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Abstract

We study a single removable server in an M/G/1 queueing system operating under the N policy in steady-

state. The server may be turned on at arrival epochs or off at departure epochs. Using the maximum

entropy principle with several well-known constraints, we develop the approximate formulae for the

probability distributions of the number of customers and the expected waiting time in the queue. We

perform a comparative analysis between the approximate results with exact analytic results for three dif-

ferent service time distributions, exponential, 2-stage Erlang, and 2-stage hyper-exponential. The maximum

entropy approximation approach is accurate enough for practical purposes. We demonstrate, through the

maximum entropy principle results, that the N policy M/G/1 queueing system is sufficiently robust to the
variations of service time distribution functions.
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1. Introduction

This paper deals with a single removable server queueing system with Poisson arrivals and
general distribution service times using the maximum entropy principle. The decision-maker can
turn a single server on at any arrival epoch or off at any service completion (departure) epoch. The
term ‘removable server’ is just an abbreviation for the system of turning on and turning off the
server, depending on the number of customers in the system. The total number of arriving cus-
tomers and the system capacity are infinite.
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The M/G/1 queueing system whose arrivals of customers follow a Poisson process with para-
meter k and service times are independent and identically distributed (i.i.d.) random variables
obeying a general distribution SðuÞðuP 0Þ with a mean service time 1=l and a finite variance r2. If
one customer is in service, then arriving customers have to wait in the queue until the server is
available. We assume that customers arrive at the server form a single waiting line and are served
in the order of their arrivals; that is, the first-come, first-served discipline. Suppose that the server
can serve only one customer at a time, and that the service is independent of the arrival of the
customers.
The maximum entropy principle is a probability inference method which has been widely ap-

plied in fields such as statistical mechanics (see [1]), queueing theory (see [2,3]), and computer
performance analysis (see [4]). The maximum entropy principle is utilised to analyse the ordinary
queueing system by several researchers such as Shore [2,3], Ferdinand [4], Arizono, et al. [5], Wu
and Chan [6], El-Affendi and Kouvatsos [7], Kouvatsos [8], and others. Ferdinand [4] used the
maximum entropy method to derive the steady-state solutions for the ordinary M/M/1 queueing
system. Shore [2] derive the steady-state and time-dependent distributions for the ordinary M/M/
1/N and M/M/1 queueing systems by means of entropy maximisation. In the ordinary M/G/1
and G/G/1 queueing systems, Shore [3] used the maximum entropy method to derive the steady-
state characteristics of the system, such as the expected number of customers in the system, the
expected waiting time in the system, and etc. Arizono et al. [5] proposed an exact entropy model in
order to develop the steady-state probability distributions of the number of customers in the
ordinary M/M/S queueing system. Applying the method of maximum entropy to the ordinary GI/
G/C queueing system, Wu and Chan [6] derived the approximate formulae for the steady-state
probability distributions of the number of customers and the expected waiting time. El-Affendi
and Kouvatsos [7] provided the maximum entropy formalism to analyse the ordinary M/G/1 and
G/M/1 queueing systems. Based on the principle of maximum entropy, Kouvatsos [8] developed a
closed form expression for the queue length distribution of the ordinary G/G/1 queueuing system.
Yadin and Naor [9] first introduced the concept of an N policy which turns the server on

wheneverN ðN P 1Þ or more customers are present, turns the server off when there are no customers
present. After the server is turned off, the server may not operate until N customers are present in
the system. The N policy M/G/1 queueing system was first studied by Heyman [10] and was in-
vestigated by several researchers such as Bell [11,12], Kimura [13], Tijms [14], and others. Wang and
Huang [15] developed exact steady-state solutions for the N policy M/Ek/1 queueing system. Re-
cently, Wang and Ke [16] developed a recursive method, using the supplementary variable tech-
nique, to obtain the exact steady-state solutions for the N policy M/G/1 queueing system.
The purpose of this paper is:

(a) to construct the maximum entropy formalism for the N policy M/G/1 queueing system;
(b) to derive the maximum entropy approximate solutions for the N policy M/G/1 queueing sys-

tem by using Lagrange’s method;
(c) to obtain the approximate expected waiting time in the queue for the N policy M/G/1 queue-

ing system;
(d) to perform a comparative analysis between the approximate results obtained through maxi-

mum entropy principle and the exact results obtained from Sivazlian and Stanfel [17], Wang
and Huang [15], and Wang et al. [18].
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1.1. Notations and probabilities

In this paper the following notations and probabilities are used.
N threshold
SðuÞ service time distribution function
P0ð0Þ steady-state probability of no customers in the system when the server is turned off
P0ðnÞ steady-state probability of n customers in the system when the server is turned off
P1ðnÞ steady-state probability of n customers in the system when the server is turned on and

working
k mean arrival rate
1=l mean service time
q traffic intensity, where q ¼ k=l. In the steady state q < 1
EðSÞ first moment of the service time distribution
EðS2Þ second moment of the service time distribution
Lon expected number of customers in the system when the server is turned on and working
Loff expected number of customers in the system when the server is turned off
LN expected number of customers in the system
EðW Þ exact expected waiting time in the queue
EðW �Þ approximate expected waiting time in the queue

2. The maximum entropy formalism

We consider a system Q which has a finite or countable infinite set B of all possible discrete
states B0;B1;B2; . . . ;Bn; . . . Let PðBnÞ represent the probability that the system Q is in state Bn.
Following El-Affendi and Kouvatsos [7], we obtain the entropy function as follows:

H ¼ �
X
Bn2Q

PðBnÞ lnfPðBnÞg; ð1Þ

which is maximised subject to the following two constraintsX
Bn2Q

PðBnÞ ¼ 1; ð2Þ

and X
Bn2Q

fkP ðBnÞ ¼ Fk; k ¼ 1; 2; . . . ;m ð3Þ

where fFkg denotes that the expected values defined on the set of several suitable functions
ff1ðBnÞ; f2ðBnÞ; . . . ; fmðBnÞg.
The maximisation of (1) subject to constraints (2) and (3) can be obtained using Lagrange’s

method of undetermined multipliers leading to the solution

PðBnÞ ¼ exp

"
� b0 �

Xm
k¼1

bkfkðBnÞ
#
;
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where b0 is a Lagrangian multiplier determined by the normalisation constraint (2) and fbkg;
k ¼ 1; 2 . . . ;m are the Lagrangian multipliers determined from the set of constraints (3).

3. The maximum entropy solution

In this section, we will develop the maximum entropy solution for the steady-state probabilities
of the N policy M/G/1 queueing system. There are three basic known results from the literature
(see [10,14,16]) that facilitate the application of the maximum entropy formalism to study the N
policy M/G/1 queueing system.

3.1. The three basic known constraints

For the N policy M/G/1 queueing system, three well-known results are stated as follows:
The first result is the probability of turning the server off given by

P0ð0Þ ¼ P0ð1Þ ¼ 
 
 
 ¼ P0ðN � 1Þ; ð4Þ
(see [16]).
The second result is the probability that the server is busy given byX1

n¼1
P1ðnÞ ¼ q; ð5Þ

(see [10]).
The third result is the well-known formula for the expected number of customers in the system

given by

LN ¼ N � 1

2
þ kEðSÞ þ k2EðS2Þ

2½1� kEðSÞ
 ; ð6Þ

(see [14]).

3.2. The maximum entropy model

In order to develop the steady-state probabilities P0ðnÞ and P1ðnÞ by using maximum entropy
method, we formulate the maximum entropy model as follows. According to (1) and (4)–(6), the
entropy function H of the N policy M/G/1 queueing system is formed as

H ¼ �
XN�1

n¼0
P0ðnÞ ln P0ðnÞ �

X1
n¼1

P1ðnÞ ln P1ðnÞ;

or equivalently

H ¼ �NP0ð0Þ ln P0ð0Þ �
X1
n¼1

P1ðnÞ ln P1ðnÞ: ð7Þ

The maximum entropy solution for the N policy M/G/1 queueing system is obtained by
maximising (7) subject to the following three constraints, written as,

1154 K.-H. Wang et al. / Appl. Math. Modelling 26 (2002) 1151–1162



(i) normalising condition:

XN�1

n¼0
P0ðnÞ þ

X1
n¼1

P1ðnÞ ¼ NP0ð0Þ þ
X1
n¼1

P1ðnÞ ¼ 1; ð8Þ

(ii) the probability that the server is busy:

XN
n¼1

P1ðnÞ ¼ q ðq ¼ k=lÞ; ð9Þ

(iii) the expected number of customers in the system:

XN�1

n¼0
nP0ðnÞ þ

X1
n¼1

nP1ðnÞ ¼
NðN � 1Þ

2
P0ð0Þ þ

X1
n¼1

nP1ðnÞ ¼ LN ; ð10Þ

where LN is given by (6).
In (8)–(10), (8) is multiplied by x, (9) is multiplied by h, and (10) is multiplied by /. Thus the

Lagrangian function h is given by

h ¼ �NP0ð0Þ ln P0ð0Þ �
X1
n¼1

P1ðnÞ ln P1ðnÞ � x NP0ð0Þ
"

þ
X1
n¼1

P1ðnÞ � 1

#

� h
X1
n¼1

P1ðnÞ
"

� q

#
� /

NðN � 1Þ
2

P0ð0Þ
"

þ
X1
n¼1

P1ðnÞ � LN

#
; ð11Þ

where x, h, and / are the Lagrangian multipliers corresponding to constraints (8)–(10), respec-
tively.
To find the maximum entropy solutions P0ðnÞ and P1ðnÞ, maximising in (7) subject to con-

straints (8)–(10) is equivalent to maximising (11).
The maximum entropy solutions are obtained by taking the partial derivatives of h with respect

to P0ð0Þ and P1ðnÞ, and setting the results equal to zero, namely,

oh
oP0ð0Þ

¼ �N ln P0ð0Þ � N � xN � /
NðN � 1Þ

2
¼ 0; ð12Þ

and

oh
oP1ðnÞ

¼ � ln P1ðnÞ � 1� x � h � /n ¼ 0: ð13Þ

It follows from (12) and (13) that we obtain

P0ð0Þ ¼ e�ð1þxÞe
�ðN�1Þ/

2 ; ð14Þ
and

P1ðnÞ ¼ e�ð1þxÞe/ne�h; n ¼ 1; 2; . . . ð15Þ
Let

a ¼ e�ð1þxÞ; b ¼ e�/; and c ¼ e�h:
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We transform (14) and (15) in terms of a, b, and c given by

P0ð0Þ ¼ ab
ðN�1Þ

2 ; ð16Þ
and

P1ðnÞ ¼ abnc; n ¼ 1; 2; . . . : ð17Þ
Substituting (16) and (17) into (8)–(10), respectively, yields

Nab
ðN�1Þ

2 ¼ 1� q; ð18Þ
and X1

n¼1
abnc ¼ abc

1� b
¼ q: ð19Þ

From (18), we get

a ¼ 1� q
N

b
�ðN�1Þ

2 : ð20Þ

After the algebraic manipulations, we obtain c from (19) given by

c ¼ qð1� bÞ
ab

: ð21Þ

Substituting (20) into (21) finally gives

c ¼ Nq
1� q

b
N�3
2 ð1� bÞ: ð22Þ

We substitute (20) and (22) into (16) and (17), respectively, yielding

P0ð0Þ ¼
1� q
N

; ð23Þ

and

P1ðnÞ ¼ qð1� bÞbn�1; n ¼ 1; 2; . . . ð24Þ
The expected number of customers in the system when the server is turned off is given

Loff ¼
XN�1

n¼0
nP0ðnÞ ¼

NðN � 1Þ
2

P0ð0Þ ¼
ðN � 1Þð1� qÞ

2
: ð25Þ

Note that LN ¼ Lon þ Loff . From (25), the expected number of customers in the system when the
server is turned on and working, Lon, is given by

Lon ¼
X1
n¼1

nP1ðnÞ ¼ LN � Loff ¼ LN � ðN � 1Þð1� qÞ
2

: ð26Þ

To determine the unknown Lagrangian multiplier b, substituting (24) into (26) finally gets

b ¼ 1� q
Lon

: ð27Þ
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We substitute (27) into (20) to determine the other unknown Lagrangian multiplier a as

a ¼ 1� q
N

1

�
� q
Lon

��ðN�1Þ
2

: ð28Þ

Substituting (27) into (24), we finally obtain

P1ðnÞ ¼
q2

Lon
1

�
� q
Lon

�n�1

; n ¼ 1; 2; . . . ð29Þ

We first note that the results for the ordinary M/G/1 queueing system are obtained by setting
N ¼ 1. When N ¼ 1 (that is, Lon ¼ LN ), expression (29) for P1ðnÞ reduces to a special case of
expression (3.14) of El-Affendi and Kouvatsos [7] (p. 344). Next, we should note that the derived
solutions P0ð0Þ and P1ðnÞ ðnP 1Þ satisfied constraints (8)–(10).

4. The exact and the approximate expected waiting time in the queue

Here we derive the exact and the approximate formulae for the expected waiting time in the
queue for the N policy M/G/1 queueing system.

4.1. The exact expected waiting time in the queue

Let EðW Þ denote the exact expected waiting time in the queue for the N policy M/G/1 queueing
system. Using Little’s formula, it follows that

EðW Þ ¼ 1

k
ðLN � qÞ; ð30Þ

where LN is given in (6).

4.2. The approximate expected waiting time in the queue

We define the idle state and the busy state as follows:

i(i) Idle state denoted by I: the server is turned off and the number of customers waiting in the
system is 6N � 1.

(ii) Busy state denoted by B: the server is busy and provides service to a customer.

We wish to find the mean arriving time and the mean service time for both states I and B. LetW
denote that the time of a customer C waits in the queue until he starts his service. Suppose that the
customer C finds n customers waiting in the queue for service in front of him, while the system is
at any one of the states I and B are described, respectively, as follows:

(i) In idle state I: The server will be turned on after ðN � n� 1Þ customers arrive in the system.
Thus customer C will be served until ðN � n� 1Þ customers arrive and n customers in front of
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him waiting for service. The mean arriving time of ðN � n� 1Þ customers and the mean ser-
vice time of n customers is given by ðN � n� 1Þ=k and n=l, respectively.

(ii) In busy state B: Since the server is turned on, customer C only waits n customers in front of
him to be served. The mean service time of n customers is n=l.

Thus we obtain the approximate expected waiting time in the queue given by

EðW �Þ ¼
XN�1

n¼0

n
l

�
þ N � n� 1

k

�
P0ð0Þ þ

X1
n¼1

n
l
P1ðnÞ; ð31Þ

where P0ð0Þ and P1ðnÞ are given in (23) and (29), respectively.

5. Comparative analysis between the exact and the approximate results

In this section, we present specific numerical comparisons between the exact results and the
approximate results. This section includes the following three subsections:

(1) Comparative analysis between EðW Þ and EðW �Þ to the N policy M/M/1 queueing system;
(2) Comparative analysis between EðW Þ and EðW �Þ to the N policy M/Ek/1 queueing system;
(3) Comparative analysis between EðW Þ and EðW �Þ to the N policy M/H2/1 queueing systems.

5.1. Comparative analysis between EðW Þ and EðW �Þ to the N policy M/M/1 queueing system

Here, we perform a comparative analysis between EðW Þ and EðW �Þ for the N policy M/M/1
queueing system.
From Sivazlian and Stanfel [17], we obtain

LN ¼ N � 1

2
þ q
1� q

: ð32Þ

It implies from (30) that

EðW Þ ¼ 1

k
N � 1

2

�
þ q2

1� q

�
: ð33Þ

Substituting (26) and (32) into (29), we finally get

P1ðnÞ ¼ q
1

N�1
2

þ 1
1�q

" #
1

"
� 1

N�1
2

þ 1
1�q

#n�1

; n ¼ 1; 2; . . . ð34Þ

Substituting (23) and (34) into (31) yields

EðW �Þ ¼ 1

k
N � 1

2

�
þ q2

1� q

�
: ð35Þ

It is interesting to note that the approximate result EðW �Þ obtained in (35) is identical to the exact
result EðW Þ obtained in (33).
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5.2. Comparative analysis between EðW Þ and EðW �Þ to the N policy M/Ek/1 queueing system

Here, we perform a comparative analysis between EðW Þ and EðW �Þ for the N policy M/Ek/1
queueing system.
From Wang and Huang [15], we have

LN ¼ N � 1

2
þ qðq � kq þ 2kÞ

2kð1� qÞ : ð36Þ

Thus we get

Lon ¼ LN � Loff ¼ LN � ðN � 1Þð1� qÞ
2

: ð37Þ

From (30), we have

EðW Þ ¼ 1

k
N � 1

2

�
þ ð1þ kÞq2

2kð1� qÞ

�
: ð38Þ

Substituting (23) and (29) into (31), it finally gets

EðW �Þ ¼ 1þ q
k

LN � 1

k
Lon ¼

q
k
LN þ 1

k
Loff : ð39Þ

We choose l ¼ 1:0, and varying the values of k ð¼ qÞ for two cases (i) N ¼ 5 and (ii) N ¼ 10.
We perform a comparative analysis for the expected waiting time in the queue for the N policy
M/E2/1 queueing system between the approximate results obtained through maximum entropy
principle, and the exact analytic results obtained from Wang and Huang [15]. Comparison be-
tween the approximate results and the exact results are shown in Tables 1 and 2, for cases (i) and
(ii), respectively. The relative error percentages are very small (0–4%).

5.3. Comparative analysis between EðW Þ and EðW �Þ to the N policy M/H2/1 queueing system

Here, we perform a comparative analysis between EðW Þ and EðW �Þ for the N policy M/H2/1
queueing system.
From Wang et al. [18], we get

LN ¼ N � 1

2
þ q þ q1q2

1 þ q2q2
2

1� q
; ð40Þ

where q1 þ q2 ¼ 1, q1 ¼ k=l1, q2 ¼ k=l2, and q ¼ q1q1 þ q2q2.

Table 1

Comparison between the approximate results and the exact results for the N policy M/E2/1 queueing system

ðN ¼ 5; l ¼ 1Þ
kðqÞ EðW �Þ EðW Þ % Error

0.1 20.0833 20.1083 0.12

0.2 10.1875 10.2375 0.49

0.4 5.5000 5.6000 1.82

0.6 4.4583 4.6083 3.36

0.8 5.5000 5.7000 2.51

0.9 8.9722 9.1972 2.86
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From (30) and (40), the exact result EðW Þ can be calculated.
Substituting (23) and (29) into (31) again, we have

EðW �Þ ¼
XN�1

n¼0

n
l

�
þ N � n� 1

k

�
1� q
N

þ
X1
n¼1

n
l

q2

Lon
1

�
� q
Lon

�n�1

; ð41Þ

where 1=l ¼ q1=l1 þ q2=l2, and Lon is given in (26).
We choose q1 ¼ 0:4, q2 ¼ 0:6, l1 ¼ 0:8, l2 ¼ 1:0, and varying the values of k for two cases

(i) N ¼ 5 and (ii) N ¼ 10. We perform a comparative analysis for the expected waiting time in the
queue for the N policy M/H2/1 queueing system between the approximate results obtained

Table 3

Comparison between the approximate results and the exact results for the N policy M/H2/1 queueing system (N ¼ 5,

q1 ¼ 0:4, q2 ¼ 0:6, l1 ¼ 0:8, l2 ¼ 1)

k q EðW �Þ EðW Þ % Error

0.1 0.11 20.1376 20.1361 0.007

0.2 0.22 10.3141 10.3111 0.029

0.4 0.44 5.875 5.8690 0.100

0.6 0.66 5.4951 5.4861 0.160

0.8 0.88 10.6667 10.6547 0.111

0.9 0.99 112.4722 112.4587 0.012

Table 2

Comparison between the approximate results and the exact results for the N policy M/E2/1 queueing system (N ¼ 10,

l ¼ 1)

kðqÞ EðW �Þ EðW Þ % Error

0.1 45.0833 45.1083 0.05

0.2 22.6875 22.7375 0.22

0.4 11.7500 11.8500 0.85

0.6 8.6250 8.7750 1.74

0.8 8.6250 8.8250 2.32

0.9 11.7500 11.9750 1.91

Table 4

Comparison between the approximate results and the exact results for the N policy M/H2/1 queueing system (N ