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Abstract

Let H be a graph. A graph G is said to be H -free if it contains no subgraph isomorphic to
H . A graph G is said to be an H -saturated subgraph of a graph K if G is an H -free subgraph
of K with the property that for any edge e∈E(K) \ E(G); G ∪ {e} is not H -free. We present
some general results on Ks; t-saturated subgraphs of the complete bipartite graph Km;n and study
the problem of 3nding, for all possible values of q, a C4-saturated subgraph of Km;n having
precisely q edges.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In 1951, Zarankiewicz posed the problem of determining the largest subgraph of
the complete bipartite graph Km;n which does not contain a subgraph isomorphic
to Ks; t [11]. The problem is now commonly known as The Zarankiewicz Problem
and the size (throughout the paper, the size of a graph refers to the number of edges
it contains) of the largest such subgraph is denoted by z(m; n; s; t). To avoid trivial
cases, it is assumed that 26s6m and 26t6n and for brevity, z(n; n; t; t) is denoted by
z(n; t). The literature contains several results on the Zarankiewicz problem, for example
see [2,4,6,7,8,9].
While the Zarankiewicz problem is concerned only with bipartite graphs of maximum

size that do not contain a given complete bipartite subgraph, there exist many smaller
bipartite graphs having the property that the addition of any further edge creates the
forbidden complete bipartite subgraph. Such graphs are the main subject of this paper
and we make the following de3nitions.
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An H -subgraph of a graph is a subgraph that is isomorphic to a given graph
H . A graph is H -free if it contains no H -subgraphs. An H -free subgraph G of
a graph K is H -saturated if it has the additional property that the for any edge
e∈E(K)\E(G); G∪{e} is not H -free.
A lot of work has been done on H -saturated subgraphs of the complete graph (see

[1,3,5,10]). However, other than results on the Zarankiewicz problem, H -saturated sub-
graphs of non-complete graphs have not been studied. In this paper, we consider Kr; s-
saturated subgraphs of Km;n.
In Section 2, we describe a relationship between certain Ks; t-free subgraphs of Km;n

and partial t-(v; K; �) designs. This relationship is used to prove several results on
C4-saturated (K2;2-saturated) subgraphs of Km;n. We note that if G is a C4-saturated
subgraph of Km;n with bipartition A∪B, then G has the nice property that its girth is
at least 6 and any pair a; b of non-adjacent vertices with a∈A and b∈B are joined
by a path of length 3. In Section 3 we focus on the problem of determining the set
S(m; n) of integers q for which there exists a C4-saturated subgraph of Km;n having
size q. Note that z(m; n; 2; 2)=Max S(m; n).
The following bounds that have been obtained for z(n; 2) and show that max S(n; n)

is about n3=2.

Theorem 1.1 (Bollobas [4]). For n=p2 +p+1 where p is a prime power, z(n; 2)=
(p+ 1)n.

Theorem 1.2 (Bollobas [4]). If n is su;ciently large then

n3=2 − n4=3¡z(n; 2)6 1
2 (n+ n

√
4n− 3):

In particular, limn→∞ z(n; 2)n−3=2 = 1.

2. General results

We now describe the connection between certain Ks; t-free subgraphs of Km;n and
partial t − (v; K; �) designs. A (partial) t − (v; K; �) design is a pair (V; B) where V
is a v-set and B is a collection of subsets, with sizes belonging to K , of V with the
property that every t-set of V is in (at most) exactly � subsets of B.
Given any partial t − (v; K; �) design (V; B), the variety-block graph of the design

is the bipartite graph GV;B with vertex partition V; B de3ned by joining v∈V to b∈B
if and only if v∈b. Clearly, if GV;B contains a Kt; �+1-subgraph, with the part of size t
in V and the part of size �+ 1 in B, then there will be a t-set which occurs in �+ 1
blocks. Conversely, given a Kt; �+1-free bipartite graph GV;B, with vertex partition V; B,
we can de3ne a partial t − (v; K; �) design (V; B) by letting v∈b if and only if v∈V
is joined to b∈B in GV;B.
Here, we are mostly interested in C4-free subgraphs of Km;n and hence in partial

