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SUMMARY

In many areas of engineering practice, applied loads are not uniformly distributed but often concentrated
towards the centre of a foundation. Thus, loads are more realistically depicted as distributed as linearly
varying or as parabola of revolution. Solutions for stresses in a transversely isotropic half-space caused by
concave and convex parabolic loads that act on a rectangle have not been derived. This work proposes
analytical solutions for stresses in a transversely isotropic half-space, induced by three-dimensional, buried,
linearly varying/uniform/parabolic rectangular loads. Load types include an upwardly and a downwardly
linearly varying load, a uniform load, a concave and a convex parabolic load, all distributed over a
rectangular area. These solutions are obtained by integrating the point load solutions in a Cartesian co-
ordinate system for a transversely isotropic half-space. The buried depth, the dimensions of the loaded
area, the type and degree of material anisotropy and the loading type for transversely isotropic half-spaces
influence the proposed solutions. An illustrative example is presented to elucidate the effect of the
dimensions of the loaded area, the type and degree of rock anisotropy, and the type of loading on the
vertical stress in the isotropic/transversely isotropic rocks subjected to a linearly varying/uniform/parabolic
rectangular load. Copyright © 2002 John Wiley & Sons, Ltd.

KEY WORDS: analytical solutions; stresses; transversely isotropic half-space; three dimensional; buried;
linearly varying, uniform, and parabolic rectangular loads

1. INTRODUCTION

Anisotropic deformability is common in foliated metamorphic, stratified sedimentary and
regularly jointed rock masses. Existing closed-form solutions, assuming linear and isotropic
elasticity, for stress in such rocks or rock masses are normally not realistic. Better results can
only be obtained by considering anisotropic deformability. Practically, an anisotropic rock can
be modelled as either an orthotropic or a transversely isotropic material. This work derives
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elastic solutions for stresses in a transversely isotropic half-space subjected to three-dimensional,
buried, linearly varying/uniform/parabolic rectangular loads.

Numerical methods, graphical methods, and closed-form solutions can be used to calculate
the stresses induced by external loads in an anisotropic half-space. The numerical procedures
can easily be automated with modern computers. However, most contributions have addressed
the calculation of stresses/displacements in isotropic media. The authors have proposed
graphical method of computing stress/displacement in transversely isotropic rocks subjected to
three-dimensional, irregularly shaped surface loads [1,2]. The use of anisotropic influence charts
to calculate the stresses/displacements is fast. However, the advantages of using the influence
charts decline if the loading region is not uniform or stresses/displacements at multiple depths
are simultaneously sought. Therefore, the closed-form solution method to estimate the stresses
induced by non-uniform loads may be an alternative to the numerical or graphical method.

A point load solution forms the basis of solutions to complex loading problems. Several
researchers have presented solutions for stresses or displacements in response to a concentrated
force applied to transversely isotropic half-spaces [3-5]. Wang and Liao [1,6] detailed various
anisotropic loading conditions to obtain solutions in cases other than those that involved point
loads. Stresses in a transversely isotropic half-space subjected to an arbitrary shape loaded area
can be estimated by dividing the loaded area into several regularly shaped sub-areas, including
triangles or rectangles. The authors recently derived closed-form solutions for stresses and
displacements in a transversely isotropic half-space subjected to uniform/linearly varying
triangular loads [7]. However, only uniform and some linearly varying rectangular loads acting
on the transversely isotropic half-space were presented [6,8]. In many engineering fields [9,10],
applied loads are not uniformly distributed but more concentrated towards the centre of the
foundation. Hence, loads may be more realistically simulated as being distributed as linearly
varying or as parabola of revolution. Teferra and Schultze [11] obtained solutions for stresses
beneath the centre of a load in an isotropic half-space, for vertical concave and convex parabolic
loads of infinite length. Nevertheless, existing closed-form solutions for anisotropic half-spaces
are available only for axisymmetric problems. Gazetas [12,13] analytically investigated how soil’s
transverse isotropy affects stress distributions when it is subjected to axisymmetric parabolic
vertical surface loading. To our knowledge, no closed-form solution for stresses in a transversely
isotropic medium subjected to three-dimensional, buried, parabolic asymmetric loads has been
proposed. Integrating the point load solutions in a Cartesian co-ordinate system [6] yields
analytical solutions for stresses in the half-space caused by linearly varying/parabolic rectangular
loads. The derived solutions are clear and concise. Also, according to our results, the buried
depth, the dimensions of the loaded region, the type and degree of material anisotropy, and the
loading type all affect stresses in a transversely isotropic half-space. An illustrative example is
presented at the end of this paper to elucidate the effect of the dimensions of the loaded area, the
type and degree of rock anisotropy, and the type of loading on vertical stress in isotropic/
transversely isotropic rocks subjected to a linearly varying/uniform/parabolic rectangular load.

