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Abstract

The self-calibration approach based on the absolute conic or its dual, the absolute dual quadric, has the merit of allowing
the intrinsic camera parameters to vary in image sequence. In this paper, we show that certain linear equations resulting from
the in2nity homography can be added to a system of originally undetermined linear equations to 2nd the absolute dual quadric
for a stereo head. The special stereo con2gurations considered here allow one camera to rotate around either one or two
of the coordinate axes de2ned by another camera. Experiments with synthetic images show that satisfactory results can be
obtained with only the proposed linear methods. For real images obtained with non-ideal stereo con2gurations, and possibly
with measurement noises, results obtained from the proposed linear methods may serve as reasonable initial guesses for some
non-linear optimization procedure.? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Self-calibration of a camera from images has been an
important research topic on computer vision over the last
few years since it may reduce the need of o8-line calibration
and increases on-line 9exibility. It is shown in Refs. [1,2]
that general projective reconstructions, i.e., the simplest type
of self-calibration, can be obtained easily using two or more
uncalibrated projective images. Recently, more and more
researchers pay their attention to possible ways of upgrading
these reconstructions from projective to metric. Faugeras
et al. [3] proposed a robust self-calibration method using the
Kruppa equations to impose constraints on the 2xed internal
parameters obtained from fundamental matrix. A number
of approaches based on similar concepts to self-calibration
have been developed [4–7].

Instead of using the Kruppa equations, some widely ac-
cepted approaches [8–10] are based on the absolute quadric,
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a concise parameterization of the absolute conic 2rst intro-
duced by Heyden [8] and called Kruppa constraint, and later
proposed by Triggs formally [11]. By means of this paramet-
ric representation, it is shown that the self-calibration can
be done even if the camera intrinsic parameters are allowed
to vary in a motion sequence. On the other hand, based on
the in2nity homography, approaches of reconstruction from
projective to a@ne and 2nally to Euclidian space have also
been widely adopted in the last few years [12–14]. In fact,
some researchers have dealt with the calibration problem us-
ing both the absolute quadric and the in2nity homography
for some special camera motions [15].

It is shown in Ref. [9] that, under the condition that in-
trinsic camera parameters, except for the focal length, are
known, a linear solution of the varying focal length together
with the location of a particular a@ne structure can be ob-
tained. The linear solution can then be used to initialize the
corresponding non-linear optimization procedure. However,
it is shown in Ref. [14] that even if all intrinsic parameters
are constant, in the special case of having only two images
obtained with the self-calibration approach, only one mod-
ulus constraint for the in2nity homography exists that the
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plane at in2nity cannot be determined. Subsequently, a scene
constraint obtained from vanishing points is added to solve
the self-calibration problem for such a constant camera.

In this paper, we show that, not only for a constant camera
but also for that allowing its focal length to vary, without
additional scene constraint as required in Ref. [14], certain
linear equations resulting from the in2nity homography
can be added to the system of undetermined linear equations
in Ref. [9] to provide a closed form solution to the
self-calibration problem, given only two images obtained
from certain camera motions, or equivalently from special
con2gurations of a stereo head. As part of an optimal ap-
proach, results obtained by the proposed linear approach can
be improved further by a subsequent nonlinear optimization
procedure.

The paper is organized as follows. In Section 2, some
background geometry and notation are introduced. Section 3
describes the general self-calibration based on the absolute
quadric and the in2nity homography. Then in Section 4, the
linear solutions based on the in2nity homography constraints
are introduced for special con2gurations of a stereo head.
Following that, Section 5 is devoted to a brief summary of
the associated 3D metric reconstruction. Some experimental
results are given in Section 6. Finally, we draw conclusions
in Section 7.

2. Background geometry and notation

In this section, a brief review is given for the classical
projective geometry notions of in2nity homography, plane
at in2nity, absolute conic, and their relationships to camera
calibration.