2 − (v; K; 1) designs. In order to study C4-saturated subgraphs, we now introduce the
notion of a non-extendable partial 2− (v; K; 1) design.
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A partial 2−(v; K; 1) design (V; B′) is said to be an extension of a partial 2−(v; K; 1)
design (V; B) if B �=B′ and for each b∈B there exists a b′∈B′ with b⊆b′. A partial
2 − (v; K; 1) design is said to be non-extendable if it has no extension. We have the
following lemma.

Lemma 2.1. The variety-block graph GV;B of a partial 2− (v; K; 1) design (V; B) is a
C4-saturated subgraph of K|V |; |B| if and only if (V; B) is non-extendable.

Proof. If (V; B) is extendable, then let (V; B′) be an extension and let x∈b′\b
where b⊆b′; b∈B and b′∈B′. Then GV;B∪{x; b} is C4-free, since (V; B′) is a partial
2− (v; K; 1) design; so GV;B is not C4-saturated.
If GV;B is not C4-saturated, then let {x; b} be an edge such that GV;B∪{x; b} is

C4-free. Then (V; B′), where B′ is the set of blocks obtained from B by replacing b
with b′ = b∪{x}, is an extension of GV;B.

We 3rst consider C4-saturated subgraphs of smallest possible size. The following
two lemmas show that for all m; n¿2; m+ n− 1 is the smallest element of S(m; n).

Lemma 2.2. A C4-saturated subgraph of Km;n contains at least m+ n− 1 edges.

Proof. If G is a spanning subgraph of Km;n with fewer than m+ n− 1 edges then G
is disconnected. Hence, there is an edge of Km;n which is not in G and which joins
two components of G. Clearly, the addition of such an edge to G does not create a
C4 and so G is not C4-saturated.

Lemma 2.3. For all m; n¿2, there exists a C4-saturated subgraph of Km;n with
m+ n− 1 edges.

Proof. Let V be a set of size m with m¿2 and let x∈V. Also, let B be the collection
of n subsets of V given by B= {V; {x}; {x}; : : : ; {x}}. It is easy to check that (V; B)
is a non-extendable 2 − (m; {1; m}; 1) design and so by Lemma 2.1, its variety-block
graph is a C4-saturated subgraph of Km;n with m+ n− 1 edges.

We now consider C4-saturated subgraphs of Km;n with the maximum possible num-
ber of edges. We begin by proving the following lemma. It shows that in the case
K = {k; k + 1}, a partial 2 − (m;K; 1) design is non-extendable whenever the number
of pairs which do not occur in blocks is less than k.

Lemma 2.4. Suppose (V; B) is a partial 2 − (v; K; 1) design with B= {b1; b2; : : : ; bn}.
If m= v; K = {k; k+1} for some positive integer k, and ( v2 )−

∑n
i=1 (

|bi|
2 )¡k then the

variety-block graph of (V; B) is a C4-saturated subgraph of Km;n having maximum
size.

Proof. By Lemma 2.1, it suJces to show that there is no partial 2 − (v; K ′; 1)
design (V; A) with A= {a1; a2; : : : ; an} and

∑n
i=1 |ai|¿

∑n
i=1 |bi| (if no such design
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exists then clearly (V; B) is non-extendable). Suppose otherwise and for i=1; 2; : : : ; n let
|ai|=yi; |bi|= xi; di =yi − xi and d∗i =( yi2 ) − ( xi2 ). Then

∑n
i=1 di =

∑n
i=1

(yi − xi)=
∑n

i=1 yi −
∑n

i=1 xi¿0 and

d∗i =

(
yi

2

)
−
(
xi

2

)
=

yi(yi − 1)
2

− xi(xi − 1)
2

=
y2
i − x2i + xi − yi

2

=
(yi − xi)(xi + yi − 1)