2. SOLUTIONS FOR STRESSES INDUCED BY LINEARLY VARYING AND

PARABOLIC RECTANGULAR LOADS

In this work, the solutions for stresses in a transversely isotropic half-space subjected to three-
dimensional, buried, linearly varying, uniform and parabolic rectangular loads are directly
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integrated from the point load solutions in a Cartesian co-ordinate system [6]. Planes of
transverse isotropy are assumed to be parallel to the horizontal surface. Appendix A provides
closed-form solutions for stresses subjected to a point load (P, P,,P.) that acts at z=h
(measured from the surface) in the interior of a transversely isotropic half-space.

In the case of point load solutions, p,; ~ ps; is defined in Equations (A1)—(A6) as the
elementary functions for stresses. The solutions for stresses in a transversely isotropic half-space
subjected to linearly varying and parabolic rectangular loads can be directly obtained by
integrating the elementary functions of the point load solutions. The closed-form solutions for
stresses induced by linearly varied loads distributed over a rectangular area are first given below.

2.1. Linearly varying rectangular loads

A three-dimensional, upwardly linearly varying load, P}inear (j = x, y,z) (forces per unit area)
distributed on a rectangle of length L and width W at a buried depth of /4 as shown in Figure 1 is
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Figure 1. The case of upwardly linearly varying rectangular loads with L= area at the
buried depth of A(x > 0).
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considered. The loading type in Figure 1 can be expressed as the following form
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where o is a constant. According to Equation (1), a specifies three different loading cases.
Case 1: o> 0, the load is upwardly linearly varying as depicted in Figure 1;
Case 2: o = 0, the load is uniform, as shown in Figure 2(a);
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Figure 2. (a) The case of uniform rectangular loads with LW area at the buried depth of
h(oe = 0); (b) the case of a completely downwardly linearly varying rectangular loads with L= W
area at the buried depth of (e = —1).
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Case 3: 0.<0, the load is downwardly linearly varying. Figure 2(b) shows zero contact stress
applied to the region at the edges of Figure 1 in the case o = —1.

An elementary force P}i“e"“ dn dg, acting on an elementary surface dn d{, is extracted from the
rectangle to calculate the stresses in the transversely isotropic half-spaces. Replacing the
concentrated force P; by Pinrd{dn, y by (y —n), and x by (x — ) in Equations (A1)~(A6)
yields solutions for stresses under the action of the elementary force in the half-space.
Integrating the solutions with respect to  from 0 to W, and with respect to { from 0 to L, we can

derive the complete solutions:
. LW
i = [ [ e anas @
0o Jo

where [6] = [0xr, Oy Oz, Tays Tyzs 1.:]T (superscript, T, denotes the transpose matrix) and the
superscripts, linear and p, refer to the stress components induced by a linearly varying
rectangular load and a point load, respectively. The explicit solutions for stresses in a half-space
can be regrouped in the forms of Equations (A1)—(A6). The exact solutions in this case are
therefore just Equations (A1)—(A6), except that the stress elementary functions psi;, peis---»

pwi are replaced by the stress integral functions NSNSV, NS<21i>—NS<2‘t>,...,N<1>—NS<;> (i=

sli sli s8i

linear linear linear linear linear linear H H
1,2,3,a,b,c,d,e) for o2, e e S (Figure 1), respectively. For

example, py); is replaced by NSNS as follows.

sli sli

(1 [yl byl a1y 1 [yl 2
[psli] :>Ns1i +OC|:<Z+W—W *NS“ —Z 1 —= *Nsli

1 x| 3 1 4
—W(l —f) AT AT 3)

Similarly, the solutions under parabolic loading conditions can also be expressed as
Equations (A1)—(A6), except for the integral functions. Hence, only the stress integral functions
are presented.