2.1. Projection matrix and in7nity homography

A basic projection procedure of scene points onto an im-
age by a perspective camera can be described as

m˙ PM; (1)

where˙ denotes the equality up to a scaling factor, P is the
3×4 projection matrix, M =[X Y Z 1]T and m=[x y 1]T

represent the homogeneous coordinates of a 3D world point
and an image point, respectively. Due to the stratums of
space, the projection process should be represented by means
of its corresponding projection matrix in the space under
consideration.

For Euclidean space, the projection matrix can be repre-
sented as

Peuc = KP0T =


 fx s u0

0 fy v0

0 0 1




 1 0 0 0

0 1 0 0
0 0 1 0


[

R t
0T

3 1

]
;

(2)

where T represents the transformation of coordinate systems
from world to the camera-centered system, P0 denotes the

perspective projection and K is the camera matrix consisting
of the intrinsic parameters of camera. In the camera matrix,
fx and fy are the focal lengths measured in width and in
height of the pixels in the image, respectively, s is a factor
measuring the skew of the two image axes, and u0 and v0

are the image coordinates of the principal point.
For the projective space, on the other hand, the projection

matrix can be represented as

Pproj = [H |er]; (3)

where er is the epipole, and H , the Homography, describes
the projection from a particular reference plane to the image
plane, as discussed next.

Given a reference plane �=[�T 1]T
�
=[�1 �2 �3 1]T in

the 3D space, a point M� = [mT
� 1]T is said to lie on this

plane if and only if �TM� = �Tm� + 1 = 0. Speci2cally,
since �Tm� = −1, the relationship can be represented as

M� =
[
m�

1

]
=

[
m�

−�Tm�

]
=

[
I3×3

−�T

]
m�: (4)

Hence, the projection process which maps the 3D point M�

to its image point m̃� by the projective projection matrix
can be described as

m̃� ˙ PprojM� = [H |er]
[
I3×3

−�T

]
m� (5)

or

m̃� ˙ [H − er�
T]m� (6)

Thus,

H ′ �=H − er�
T (7)

represents the homography betweenM� and m̃�. If the plane
� is chosen to be [0 0 0 1]T, the corresponding homogra-
phy is simply given byH . This is the homography denoted in
the projective projection matrix (3). On the other hand, the
in2nity homography is denoted as another special homog-
raphy which describes the transformation from the plane at
in2nity, �∞, to the image plane:

H∞ = H − er�
T
∞ (8)

where �∞ is the vector consisting of the 2rst three elements
of [�∞1 �∞2 �∞3 1] giving the location of �∞. Details
about �∞ are given in the next subsection.

2.2. Plane at in7nity and absolute conic

The plane at in2nity, or the in2nity plane, �∞, is the
plane expressed as X4 = 0 in an a@ne frame and is setwise
invariant under Euclidean motions i.e., any rigid motion of
a camera will not change its relative position and orientation
with respect to �∞.

The absolute conic, �, is a point conic on �∞ de2ned as
X 2

1 + X 2
2 + X 2

3 = 0 with X4 = 0, containing only imaginary
points [16]. As its dual, the absolute dual quadric is denoted
as �∗. A special property associated with � is that if camera
parameters do not change, then the image of �, !, and its
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dual, !∗, will also stay the same for all views. In particular,
for a Euclidean representation of the world, such a property
can be expressed as

!∗ ˙ Peuc�
∗
eucP

T
euc

= K[RT|t]
[
I3×3 03

0T
3 0

] [
R
t

]
KT = KKT: (9)

In cases which allow variable intrinsic camera parameters,
there is a particularly useful property of !∗

i , i.e.,

!∗
i = KiK

T
i ˙ Pi�

∗PT
i (10)

is satis2ed for all views (i’s). According to Eq. (10), con-
straints on the intrinsic camera parameters associated with
Ki can therefore be transformed to those on elements of !∗

i .
This actually provides a basis for the self-calibration.

