deleting p vertices of S and q
vertices of T such that

p + B (G) q = IsI - 1.

Suppose x is a B-assignment with B (x) = B (G) . X
has at most B (G) q edges incident to the q deleted
vertices of T and p edges incident to the p deleted
vertices of S. Thus, H contains at least one of the IS[
edges of X. Therefore, the following lemma obtains.

Lemma 3.1.

max min w 0 <~ min max wij.
X:fl(X)=fl(G) (i,j)EX H (i,j)EH

Theorem 3.2. Algorithm Bottleneck works.

Proof. Let X* be the final B-assignment obtained
by algorithm Bottleneck. Suppose the augmentation
from a partial B-assignment x ' of A to a partial B-
assignment X of A U {s} is the first time an edge
eo = (io,jo) with the minimum weight in X* is in-
cluded by the assignment. Let L be the set of labeled
vertices of G while the X~-alternating tree cannot
extend further and that causes the reduction of the
threshold W to w(eo) .

Let T1 = { j E L fq T : deg6iLnv(6tx, l)](j) >~
f l (G)} and H be the subgraph of G obtained by
deleting the vertices of (S - L) tO T1. Since ITII ---
(I t n sI - [{s)l) /B(a), then I S - L I +fl (G)[TII =
I s - tl + ILnSI - 1 = [S I - 1 . It follows from Lemma
3.1 that min{w 0 : (i , j) E X*} ~< max{wij : (i , j) E
H}. Since eo E X and w(eo) = min{wij : (i , j) E
X*}, it suffices to declare that e0 E H and w(eo) =
max{wij : (i , j) E n } .

Note that V(H) = (L fq S) U/'2, where T2 = T - TI.
Furthermore, i0 E L M S and J0 E 7"2, so e0 E H.
Since e0 is the first bottleneck included by X*, thresh-
old W must be greater than w(eo) before e0 E X*.
By the choice of eo, Zrjo = max{~rj : 1rj < W and j
is an unscanned but labeled vertex of T} and w(eo) =
max {wij : (i, jo) E E and i is a labeled vertex in S} =
~j0- Because T2 is the set of the unscanned labeled ver-
tices of T and L fq S is the set of the labeled vertices of
S, it follows that w(eo) = max { wij : (i, j) E H}. []

Corollary 3.3.

max min wii -~ rrfin
X:~(X)=fl(G) (i,j)EX " H

m a x w o .
(i , j)EH

4. The weighted fl-assignment problem

The weighted B-assignment problem is to find a B-
assignment X with f l (X) = B (G) which maximizes
the total weights of the edges in X. Suppose k* =
B(G) is obtained by the cardinality B-assignment al-
gorithm. The proposed procedure for the weighted B-
assignment problem is a primal-dual method. The in-
teger linear programming formulation of the weighted

Z WijXij

(i,j)cE

to ~ x i j = l for a l l i E S , (1 subject)

jET

E x i j < ' k * for all j E T , (2)
iES

xi)>/0 for a l l (i , j) E E , (3)

x 0 integer for all (i , j) E E. (4)

Note that condition (4) can be replaced by 'xij is bi-
nary for all (i , j) E E'. A feasible solution (xij :
(i , j) E E) is equivalent to a B-assignment X =
{ (i , j) E E : xij = 1}. The dual of its l inearpro-
gramming relaxation (i.e. (4) is dispensed with) is:

Minimize Z ui + k* E vj
iES jET

subject to vj 1> 0 for all j E T, (5)

u i + v j ~ w i j for a l l (i , j) EE . (6)

The orthogonality conditions are

iES

x O (u i + v j - w O) = O f o r a l l (i , j) E E . (8)

By linear programming theory, solutions of the pri-
mal and the dual problems are optimal if and only
if they satisfy conditions (1) - (8) . The weighted fl-
assignment problem algorithm offers initial solutions
that satisfy all conditions except (1). The number of
vertices i E S such that condition (1) falls decreases
by one for each iteration of the algorithm (see Algo-
rithm Weight, Fig. 3).

The procedure begins with the empty partial
B-assignment X = 0 and the dual solution ui =

B-assignment problem is:

Maximize

598 G.J. Chang, P-H. Ho /European Journal of Operational Research 104 (1998) 593-600

Algorithm Weight
Input: A bipartite graph G = (S, T, E) and a weight wij for each edge (i , j) E E.