Nﬁ? =5-% 4)

N = <385+ *S4 — ziSs (5)

NS = —(Ri — Rewi — Rywi + Ry ) (6)

NSV = —HR: = Ryp)x — Resi = Ryeysi)x* + (57 + 2S5 — (v° + 21)S4] @)
NG =83 — 83 ®)

NG = N5 )

NSY = —xSi +x*Sy — ziSs (10)

NSY = —H(Ri — Rei)y — (Rysi — Rovyp)y* + (02 + 281 — (x* + 28] (11)
Nj =S5 (12)
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NS = switchx, y in NS (32)
N§’ = switchx, y in NS (33)
NS = switchx, y in NS/ (34)
N$Y = switchx, y in NSV (35)

where

XF=x—L, y=y—W, Re=\/x"+12+2, Rp=/x2+y" +2

s = Bt Y Re
Ri+y | Rei+
Rysi R i + x*
Sy = ;’H . Sy = In| X
itx Ry*i+x
* * # %

Ss = tan”! RO tan~! xy tan~! Xy 4 tan”! X7y

il ZiRyi ZiR i ZiRye i

Sszlnm, 57:1nm’
Ri+zi Rx*i+Zi
Xy x*y
2 2
So = tan™" Yt zReitz) tan-12-+ zZi(Rosyri + 21)
xy* Xy
Sjp = tan™"! w —tan"! W
Xy xy*
S = tan™! x Zi('R"*i t2) ! x4 2Ry + z:‘),
x*y x¥

Slzzlnﬂ, 513:1HL+Z’

Ri+Z,‘ Ry*i+Zi

Equations (A1)-(A6), (3) and (4)—(35) can easily be solved automatically to calculate the stresses
in a transversely isotropic half-space subjected to three-dimensional, buried, linearly varying
rectangular loads.

2.2. Parabolic rectangular loads

A non-linear, three-dimensional, buried load distributed as a concave parabola on a rectangle
(Figure 3) is considered to demonstrate the results for non-linearly distributed loads. Figure 3
depicts that the concave parabolic load applied over a rectangular region with sides L and .
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Figure 3. The case of concave parabolic rectangular loads with L= area at the buried depth of A(f > 0).

The type of loading shown in Figure 3 has the following form [14]:
2 2

2.2
~ X y Xy
P P}’“{l +h (ﬁ*ﬁpwzﬂ (36)

where f is a constant, and that specifies the following three cases:

Case 1: >0, the load is concave parabolic, as shown in Figure 3;

Case 2: f = 0, the load is uniform; this case is identical to that of « = 0 (Figure 2(a));

Case 3: <0, the load is convex parabolic. Figure 4 depicts zero contact stress at the region
shown at the edges of Figure 3, for the case of f = —1.

The elementary force P;, acting on a small rectangle, can also be expressed as P}’ar didn (j =
x, y,z) (forces per unit area). Similarly, as for the linearly varying rectangular load, the solutions
for stresses can be obtained by direct integration as follows:

L w
[P = /O /0 (017 dy dc 37
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Figure 4. The case of completely convex parabolic rectangular loads with L=/ area at the
buried depth of A(f = —1).

where the superscripts, par and p, refer to the stress components that are induced by a parabolic
load and a point load, respectively. The explicit solutions for stresses in a half-space can be
regrouped in the forms of Equations (A1)-(A6). The exact solutions in this case are the same as
Equations (A1)—(A6), except that the stress elementary functions psi;, psi, .- ., Pssi are replaced
by the stress integral functions, NY<111.>7NQ<3>, Nleil NS,<29i>,...,N‘%li>fN\%91.> (i=1,23,a,b,c.d,e)
for oP27, apir, oPar ‘c}c’fv‘r, Pt P (Figure 3), respectively. In this loading case, for instance, py;

X y zz vz
should be replaced by NSNS as follows:
<1y ¥,y <1y
[Pail = Niii” + B { 72+ 52 *S14 ) #Nais

2x @ 2y Gy Ay
= 2 *Sis* N — 5 # S NG — o # N
Sis Si4

+ 22N + 2R NS +;

(T 8y 9>
2 Y, 2 Nty (2x« Ny + 2y« Ny  — N7 (38)

sli sli sli

where Sjy =1 — Z—i, Sis=1-— ;,—72 Equations (4)—(35) are the stress integral functions for Nfllit
NP, N52£.>—Nv<2‘}>, . ,Né?—]\{fg?. Hence, only the integral functions for N$’-NS, Nfz?—

sli sli sli

ng’?, o ,NS%?—NSE? are given as follows:

N<5> = (R, — Rx*i)y - (Ry*i - Rx*y*i)y* - Z'2N<l> (39)

sli i Vsli
N$Y =N§Y (40)
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Equations (A1)—(A6), (4)—(35), (38), and (39)—(78) can be applied to compute the stresses in a
transversely isotropic half-space subjected to three-dimensional, buried and parabolic
rectangular loads. Also, the presented formulae for stresses are consistent with those presented
by Teferra and Schultze [11] as the medium is isotropic and is in a state of plane strain.
Moreover, stresses in the media in response to non-uniform, irregularly shaped loads can be
estimated by superposing values that correspond to the rectangular sub-areas. Figure 5 shows a
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Three-dimensional buried point load solutions
for a transversely isotropic half-space
- stress elementary functions
(Equations (A1)-(A6))