2
= (yi − xi)xi +

(yi − xi)(yi − xi − 1)
2

¿ dik
(
since xi ¿ k and

(yi − xi)(yi − xi − 1)
2

¿ 0
)
:

Now, (
v

2

)
−

n∑
i=1

( |Bi|
2

)
=

(
v

2

)
−

n∑
i=1

(( |yi|
2

)
− d∗i

)

=

(
v

2

)
−

n∑
i=1

( |yi|
2

)
+

n∑
i=1

d∗i

¿

(
v

2

)
−

n∑
i=1

( |yi|
2

)
+

n∑
i=1

dik

¿
n∑
i=1

dik

(
since

(
v

2

)
¿

n∑
i=1

( |yi|
2

))

¿ k

(
since

n∑
i=1

di¿0

)
:

This is a contradiction and we have the proof.

The following corollary is immediate.

Corollary 2.1. Let GV;B be the variety-block graph of a 2− (m; {k; k + 1}; 1) design
(v; B) with |B|= n. Then GV;B is a C4-saturated subgraph of Km;n with maximum size.

We note that Theorem 1.1 follows immediately from Corollary 2.1 since there exists
a 2− (p2 + p+ 1; {p+ 1}; 1) design whenever p is a prime power. Also, it follows
from Corollary 2.1 that the maximum size of a C4-saturated subgraph of Kn;n is no
greater than that achieved if there exists a symmetric 2− (n; k; �) design (a symmetric
design has an equal number of points and blocks). Hence, it follows that z(n; 2)6nk
where k = 1

2(1+
√
4n− 3) is size of the blocks in a symmetric 2− (v; k; �) design, and

so we have the upper bound in Theorem 1.2.
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3. Possible sizes of C4-saturated subgraphs of Km;n

Let S(m; n) denote the set of integers q for which there exists a C4-saturated subgraph
of Km;n having size q. In this section we illustrate, by considering the example K9;12,
how the ideas developed in the preceding section may be used to determine S(m; n).

Lemma 3.1. There exists a C4-saturated subgraph of K9;12 of size q if and only if
q∈{20; 21; : : : ; 36}.

Proof. Clearly, the variety-block graph of the 2 − (9; 3; 1) design yields the largest
possible C4-saturated subgraph of K9;12. This graph has 36 edges. Also, by Lemmas 2.2
and 2.3 the smallest possible C4-saturated subgraph of K9;12 has 20 edges. Hence,
we know that S(9; 12)⊆{20; 21; : : : ; 36} and it remains to construct a C4-saturated
subgraph of K9;12 of size q for q=21; 22; : : : ; 35. By Lemma 2.1 it is suJcient to
construct a non-extendable 2 − (9; K; 1) design (V; B) with |B|=12 and

∑
b∈B |b|= q

for q=21; 22; : : : ; 35. Such designs are given below,

21: {1; 2; : : : ; 8}; {1; 9}; {2; 9}; {1}; : : : ; {1};
22: {1; 2; : : : ; 8}; {1; 9}; {2; 9}; {3; 9}; {1}; : : : ; {1};
23: {1; 2; : : : ; 8}; {1; 9}; {2; 9}; {3; 9}; {4; 9}; {1}; : : : ; {1};
24: {1; 2; : : : ; 8}; {1; 9}; {2; 9}; : : : ; {5; 9}; {1}; : : : ; {1};
25: {1; 2; : : : ; 8}; {1; 9}; {2; 9}; : : : ; {6; 9}; {1}; : : : ; {1};
26: {1; 2; : : : ; 8}; {1; 9}; {2; 9}; : : : ; {7; 9}; {1}; : : : ; {1};
27: {1; 2; : : : ; 8}; {1; 9}; {2; 9}; : : : ; {8; 9}; {1}; {1}; {1};
28: {1; 2; 3; : : : ; 7}; {1; 8; 9}; {2; 9}; {3; 9}; : : : ; {7; 9}; {2; 8}; {3; 8}; {1}; {1};
29: {1; 2; 3; : : : ; 7}; {1; 8; 9}; {2; 9}; {3; 9}; : : : ; {7; 9}; {2; 8}; {3; 8}; {4; 8}; {1};
30: {1; 2; 3; : : : ; 7}; {1; 8; 9}; {2; 9}; {3; 9}; : : : ; {7; 9}; {2; 8}; {3; 8}; {4; 8}; {5; 8};
31: {1; 2; 3; : : : ; 6}; {1; 7; 8}; {1; 9}; {9; 7; 2}; {9; 8; 3}; {7; 3}; {7; 4}; {7; 5};