Output: An optimal weighted/~-assignment X.
call Cardinality (G); { , to get k* =/~(G) *}
X ~ 0 ;
Ui ~-- m a x jET Wij for all i E S;
vj ,-- 0 for all j E T;
for each s E S do

erase labels of all vertices;
label s by '0 ' ;
~ j ~ c~ for all j E T;

(.) if there is an unscanned but labeled vertex i E S or i E T with ~ri = 0
then {scan i in the following three cases;

case 1. i E S:
for each j E T with (i , j) E E and ui + vj - wij < 7rj,

label j by ' i ' and 7rj ~-- ui + vj - wij;

goto (*) ;
case 2. i E T and is saturated, i.e., degx(i) = k*:

identify the k* edges (i, j l) , (i, j2) (i, jk*) of X;
label each jp by ' i ' for 1 ~< p ~< k*;
goto (*);

case 3. i E T and is safe, i.e., degx(i) < k*:
backtrack from i to s by labels to get an X-augmenting path P;
X ~-- XAP;}

else {d~ ~-- rnin{~-j : Try > 0 and j E T};
ui ~ ui - ~ for all labeled i E S;
vj +-- vj + ~ for all j E T with 7rj = 0;
cry ~-- 7rj - 8 for all j E T with 7rj > 0;
goto (*);}

endif; endfor;
output (X, EijEX Wij)'
end Weight

Fig. 3. Algorithm Weight.

m a x jET Wij for all i E S and vj = 0 for all j E T. These
initial primal and dual solutions clearly satisfy condi-
tions (2) - (8) . At the general step of the procedure,
conditions (2) - (8) hold, but for some i E S, con-
dition (1) does not. Then, by a labeling method, an
augmenting path is sought within the subgraph con-
taining only edges (i, j) for which ui + vj = wij, so as
to ensure continuing to satisfy condition (8). If such a
path P is found, then X is updated by X A P . The new
partial t -assignment continues to meet conditions
(2) - (8) and the number of vertices i E S such that
condition (1) fails decreases by one. I f augmentation
is not possible, then all the edges (i , j) available for

continual addition to the X-alternating tree are such
that ui + vj > wij. Such edges are incident to a vertex
of S in the X-alternating tree and a vertex of T that is
not so. Then, a change of certain 'suitable' 8 > 0 is
made in the dual variables by subtracting 8 from ui

for each tree vertex i E S and adding 8 to vj to each
tree vertex j E T. Such a change in the dual variables
affects the net value of ui + vj only for edges that
have one end in the tree and the other end not so.
The authors contend that after such a change, the new
dual variables continue to satisfy conditions (2) - (8) .
Note that only conditions (5) - (8) require checking.
Condition (5) remains true since the new value of

G.J. Chang, P.-H. Ho/European Journal of Operational Research 104 (1998) 593-600 599

Table 1

CPU (sec) CPU (sec) CPU (sec)
ISI IT I p p' B(G) for fl(G) b(G) for b(G) w(G) for w(G)

150 30 0.010 0.035 10 0.033332 10 0.033332 8031 0.016666
150 30 0.320 0.322 5 0.033332 47 0.033332 11 304 0.049998
300 30 0.010 0.034 14 0.049998 10 0.116662 16 562 0.066664
300 30 0.320 0.320 10 0.099996 37 0.166660 24336 0.099996
300 60 0.010 0.019 10 0.066664 10 0.133328 17 584 0.066664
300 60 0.320 0.324 5 0.116662 75 0.183326 25 227 0.116662

450 30 0.010 0.035 25 0.133328 10 0.233324 25 106 0.133328
450 30 0.320 0.328 15 0.216658 35 0.349986 38085 0.183326
450 60 0.010 0.020 13 0.133328 10 0.266656 25 894 0.149994
450 60 0.320 0.319 8 0.233324 71 0.349986 39482 0.216658
450 90 0.010 0.014 8 0.149994 10 0.283322 26059 0.149994
450 90 0.320 0.319 5 0.249990 75 0.399984 37 548 0.299988

600 30 0.010 0.034 27 0.216658 10 0.433316 33257 0.233324
600 30 0.320 0.321 20 0.383318 34 0.616642 50030 0.299988
600 60 0.010 0.019 15 0.233324 10 0.433316 33416 0.266656
600 60 0.320 0.318 10 0.449982 68 0.583310 52 553 0.366652
600 90 0.010 0.014 12 0.233324 I0 0.466648 34607 0.266656
600 90 0.320 0.321 7 0.416650 77 0.599976 52 777 0.433316

600 120 0.010 0.012 9 0.266656 10 0.483314 35 208 0.299988
600 120 0.320 0.320 5 0.433316 80 0.649974 52 377 0.499980
750 30 0.010 0.035 43 0.316654 10 0.666640 18694 0.349986
750 30 0.320 0.319 25 0.599976 32 0.933296 31 936 0.416650
750 60 0.010 0.019 22 0.349986 10 0.683306 17426 0.366652
750 60 0.320 0.320 13 0.599976 69 0.833300 33 310 0.483314

750 90 0.010 0.015 12 0.349986 10 0.733304 26447 0.416650
750 90 0.320 0.321 9 0.649974 77 0.883298 44392 0.533312
750 120 0.010 0.013 11 0.366652 10 0.783302 32 159 0.466648
750 120 0.320 0.321 7 0.783302 82 0.949962 51 087 0.616642
750 150 0.010 0.012 7 0.399984 10 0.783302 34543 0.499980
750 150 0.320 0.320 5 0.733304 89 1.066624 50773 0.733304

each vj is greater than or equal to its old value. The
only case for decreasing ui + vj is when i is a tree ver-
tex but j not. In that event ui + oj is decreased by t~.
Since originally ui + vj > wij, selecting a sufficiently
small 8 can make (6) true. The only opportunity for
increasing vj from zero to 8 occurs when j is a tree
vertex. But each tree vertex j E T has the property
that ~iES xij = k*, and condition (7) still holds. The
only case of ui + vj - wij changing from zero to t~ is
when j is a tree vertex but i is not. By cases 2 and 3
of the algorithm, (i , j) f [X or xij = 0, so condition
(8) still holds. Therefore, after the change, the dual
variables continue to satisfy conditions (2) - (8) .