Integration
4 A
Three-dimensional buried Three-dimensional buried
linearly varying rectangular loads parabolic rectangular loads
(Figures 1, 2) (Figures 3, 4)
A A 4
Stress integral functions Stress integral functions
(Equations (3), (4)-(35)) (Equations (4)-(35), (38), (39)-(78))
< P < ¥ P
A
downwardly
upwardly . ; .
finearly varying linearly varying uniform loads concave convex
loads loads (a=p=0, parabolic loads parabolic loads
(> 0, Figure 1) (o< (;,bl):igure Figure 2a) (B >0, Figure 3)| |(B <0, Figure 4)

Figure 5. Flow chart to compute the stresses in a transversely isotropic half-space subjected to
presented loading types.

flow chart of the computation for stresses induced by linearly varying, uniform, and parabolic
rectangular loads in a transversely isotropic half-space.

3. ILLUSTRATIVE EXAMPLE

This section presents a parametric study to confirm the derived solutions and elucidate the effect
of the type and degree of material anisotropy, the dimensions of the loaded area, and the types
of loading on the stresses. An example illustrates the solution of the vertical stress, as depicted in
Figures 6-11, for the action of vertical, linearly varying, uniform and parabolic loads on a
rectangle. Several types of isotropic and transversely isotropic rocks are considered as
foundation materials. Table I lists their elastic properties, with E/E’ and G/G’ ranging
between | and 3 and v/v' varying between 0.75 and 1.5. The values of E and v adopted in Table I
are 50 GPa and 0.25, respectively. The selected domains of anisotropic variation follow the
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Figure 6. Effect of the type and degree of rock anisotropy on vertical stress induced by the
loading case of o= —1: (a) for Rocks 1, 2, 3 with E/E' =1,2,3, and v/v' = G/G' =1,
respectively; (b) for Rocks 1, 4, 5 with v/v' = 1,0.75,1.5, and E/E' = G/G’' = 1, respectively;
(c) for Rocks 1, 6, 7 with G/G' = 1,2,3, and E/E' = v/v' = 1, respectively.
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Figure 7. Effect of the type and degree of rock anisotropy on vertical stress induced by the
loading case of f=—1: (a) for Rocks 1, 2, 3 with E/E'=1,2,3, and v/V' = G/G =1,

respectively; (b) for Rocks 1, 4, 5 with v/v' = 1,0.75, 1.5, and E/E’

G/G' =1, respectively;

(c) for Rocks 1, 6, 7 with G/G' = 1,2,3, and E/E' = v/v' = 1, respectively.
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Figure 8. Effect of the type and degree of rock anisotropy on vertical stress induced by the

loading case of « = ff =0: (a) for Rocks 1, 2, 3 with E/E' = 1,2,3, and v/v' = G/G' = 1,

respectively; (b) for Rocks 1, 4, 5 with v/v' = 1,0.75,1.5, and E/E' = G/G’ = 1, respectively;
(c) for Rocks 1, 6, 7 with G/G' = 1,2,3, and E/E' = v/v' = 1, respectively
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Figure 11. Effect of the presented loading types on vertical stress: (a) for Rock 1 with E/E' =v/v =
G/G' = 1; (b) for Rock 2 with E/E' =2, v/v' = G/G' = 1; (c) for Rock 3 with E/E' =3,v/V = G/G' =1,
(d) for Rock 4 with v/v/ = 0.75, E/E' = G/G' = 1; (e) for Rock 5 with v/v' = 1.5, E/E' = G/G' = 1; (f) for
Rock 6 with G/G' =2, E/E' =v/v' = 1; (g) for Rock 7 with G/G' =3, E/E' =v/v = 1.

suggestions of Gerrard [15] and Amadei et al. [16]. The loads act on the horizontal surface
(h = 0) of isotropic/transversely isotropic rocks in this example. The effect of the degree of
anisotropy, specified by the ratios E/E’, v/v’, and G/G’ on the stresses is considered.
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Figure 11. (continued)

Using Equations (A1)—(A6), (3), (4)—(35), (38), and (39)—(78), a FORTRAN program was
written to calculate the six stress components under linearly varying, uniform and parabolic
loading. In this study, only the vertical stress at the right corner, C (at depth z from the surface)
of the loaded area was calculated. Figures 6-10 present the normalized vertical stress (¢!n"/
plinear op gpar /ppary at point C, induced by a completely downwardly linearly varying load
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Table I. Elastic properties and root types for different rocks.