3. Self-calibration

The absolute dual quadric and the in2nity homography
are the basis of the self-calibration since images of the for-
mer encode camera matrices for all views while the latter
encodes camera rotations. By these parameterizations, loca-
tion of the plane at in2nity as well as the intrinsic camera
parameters can be obtained. Thus, the projection matrix for
3D reconstructions in metric space can be obtained. In this
section, a general approach to solving the self-calibration
problem based on the absolute dual quadric is brie9y re-
viewed. Then, in order to overcome the di@culty induced
by the special case of using only two images that the solu-
tion in general cannot be determined uniquely, constraints of
the in2nity homography constraints are derived in the next
section for special con2gurations of a stereo head.

Consider the absolute dual quadric given in Eq. (10).
Starting from its Euclidean representation, such a quadric
can eventually be expressed in the projective space as

!∗ ˙ Peuci�
∗
eucP

T
euci

= (Pproji T
−1
PM )�∗

euc(T
−T
PM PT

proji )

= Pproji (T
−1
PM �∗

eucT
−T
PM )PT

proji

= Pproji�
∗
projP

T
proji ; (11)

where Pproji denotes projection matrix in the projective
space for the ith image,

TPM =
[
K−1 0
�T
∞ 1

]
(12)

is the transformation matrix to upgrade the geometry from
projective to metric Ref. [17], and

�∗
proj = T−1

PM �∗
eucT

−T
PM =

[
KKT −KKT�∞

−�T
∞KKT �T

∞KKT�∞

]
(13)

is the absolute dual quadric in the projective space.

In particular, if the world frame is aligned with the 2rst
camera, i.e., Pproj1 = [I |0], then we have

KiK
T
i ˙ Pproji�

∗′
projP

T
proji (14)

with

�∗′
proj =

[
K1K

T
1 −K1K

T
1 �∞

−�T
∞K1K

T
1 �T

∞K1K
T
1 �∞

]
: (15)

For an ideal camera as suggested in Ref. [9], we have u0 =

v0 = 0, s = 0 and fx = fy
�
=fi, which lead to the following

camera matrix:

Ki =


 fi 0 0

0 fi 0
0 0 1


 : (16)

Thus, Eq. (15) can be simpli2ed as 1

�∗′
proj

=




f2
1 0 0 −f2

1�∞1

0 f2
1 0 −f2

1�∞2

0 0 1 −�∞3

−f2
1�∞1 −f2

1�∞2 −�∞3 f2
1�

2
∞1 + f2

1�
2
∞2 + �2

∞3


 :

(17)

Let

a = f2
1 ; b = −f2

1�∞1 ; c = −f2
1�∞2 ; d = −�∞3 ;

e = f2
1�

2
∞1 + f2

1�
2
∞2 + �2

∞3 ; (18)

Eq. (14) becomes



f2

i 0 0

0 f2
i 0

0 0 1


˙ Pproji



a 0 0 b

0 a 0 c

0 0 1 d

b c d e


PT

proji (19)

and we can obtain the following system of linear equations
(see the Appendix):

k11a + k12b + k13c + k14d + k15e + k16 = 0;

k21a + k22b + k23c + k24d + k25e + k26 = 0;

k31a + k32b + k33c + k34d + k35e + k36 = 0;

k41a + k42b + k43c + k44d + k45e + k46 = 0: (20)

When only two images are available, instead of a unique
solution, only a family of solutions can be determined for
Eq. (20). Even if the rank 3 constraint for �∗′

proj in Eq. (17)
is imposed, one still ends up with four possible solutions
[9]. To overcome this di@culty, Pollefeys et al. [14] use ad-
ditional scene constraint of vanishing points for a constant

1 This matrix is essentially the same as Eq. (6) given in
Ref. [9], except for some minor changes in notation.
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Fig. 1. Stereo head con2guration.

camera to obtain a unique solution. In the next section, with-
out additional scene constraints or more knowledge about
the camera, we show that, not only for a constant camera
but also for that with a varying focal length, it is possible
to obtain a closed form solution using two images obtained
from certain camera motions, or equivalently from special
con2gurations of a stereo head.

4. Linear methods for stereo head

Consider the stereo con2guration in which a pair of cam-
eras are mounted on a lateral rig and are allowed to vary
their angles of vergence freely, as shown in Fig. 1. Let R12

be the rotation from the 2rst camera to the second one, and
t12 be the corresponding translation vector. The above con-
2guration is very similar to that in Ref. [18]; however, it
leads to a more general vergence-based stereovision system.

Consider the self-calibration problem for such a general
stereo head. Since only two images are involved, Eq. (8)
becomes

H∞
12 = H12 − er�

T
∞ ˙ K2R12K

−1
1 ; (21)

where er is the epipole in the second image, H12 denotes
the homography, obtained here by [er] × F with F being
the fundamental matrix relating these two images, and H∞

12

represents the corresponding in2nity homography. Note that
the last term of Eq. (21) is the expression of the in2nity
homography in the Euclidean space adopted in Ref. [19].

For a general rotation, Eq. (21) can be expressed as



h11 − er1�∞1 h12 − er1�∞2 h13 − er1�∞3

h21 − er2�∞1 h22 − er2�∞2 h23 − er2�∞3

h31 − er3�∞1 h32 − er3�∞2 h33 − er3�∞3




˙




f2

f1
(cos& cos')

f2

f1
(sin! cos& cos'+cos! sin ')

f2

f1
(−cos& sin')

f2

f1
(−sin! sin& sin'+cos!cos')

f2

f1
sin&

f2

f1
(−sin! cos&)

f2(−cos! sin& cos' + sin! sin ')

f2(cos! sin& sin ' + sin! cos')

cos! cos&


;

(22)

where '; & and !, denote the rotation-angle around the
x-axis, the y-axis and the z-axis, respectively.

Based on Eq. (22), our aim in the following is to develop
closed form expressions for the location of the plane at in-
2nity (�∞i ’s) for special stereo con2gurations which result
in simpler expressions of R12. Such special con2gurations
are classi2ed into two categories: the 2rst class (Cases 1–3)
involves rotations with respect to one of the coordinate axes
while the second class (Case 4–6) covers rotations around
two of the coordinate axes. Without loss of generality, the
world frame is assumed to be aligned with the 2rst camera;
therefore R12 is simply denoted as R2.
Case 1: ! �= 0; &= '= 0. Here only rotation around the

x-axis is involved and Eq. (22) becomes

h11 − er1�∞1 h12 − er1�∞2 h13 − er1�∞3

h21 − er2�∞1 h22 − er2�∞2 h23 − er2�∞3

h31 − er3�∞1 h32 − er3�∞2 h33 − er3�∞3




˙




f2

f1
0 0

0
f2

f1
cos! f2 sin!

0 − sin!
f1

cos!


 : (23)

From the four zeros on the right-hand side, we have

�∞1 =
h21

er2
(24)

=
h31

er3
; (25)

�∞2 =
h12

er1
; (26)

�∞3 =
h13

er1
: (27)

Thus, �∞ = [�∞1 �∞2 �∞3 ] can be determined easily. 2

Given �∞, the intrinsic camera parameters can be obtained

2 In the implementation, two values of �∞1 obtained from Eqs.
(24) and (25), respectively, are found to be quite similar. The
average of the two values are used as a robust estimation of �∞1

in the experiments.
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as follows. Since d = −�∞3 in Eq. (18), one can obtain a
(and f1) by solving Eq. (20). On the other hand, for the
second focal length f2, it can be obtained from Eq. (19)
directly. First, the scale factor in Eq. (19) can be calculated
from the third diagonal element of the resulting 3 × 3
matrices as

) = P(3)
proj2�

∗′
projP

(3)T
proj2 ; (28)

where P(k)
proji represents the kth row of Pproji in Eq. (3). Then,

f2 can be calculated from the 2rst two diagonal elements of
the matrices as

f2 =
√

1
)P

(1)
proj2�

∗′
projP

(1)T
proj2 (29)

or 3

f2 =
√

1
)P

(2)
proj2�

∗′
projP

(2)T
proj2 (30)

For the 3D metric reconstruction, only the 2rst camera
matrix K1 is needed in determining TPM in Eq. (12) for the
self-calibration procedure; therefore, the intrinsic parame-
ters of the second camera are not essential for this purpose.
Nevertheless, Eqs. (28)–(30) give a possible way of prop-
agating of the calibration results from one image to another
using the absolute dual quadric.
Case 2: & �= 0; != '= 0. This corresponds to a rotation

around the y-axis. In this case, Eq. (22) becomes


× h12 − er1�∞2 ×
h21 − er2�∞1 × h23 − er2�∞3

× h32 − er3�∞2 ×




˙



× 0 ×
0 × 0
× 0 ×


 ; (31)

where × denotes a value we do not care. Equations similar
to Eqs. (24)–(27) can be established to 2nd �∞. Then, f1

and f2 can be obtained in exactly the same way as in Case 1.
Case 3: ' �= 0; |!| + |&| ≈ 0. In theory, for ' �= 0 and

!=&= 0, optical axes of the two cameras are parallel and
hence results in a critical motion. 4 Therefore, we assume
that at least a small rotation exists around one of x- or y-axis

3 Similarly, two values of f2 obtained from Eqs. (29) and (30),
respectively, are averaged to give a robust estimation.

4 The so-called critical motions correspond to the special camera
motions wherein the calibration parameters cannot be determined
uniquely by using the absolute conic, or the absolute dual quadric,
alone. In the other cases, the critical motions are also possible. For
instance, in Case 2, if t12 has zero component in the y direction,
we also have a critical motion. For more details, one may refer to
Ref. [20].

in this case that Eq. (22) can be expressed as


× × h13 − er1�∞3

× × h23 − er2�∞3

h31 − er3�∞1 h32 − er3�∞2 ×




˙




× × ≈ 0

× × ≈ 0

≈ 0 ≈ 0 ×


 : (32)

However, because the scaling factor is unknown, using
the four near zero elements, as in Cases 1 and 2, is not prac-
tical (and will lead to numerically unstable results). In order
to obtain more reliable results, instead of using Eq. (32),
consider the 2rst two diagonal elements of the matrices:

h11 − er1�∞1 × ×

× h22 − er2�∞2 ×
× × ×




˙




f2

f1
cos' × ×

× f2

f1
cos' ×

× × ×


 (33)

and we have

�∞1 =
h11 − h22 + er2�∞2

er1
: (34)

Thus, b can be expressed as a function of a and c as

b = −f2
1�∞1

=
−h11 + h22

er1
f2

1 − er2
er1

f2
1�∞2

, kb1a + kb2c: (35)

With Eqs. (20) and (35), the 2ve variables de2ned in
Eq. (18) and thus the four parameters, f1; �∞1 ; �∞2 and
�∞3 , can be solved.
Case 4: ! = 0; & �= 0; ' �= 0. In this case, Eq. (22)

becomes

× × ×
× × ×
× h32 − er3�∞2 ×


˙


× × ×
× × ×
× 0 ×


 : (36)

Therefore, we have

�∞2 =
h32

er3
: (37)

For the other three parameters, since c = −a�∞2 , one can
obtain their solutions by solving Eq. (20), as in Case 1.
Case 5: & = 0; ! �= 0; ' �= 0. Analogous to Case 4, we

have

�∞1 =
h31

er3
: (38)
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And the other parameters can be obtained similar to that
done in Case 4.
Case 6: '=0; ! �= 0; & �= 0. The calculations are similar

to those done in Cases 4 and 5 and are omitted for brevity.

5. 3D metric reconstruction

An approach to self-calibration, as outlined in Refs.
[12,14,17], includes a step-by-step procedure of projective
reconstruction, a@ne reconstruction, and 2nally the metric
reconstruction from multiple images. A similar approach
but using only two images, according to the linear algorithm
proposed in this paper can be summarized as follows.