As is the case for the threshold algorithm for the
bottleneck optimal assignment problem, a number ¢r i

is associated with each vertex j in T. This number
indicates the value of 8 so that j may be added to the
tree. The labeling procedure progressively decreases
¢rj until zrj = m i n { u i + v j - w i j : (i , j) E E a n d i E S
is in the alternating tree}. Note that a vertex j E T may
receive a label although ¢rj > 0 but its label is scanned
only if zrj = 0. Since we let t~ = min{Trj : ~-j > 0 and
j E T} in the algorithm, at least one new edge can be
added to the tree provided that G has a fl-assignment.
Thus, the X-alternating tree continues to grow.

After I SI iterations, the resulting fl-assignment sat-
isfies conditions (1) - (8) and therefore is optimal. In
each sub-iteration of an iteration, the algorithm either
scans a vertex or modifies the dual variables. Note that
no vertex is scanned more than once in the same it-

600 G.J. Chang, P-H. Ho/European Journal of Operational Research 104 (1998) 593-600

eration; and after modifying dual variables, a labeled
vertex always remains to be scanned. Therefore, there
are at most ITI dual variable modifications in an iter-
ation. Since each modification costs o(IsI + IT I) op-
erations, each iteration requires O(ISI ITI + ITI 2) op-
erations for the dual variable modifications. Because
constructing the X-alternating tree employs at most
IEI -< ISIITI edges, the time complexity of this algo-
rithm is O(ISI21TI + ISIITI2).

If either a max-flow-like or a shortest-path-like pro-
cedure is utilized to determine maximum weighted
augmentation at each iteration, the time complexity of
the algorithm is O(ISI31TI).

5. Numerical results

The three algorithms of this paper were coded in a
C program and run on a SUN SPARC 10. Bipartite
graphs of various size were generated with two kinds
of edge densities. Table 1 illustrates a typical output
of the C program.

The first (second) column is the size of S (T). The
third column is the probability/9 for the existence of
an edge ij. A random number generator determines
whether or not ij is an edge. To ascertain that f l (G) ex-
ists, when a vertex i has degree zero, an edge ij is ran-
domly added to the graph, thus rendering the real edge
density p ' = IEI/ISlITI, as is depicted in the fourth
column, larger than p for some cases. Column 5 in-
dicates the value f l (G) obtained from algorithm Car-
dinality and column 6 the running time. Column 7 is
the maximum value b(G) of the minimum weight of
an edge in a fl-assignment X with f l (X) = f l (G) and
column 8 the running time. Column 9 is the maximum
value w(G) of the sum of the weights of all edges in
a fl-assignment X with f l (X) = f l (G) and column 10
the running time.

Acknowledgements

The authors thank the referees for many constructive
suggestions for the revision of the paper.

References

[1] M.L. Balinski, R.E. Gomory, A primal method for
the assignment and transportation problems, Management
Science 10 (1964) 578-593.

[2] R.S. Chang, A weighted job assignment problem and #P-
complete result, in: Proceedings of the 3rd International
Conference for Young Computer Scientists, Beijing, China,
July, 1993, pp. 15-17.

[3] R.S. Chang, R.C.T. Lee, On a scheduling problem where a
job can be executed only by a limited number of processors,
Computers & Operations Research 15 (1988) 471-478.

[4] J. Edmonds, D.R. Fulkerson, Minimum partition ofa matroid
into independent subsets, Journal of Research of the National
Bureau of Standards 69B (1965) 67-72.

[5] J. Edmonds, D.R. Fulkerson, Bottleneck extrema, Journal of
Combinatorial Theory 8 (1970) 299-306.

[6] 0. Gross, The bottleneck assignment problem: an algorithm,
in: P. Wolfe (Ed.), Proceedings, Rand Symposium on
Mathematical Programming, Rand Publication R-351, 1960,
pp. 87-88.

[7] H.W. Kuhn, The Hungarian method for the assignment
problems, Naval Research Logistics Quarterly 2 (1955) 83-
97.

[8] H.W. Kuhn, Variants of the Hungarian methods for
assignment problems, Naval Research Logistics Quarterly 3
(1956) 235-258.

[9] E.L. Lawler, Combinatorial Optimization: Networks and
Matroids, Holt, Rinehart & Winston, New York, 1976.

[10] C.H. Papadimitriou, K. Steiglitz, Combinational Optimiza-
tion: Algorithms and Complexity, Prentice-Hall, Englewood
Cliffs, NJ, 1982.