Rock type E/E v/v G/G Root type
Rock 1. Isotropic 1.0 1.0 1.0 Equal
Rock 2. Transversely isotropic 2.0 1.0 1.0 Complex
Rock 3. Transversely isotropic 3.0 1.0 1.0 Complex
Rock 4. Transversely isotropic 1.0 0.75 1.0 Complex
Rock 5. Transversely isotropic 1.0 1.5 1.0 Distinct
Rock 6. Transversely isotropic 1.0 1.0 2.0 Distinct
Rock 7. Transversely isotropic 1.0 1.0 3.0 Distinct
(v = —1), a completely convex parabolic load (f = —1), a uniform load (x = =0), an

upwardly linearly varying load (o = 1) and a concave parabolic load (f = 1), respectively, over a
rectangular area for various rock types (Rocks 1-7, Table I) and for various dimensions of the
loaded area (m =L/z or n= W/z). The figures plot the relationship between two non-
dimensional factors, m and glinear /plinear (op gpar /ppary for p = 0.1, 0.5, 1.0, oo. In these figures,
the non-dimensional factor, n, is adopted to elucidate the effect of the dimensions of the loaded
region on the vertical stress. The stress beneath a strip is that beneath a rectangle as either L or
W approaches infinity (co) [17]. However, practically, a rectangle for which W /L >4 to 5 can be
regarded as a strip [18]. In this example, n = 40 is selected in the simulation of an infinite load.
Hence, with knowledge of the type and magnitude of the loading, the dimensions of the loaded
area and the type of rock the vertical stress at point C can be estimated from these figures.
Figures 11(a)-11(g) summarize the results of applying the same stress as induced by the loads
mentioned above (e =—1, f=—1,a==0,a=1, f =1) to Rocks 1-7, respectively, with
n = 1.0. With reference to Figures 611, the effects of the type and degree of rock anisotropy,
loading types and the dimensions of the loaded region on the stress induced by surface loading
are investigated below.

Figures 6(a)-6(c), 7(a)-7(c), 8(a)-8(c), 9(a)-9(c), and 10(a)-10(c) plot the vertical stress
induced by loading with a =—1, f=—-1, a==0, a=1, and f =1 for Rocks 1 (E/E =
v/ =G/G =1),2(E/E =2,v/V=G/G =1), 3(E/E'=3,v/vV=G/G'=1), Rocks 1, 4
/v =0.75E/E'=G/G'=1),5 v/V =15E/E =G/G' =1), Rocks 1, 6 (G/G' =2,E/E =
v/vV . =1), 7(G/G =3,E/E' =v/v = 1) with variable non-dimensional factors (m,n). From
Figure 6(a), the stress induced in Rocks 2 and 3 is less than that in Rock 1 within the smaller
loaded region (horizontal scale, m); however, the calculated result changes as m increases. For a
given n (= 0.1, 0.5, 1.0, o0), the non-dimensional factor, m, significantly affects the induced
vertical stress at point C. The trend of vertical stress in Figure 6(c) for Rocks 6 and 7 is the
opposite of that in Figure 6(a) for Rocks 2 and 3. Figures 6(a) and 6(c) preliminarily imply that
the induced stress depends on the type and degree of anisotropy for a given loading (¢ = —1).
Figure 7(a) indicates that the induced stress with f = —1 for Rocks 1-3 increases as E/E’
increases, whereas for Rocks 6 and 7 (Figure 7(c)) the results are totally different. Notably, a
little of the stress in Figure 7(c) might be transferred by tension in Rock 7, when n = 0.1 and 0.5,
within a very small loaded area (m<0.5). Figures 8(a), 9(a) and 10(a) show that for a given
loading type (0 ==0, o« =1, and f=1), depth (z), and loaded region (L or W), the
magnitude of the vertical stress decreases as E/E’ increases (Rocks 2, 3). Comparing Figures
8(c), 9(c) and 10(c) with Figures 8(a), 9(a) and 10(a) reveals that the non-dimensional vertical
stress increases with increases in G/G’ (Rocks 6, 7). Figures 6(b), 7(b), 8(b), 9(b) and 10(b),
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respectively, plot the effect of v/v' (Rocks 1, 4, 5) with o = —1, f = —1l,a = =0, x = 1, and
p =1 on the vertical stress. According to these figures, the induced stress is slightly influenced
by v/v'. Figures 6-10 show that the vertical stress increases with the non-dimensional factor, n,
for all rocks, implying that the stress calculated from plane strain exceeds the three-dimensional
solution. The figures also indicate that the stress induced by the considered loading types
strongly depends on the dimensions of the loaded area, and the type and degree of rock
anisotropy.