The 3D metric reconstruction procedure

Stage 1: Find the two projective projection matrices:

Pproj1 = [I3×3|03];

Pproj2 = [H12|er]: (39)

Stage 2: Obtain TPM , i.e., 2nd the four parameters
f1; �∞1 ; �∞2 and �∞3 .
Stage 3: Derive the projection matrix for the Euclidean

space:

Peuci = Pproji T
−1
PM ; i = 1; 2: (40)

Stage 4: Obtain the metric structure through the
SVD-based 3D reconstruction method given in Ref. [21].

Note that in Stage 1, H12 is obtained by [er] × F with F
being the fundamental matrix relating these two images.

6. Experiment results

In this section, calibration results obtained with the pro-
posed linear methods are presented. For a self-calibration
approach, the accuracy of the perspective reconstruction
a8ects the results remarkably. The modi2ed eight-point al-
gorithm is adopted in the implementation, which usually
gives a satisfactory fundamental matrix, F , even under noisy
conditions [22]. Using the derived fundamental matrix, the
metric reconstruction is then conducted.

The performance of the proposed approach is examined
using both synthetic and real data. In the former, statistical
results such as means and standard deviations are provided
for f1; f2, �∞ and the 3D reconstruction error, respectively,
under di8erent noise conditions. In the latter, on the other
hand, we measure the parallelism and orthogonality of 3D
structures obtained from the metric reconstruction.

6.1. Experiments using synthetic data

The simulations are carried out for the stereo con2gura-
tions discussed in Section 4. For brevity, we conduct one

simulation for each of the two classes, i.e., Cases 2 and 5,
to demonstrate the e8ectiveness of the proposed approach.

For both simulations, a set of synthetic data consisting
of 50 3D points is used, as shown in Fig. 2. These points
are generated randomly in a 100 × 100 × 100 cube cen-
tered at (100, 100, 100). For the 2rst simulation (SIM 1),
two images of this synthetic scene are generated using two
Euclidean projection matrices, Peuc1 = K1[R1|t1] and Peuc2
= K2[R2|t2] with K1 = diag[650; 650; 1]; R1(!1 = 0

◦
;

&1 = 0
◦
; '1 = 0

◦
); t1 = [0; 0; 0]; K2 = diag[750; 750; 1];

R2(!2 = 0
◦
; &2 = 15

◦
; '2 = 0

◦
), and t2 = [10; 20; 10].

The image points are contained in bounding boxes of size
1600 × 1400 pixels and 1200 × 900 pixels in the 2rst and
the second images, respectively. For the second simulation
(SIM 2), the 2rst image is the same as that in SIM 1, while
the second image is generated using P′

euc2 = K ′
2[R

′
2|t′2] with

K ′
2=diag[750; 750; 1]; R′

2(!
′
2=18

◦
; &′

2=0
◦
; '′

2=12
◦
), and

t′2 = [15; 20; 15], and the points are contained in bounding
boxes of size 800 × 900 pixels.

Fig. 3 shows the mean and standard deviation of the esti-
mation of the 2rst focal length, f1, for zero mean Gaussian
noise, with standard deviation ranging from 0 to 1 pixel,
added to locations of image points. For each noise level,
the statistics are obtained from a total of 100 trials. While
their standard deviations have the general trend to increase
with the noise level, the means of these estimations approx-
imately give the correct value f1 = 650. Similar results can
also be observed for the estimations of the second focal
length, f2 = 750, as shown in Fig. 4.

To evaluate the accuracy of the estimated �∞, the real
�∞ is 2rst obtained with Eq. (21) using the real rotation
R2 and the fundamental matrix F obtained from a pair of
noise-free images. The angular error is then de2ned as the
angle between the estimated �∞ and the real �∞. Fig. 5
shows the mean and standard deviation of the angular error
for various noise levels.

As for the 3D reconstruction errors, since real locations
of all 3D points are given for the simulation, we can directly
measure the average distance between the true 3D structure
and the corresponding structure recovered in metric space.
The distance measurement procedure can be described as
follows. First, the two structures are moved to have their
centroids located at the origin of the world coordinate sys-
tem. Secondly, a size normalization operation for both struc-
tures is carried out. Thirdly, pointwise Euclidean distances
between the two structures are calculated for corresponding
3D feature points. And 2nally, we average these distances
to obtain an estimation of the 3D reconstruction error.
Fig. 6 shows the mean value and the corresponding standard
deviation of the 3D reconstruction error.

Similarly, Figs. 7–10 show the results of SIM 2. It can
be seen easily that satisfactory results similar to those ob-
tained for SIM 1 can be obtained. Thus, for the special stereo
con2gurations considered in this paper, the proposed linear
methods are indeed capable of solving the self-calibration
problem, in terms of accuracy and robustness.
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Fig. 2. The 3D structure for the simulation.
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Fig. 3. The estimated 2rst focal length (f1) for various noise levels in SIM 1.
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Fig. 4. The estimated second focal length (f2) for various noise levels in SIM 1.

6.2. Experiments based on real images

In this subsection, reconstruction results based on the pro-
posed linear methods for pairs of real images are presented.
The images are obtained from the CMU image sequence
[23]. The reason for using this sequence is simply because
the underlying camera motions are essentially translation,
which may approximately satisfy assumptions for the stereo

con2gurations considered in Section 4. Fig. 11 shows a typ-
ical image with 36 ground truth points in this sequence. A
subset of these point features is connected with 9 line seg-
ments (marked with A to I in Fig. 12) to facilitate the par-
allelism and orthogonality measurement of the recovered
3D metric structure. In the experiment, the principal points
given in Ref. [23] are utilized as known intrinsic parame-
ters in addition to the assumptions that fx=fy =1 and s=0.
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Fig. 5. Angular error for the estimates of �∞ for various noise levels in SIM 1.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

3D
 m

et
ric

 r
ec

on
st

ru
ct

io
n 

er
ro

r

variance (in pixel)

mean
std

Fig. 6. The 3D metric reconstruction error for various noise levels in SIM 1.
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Fig. 7. The estimated 2rst focal length (f1) for various noise levels in SIM 2.
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Fig. 8. The estimated second focal length (f2) for various noise levels in SIM 2.
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Fig. 9. Angular error for the estimates of �∞ for various noise levels in SIM 2.
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Fig. 10. The 3D metric reconstruction error for various noise levels in SIM 2.

Fig. 11. A typical image with 36 ground truth points in the CMU image sequence.

Accordingly, the proposed linear methods for the 3D met-
ric reconstruction are applied to the 2rst two images of the
CMU image sequence.

Table 1 shows the true and estimated angles between 10
selected pairs of line segments for the recovered 3D struc-
ture. While + represents the true angle between each pair of

line segments, +1, +2, +3, +4, +5, and +6 denote the corre-
sponding angles estimated according to Cases 1–6 discussed
in Section 4, respectively. According to Table 1, the 3D
structures recovered with the linear methods seem to pre-
serve the parallelism and orthogonality of the original 3D
structure satisfactorily for Cases 1, 2, 3 and 6 but not for
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Fig. 12. Nine line-segments connecting a subset of point features.

Cases 4 and 5. In other words, assumptions for Cases 4 and
5 do not correspond to reasonable descriptions of camera
orientations for obtaining the two images.

Since camera parameters are in principle nonlinearly en-
coded in the absolute dual quadric, to obtain more accurate
calibration results, most of self-calibration algorithms uti-
lize nonlinear cost functions to optimize their results using
linear solutions as initial guesses. For example, according
to Eq. (14), one can use the optimization criterion given in
Ref. [17] to minimize

C′
F (Ki; �∞) =

N∑
i=2

||F(KiK
T
i ) − F(Pproji�

′∗
projPproji )||F ;

(41)

Table 1
True and estimated angles (in degrees) between 10 selected pairs
of line segments