{7; 6}; {8; 2}; {8; 4}; {8; 5};
32: {1; 2; 3; 4; 5}; {1; 6; 7}; {1; 8; 9}; {6; 8; 2}; {6; 9; 3}; {7; 8; 4}; {7; 9; 5};

{6; 4}; {6; 5}; {7; 2}; {7; 3}; {1};
33: {1; 2; 3; 4}; {5; 6; 7}; {8; 9}; {8; 5; 1}; {8; 6; 2}; {8; 7; 3}; {9; 5; 2};

{9; 6; 3}; {9; 7; 1}; {4; 5}; {4; 6}; {4; 7};
34: {1; 2; 3; 4}; {1; 5; 6}; {7; 8; 9}; {5; 7; 1}; {5; 8; 2}; {5; 9; 3}; {6; 7; 2};

{6; 8; 3}; {6; 9; 1}; {4; 7}; {4; 8}; {4; 9};
35: {1; 2; 3; 4};{1; 5; 6; 7};{1; 8; 9};{8; 5; 2};{8; 6; 3};{8; 7; 4};{9; 5; 3};{9; 6; 4};

{9; 7; 2}; {5; 4}; {6; 2}; {7; 3}:



268 D.E. Bryant, H.-L. Fu /Discrete Mathematics 259 (2002) 263–268

References

[1] N. Alon, An extremal problem for sets with applications to graph theory, J. Combin. Theory Ser. A
40(1) (1985) 82–89.

[2] A.E. Andreev, On an algebraic method for construction of extremal Boolean matrices, Comput. Artif.
Intell. 10(2) (1991) 99–109.

[3] C.A. Barefoot, L.H. Clark, R.C. Entringer, T.D. Porter, L.A. Szekely, Zsr Tuza, Cycle-saturated graphs
of minimum size, Discrete Math. 150(1–3) (1996) 31–48.

[4] B. BollobLas, Extremal Graph Theory, Academic Press, New York, 1978.
[5] B. BollobLas, Extremal Graph Theory, Handbook of Combinatorics, Vols. 1, 2. Elsevier, Amsterdam,

1995, pp. 1231–1292.
[6] Z. FNuredi, An upper bound on Zarankiewicz’ problem, Combin. Probab. Comput. (5) (1996) 29–33.
[7] Z. FNuredi, New asymptotics for bipartite TurLan numbers, J. Combin. Theory Ser. A 75 141–144.
[8] J.R. Griggs, Chih-Chang Ho, On the half-half case of the Zarankiewicz problem, preprint.
[9] J.R. Griggs, Ouyang, (0; 1)-matrices with no half-half submatrix of ones, European J. Combin. 18 (1997)

751–761.
[10] L.T. Ollmann, K2; 2 saturated graphs with a minimal number of edges, Proceedings of the Third

Southeastern Conference on Combinatorics, Graph Theory, and Computing, Florida Atlantic University,
Boca Raton, FL, 1972, pp. 367–392.

[11] K. Zarankiewicz, Problem p 101, Colloq. Math. 2 (1951) 301.


	 C4 -saturated bipartite graphs
	Introduction
	General results
	Possible sizes of C4-saturated subgraphs of Km,n
	References