Figures 11(a)-11(g) clarify the effect of the loading (0 = —1,f=—-1,a==0,a=1,=1)
on the non-dimensional vertical stress (glinear /plinear o gpar /ppary for Rocks 1-7, respectively,
with n = 1.0. Figures 11(a)-11(e) show that the order induced stress follows a =1>f=1>
a=f=0>f=—1>a=—1. The magnitude of the calculated stress can be reasonably
judged from the geometry of loading in Figures 1-4. However, the trend in the induced stress in
Figures 11(f) and 11(g) (for Rocks 6 and 7) differs a little from that in Figures 11(a)-11(e),
within the smaller loaded region (m<?2). Figures 11(a)-11(e) show the effect of the loading type
on the stress is explicit. The average induced vertical stress by o = 1 and § = 1 is approximately
double that induced by o = § = 0 for all rocks; however, the average stress by « = —1 and
p = —1 is disproportional to that by « = = 0.

The example was presented to elucidate the solutions and clarify how the dimensions of the
loaded area, the type and degree of rock anisotropy, and the type of loading affect the non-
dimensional vertical stress. The analysis results indicate that the induced stress in isotopic/
transversely isotropic rocks under various types of loading is easily calculated. Hence, the
anisotropic deformability must be considered when estimating the stresses in a transversely
isotropic half-space subjected to linearly varying/uniform/parabolic rectangular loads.

4. CONCLUSIONS

Integrating the elementary functions of a point load yields the elastic solutions for stresses in a
transversely isotropic half-space subjected to three-dimensional, buried, linearly varying,
uniform and parabolic rectangular loads. The solutions are limited to planes of transverse
isotropy that are parallel to the horizontal surface of the half-space. The loading types include
an upwardly linearly varying load, a downwardly linearly varying load, a uniform load, a
concave parabolic load and a convex parabolic load, all acting on a rectangular area. The
proposed closed-form solutions for stresses are affected by the buried depth (%), the dimensions
of the loaded area (L, W), the type and degree of rock anisotropy (E/E’,v/v',G/G’), and the type
of loading (a>0,0= =0, a<0, f>0, f<0) in transversely isotropic half-spaces.
A parametric study of an illustrative example has yielded the following conclusions:

1. The ratios E/E' (v/v'=G/G =1) and G/G (E/E' =v/v = 1) strongly influence the
non-dimensional vertical stress in transversely isotropic rocks subjected to a down-
wardly linearly varying, and a convex parabolic rectangular load. However, v/v' (E/E' =
G/G" = 1) has little effect on this stress.

2. In a very small loaded area of m and n, a little stress may be transferred by tension in the
medium.
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3. The stress induced in transversely isotropic rocks by a uniform, an upwardly linearly
varying and a concave parabolic rectangular load decreases as E/FE’ increases, and
increases as G/G’ increases, but is only slightly influenced by v/v'.

4. The plane strain solution overestimates the induced stress, as compared to the presented
three-dimensional solution.

5. The induced stress heavily relies on the dimensions of the loaded area, the type and degree
of material anisotropy, and the type of loading types.

6. The formulated stresses correlate well with those in the isotropic medium under plane
strain.

The calculation of induced stresses by various types of loading, distributed over a rectangular
area in an isotropic/transversely isotropic half-space is fast and correct, and the presentation of
the derived solutions is clear and concise. These solutions can more realistically simulate actual
loading circumstances in many engineering practices. Furthermore, the presented solutions also
offer an alternative to the numerical or graphical methods, and provide reasonable results for
practical purposes.

Similarly, the elastic solutions for displacements in a transversely isotropic half-space
subjected to the types of loading considered here can also be derived. The solutions will be
presented in forthcoming papers [19].

APPENDIX A

The point load solutions for stresses in a transversely isotropic half-space in Cartesian forms
can be expressed as follows [6]:

P k
ol :ﬁ l:(All — uymiA;3) (m_1 pstt — T psia + szslb)
k

— (A1 — uamrAy3) m—zpslz — T3 psic + Ta psia

k k
— 2A¢6 o D571 — m—zpﬂz — T ps7a + T pio + T3 pae — Tapara | + 2us(pers + pre)

P, k
+ i (A11 — uimiA13 — 24e6) m_]p521 — T ps2a + T2 psob
k

— (A1 — uamaAi3 — 24¢6) m—zpszz — T3 poac + Ta psad

k k
+ 2466 o Dsgl — m—zpssz — T pga + T psso + T3 pse — Tapssa | — 2u3(pss3 + Pige)

P,
+ E{(A” —uym A1z — 2A4¢6)(k ps31 + Timi psza — Tama psav)

— (A1 —uamaAy3 — 24¢6)(k pg32 + T3my pie — Tama pgag)
+ 2466k (pss1 — pss2) + mi(T1 pssa — T3 Pssc) — ma(Ta pssy — Ta pssa)]} (A1)
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P, k
Ty 4—[(/111 —uymAyz — 24e6) (— psit — T psia + T2ps1b>
u m

k
— (A1 — uamyAi3 — 2A4¢6) <m—2 Pps12 — T3 psic + T4psld>

k k
+ 2466 (m—1 Ds71 — . 512 — T1 ps7a + T ps7o + T3 pyre — T4Ps7d) — 2u3(ps3 + Pm)}

P k
+ 4—y{(1‘111 —uymiAi3) (— P21 — 11 poa + T2p.;~2b>
/[ mi
k
— (A1 — uamyA3) g <2 R T3 pooc + T4 psad
2

k k
— 246 (m_1 Dsgl T pss2—T1 pv8a+T2p38b+T3ps8c_T4Ps8d) + 2u3(pss3 + pxSe):| (A2)
P.

+ E{(A“ —uym A1z — 24¢6)(k ps31 + Timi pesa — Toma pesv)

— (A1 — uamyAy3 — 24¢6)(k p3o + Tsmy piaec — Tamy psaq)
+ 24e6[k(pss1 — Ps62) + mi(T1 pssa — T3 pssc) — ma(Ta pssv — T4 pssd)]}

P, k
ol i {(Aw — uym4s3) (m_l psit — T psia + T2Pslb)
k
— (A13 — uymyA4s33) my P12~ T3 psic + Ta psia
P k
+ 4—y[(1413 — uymiA4s3) (— P21 — T psoa + TzPSZb)
T mi
k
— (413 — uampA4s3) P2~ T3 pac + Ty psad
2
P,
+ E[(AB — uimAs3)(kps1 + Timi pga — Toma pgsp)
— (A1 — uamaAs3)k sy + Tsmy psac — Tama piaa)] (A3)

k k
T = 4_x [2/466 <— DPss1 — — P82 — 11 pga + 1o pogy + T3 poge — T4ps8d)
/[ mi my

— u3(2psg3 + 2 Psge — P23 — Pi2e)l
P,

k k
+ —4y |:2A66 (— Ps11 — — Ps12 — T ps7a + T2 psio + T3 py7e — T4ps7d>
T m my

—u3(2ps73 + 2 ps7e — Psi13 — Pstel
- T;AGG[k(PsM — psa2) + mi(T1 psaa — 13 poac) — ma(T2 psav — T4 poad)] (A4)
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P, k
= - I (w1 + my)Aaa pg 1 T psaa + T psav
k
— (uz + my)Aas m DPsa2 — T3 psac + Tapoaa | — (Psa3 + Poae)
P, k
+ 4—y [(”1 + mi)Ass (— Pso1 — T pgea + TZPSGb)
/[ nmy
k
— (uz + my)Aas o DPs62 — T3 pssc + Tupsed | + (P33 + Pose)

z

— EAM[(MI + mi)(kpor + Timi poa — Tams pob)

— (U2 + ma)(kpsaa + Tam) poac — Tamy psg)] (45)
P, k
2 =~ (1 + m)Asa| — pss1 — T pssa + 1o pyso
T n
k
— (uz + my)Aas (m_z D552 — T3 psse + T Ps5d> + (ps63 + ps6e):|
P k
- 4—y [(ul + mi)Aas (— Psa1 — 11 poaa + szs4b>
7 mi

k
— (uz + mp)Aua (m_z DPsa2 — T3 pac + T4ps4d> — (ps3 + px4e):|

P.
- EAM[(”I + my)(kpsi1 + Timy psia — Tams perp)
— (uz + ma)(k ps12 + T3my psic — Tams psia)] (A6)
where
[ ]

A;; (i,j = 1-6) are the elastic moduli or elasticity constants of the medium, and can be
expressed in terms of five independent elastic constants for a transversely isotropic half-space
as

A E(1 — (E/E"W?) e EV
T A+ —v=QE/EW2 BT 1-v=QE/EW?
B E'(1 —v) . E
Ay = v QE/EW A =G, Aess (A7)

~2(1 +v)

where E and E’ are Young’s moduli in the plane of transverse isotropy and in a direction
normal to it, respectively; v and V' are Poisson’s ratios characterizing the lateral strain
response in the plane of transverse isotropy to a stress acting parallel and normal to it,
respectively; G’ is the shear modulus in planes normal to the plane of transverse isotropy.
uy = \/Aes/Aaa, uy and uy are the roots of the following characteristic equation:

ut — st +q=0 (A8)
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whereas
o AnAsz — A13(A13 + 2444) g An
A33Aa4 ’ Azs’

Since the strain energy is assumed to be positive definite in the medium, the values of elastic
constants are restricted. Hence, there are three categories of the characteristic roots, u; and u,
as follows:

Case 1: ujp = + \/{%[s + /(s2 — 4q)]} are two real distinct roots when s> — 4¢g > 0;

Case 2: uj» = ++/s/2, +/s/2 are double equal real roots when s> — 4q = 0;
Case 3: uy = %\/(s +2./9) - i%\/(fs +2,/q) =7 —id, up=y+id are two complex

conjugate roots (where y cannot be equal to zero) when s?> — 4¢ <0.

. (A13 + Aag)u;  An _A44”12‘ L)k (413 + A4a) kwy +us
.= = =1, , = | =—
T Ayud — A (A + Aa)y; As3Asa(u? — ud) mi uy — u
k 2uy(upy + my) k 2uy(uy + my) k u +u
Tz = H T3 = s T =
my (uy — uy)(uy + my) my (uy — uy)(uz + my) my uy — uy
o X - y - Zj o xy(2R, -+ Zi) - 1 x2(2R,~ + Z,‘)
DPsti = ng Ds2i = R?’ Ps3i = R?, Psai = R?(Ri +Zi)2a Dssi = Ri(Ri +Zi) R?(R,‘ +Zi)2
o 1 y2(2R, -+ Z,‘) - X 3x X3(3Ri -+ Z,‘)
pusi Ri(Ri + Zi) R?(Rl + Z,‘)z, i R,} R,'(R,‘ + Z,‘)2 R?(R, + Z,‘)3
3y V3R; + z))

Y _
Dssi R? Ri(R; + Z,‘)2 R?(R[ + Zi)}

L4 Ri =V xZ + y2 +Zzz (l = 1,2,3,a,b,c,d,e), zZ1 = M](Z— h)a Zp = MZ(Z - h)7 z3 = M3(Z - h)a
za=u(z+h), zp = wz+ wrh, z. = uth+ uxz, z4 =ux(z+h), ze =us(z+ h). The load is
applied at the surface when the buried depth 2 = 0.

APPENDIX B: NOMENCLATURE

A;i(i,j = 1-6) elastic moduli or elastic constants in Equation (A7)

dn, d¢ infinitesimal element along Y- or X-axis, respectively

E, E, vV, G engineering elastic constants of transversely isotropic materials
h the buried depth, as seen in Figures 14

i complex number (= \/—_1 )

k,mi,my, T, 1>, Ts, T} coefficients in Equations (A1)—(A6)

LW length along X-axis and width along Y-axis, respectively

NP — NS<19l.>, . ,NS%?*NS%? integral functions for stresses induced by linearly varying,
uniform, and parabolic rectangular loads

Dsli ~ Dssi elementary functions for stresses induced by a point load

P (j=x,,2) a point load (force)
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e =0
J =X, ,2)
q,S

Ui, U, U3

X,Y,Z

Greek letters
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linearly varying rectangular loads (forces per unit of area)
parabolic rectangular loads (forces per unit of area)
coefficients in Equation (AS8)

roots of the characteristic equation (Equation (AS8))
Cartesian co-ordinate system

o, P the constant controlling the linearly varying and parabolic loads,
respectively

7,0 real and imaginary part of the complex roots, respectively

a stress components

linear linear linear
o o

,0 normal stresses induced by linearly varying rectangular loads

XX >y 2z K N
ob.ob,, ol normal stresses mduced by a point .load
gt gPil ghar normal stresses induced by parabolic rectangular loads
linear “_linear _linear P 3 Ly arvi . . .
Ty Ty Ty shear stresses induced by linearly varying rectangular loads
P b TP i i :
w2, T, Tl shear stresses induced by a point load
ar ar ar 3 3
T, Th shear stresses induced by parabolic rectangular loads
Superscripts
linear stresses induced by linearly varying rectangular loads
p stresses induced by a point load
par stresses induced by parabolic rectangular loads
T transpose matrix
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