Line-segment pair + +1 +2 +3 +4 +5 +6

A–B 1.2071 0.942 3.796 0.787 19.801 1.370 0.785
C–D 0.9094 0.560 2.251 0.963 11.965 7.074 0.962
E–F 2.5379 1.081 1.112 1.106 2.239 1.923 1.097
F–G 1.8160 1.925 3.837 1.664 2.001 2.176 1.666
H–I 1.5674 1.029 1.028 0.486 2.371 19.376 0.485
A–E 88.8999 89.711 93.927 89.154 116.747 96.513 89.151
C–G 89.3059 89.059 93.731 89.062 114.687 97.011 89.064
D–F 90.1267 91.481 91.312 90.121 100.726 106.261 90.130
E–I 89.4330 94.057 87.716 89.041 89.523 163.113 89.077
G–H 90.5845 92.094 89.949 90.217 96.129 139.637 90.235

Error mean 1.1265 2.0807 0.4392 10.0399 17.9296 0.4350
Error std 1.3392 1.5207 0.4592 10.6640 24.3892 0.4630

where F(A) , A=||A||F with || · ||F denoting the Frobenius
norm. Note that since only two images are used, N is equal
to 2 in this case. It is readily observable from Table 2 that
all of +′

1; : : : ; +
′
6 obtained using +1; : : : ; +6 as initial guesses,

respectively, give satisfactory angular estimates.

7. Conclusion

In this paper, we have shown that for some special con2g-
urations of a stereo head, certain linear equations resulting
from the in2nity homography can be added to a system of
undetermined linear equations to solve the self-calibration
problem. The stereo con2gurations considered here allow
one camera to rotate around either one or two of the coordi-
nate axes de2ned by another camera, possibly with di8erent
focal length. For such con2gurations, an approach to recon-
structing 3D metric structures using only two images is then
introduced. The performance of the proposed approach is
veri2ed with both synthetic and real data. Experiments with
synthetic data show that satisfactory results can be obtained
with the proposed linear methods alone. On the other hand,
for real images obtained with more general stereo con2-
gurations, and possibly with measurement noises, results
obtained from the linear methods may serve as reasonable
initial guesses for the adopted nonlinear optimization
procedure.

Appendix

The coe@cients of the system of linear equations given
in Eq. (20) are listed in detail in Table 3. 5

5 Herein, pij’s denote the elements of Pproji .
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Table 2
True and estimated angles through nonlinear optimization

Line-segment pair + +1 +2 +3 +4 +5 +6

A–B 1.2071 0.900 0.343 0.787 0.800 1.401 0.785
C–D 0.9094 0.599 0.604 0.958 0.371 0.839 0.954
E–F 2.5379 1.081 1.194 1.105 1.963 1.553 1.097
F–G 1.8160 1.926 0.327 1.655 1.016 2.110 1.651
H–I 1.5674 1.007 0.632 0.487 0.836 1.875 0.487
A–E 88.8999 89.847 88.194 89.155 88.671 90.080 89.151
C–G 89.3059 89.193 89.412 89.069 91.475 88.936 89.075
D–F 90.1267 91.658 90.053 90.123 90.840 91.875 90.135
E–I 89.4330 94.318 89.348 89.035 87.502 94.806 89.068
G–H 90.5845 92.333 90.123 90.216 91.297 93.018 90.232

Error mean 1.3221 0.6370 0.4405 0.8807 1.2956 0.4361
Error std 1.4298 0.5181 0.4595 0.6419 1.6257 0.4623

Table 3

k11 = p2
11 + p2

12 − (p2
21 + p2

22) k12 = 2(p11p14 − p21p24)
k13 = 2(p12p14 − p22p24) k14 = 2(p13p14 − p23p24)
k15 = p2

14 − p2
24 k16 = p2

13 − p2
23

k21 = p11p21 + p12p22 k22 = p14p21 + p11p22
k23 = p14p22 + p12p24 k24 = p14p23 + p13p24
k25 = p14p24 k26 = p13p23
k31 = p11p31 + p12p32 k32 = p14p31 + p11p32
k33 = p14p32 + p12p34 k34 = p14p33 + p13p34
k35 = p14p34 k36 = p13p33
k41 = p21p31 + p22p32 k42 = p24p31 + p21p32
k43 = p24p32 + p22p34 k44 = p24p33 + p23p34
k45 = p24p34 k46 = p23p33
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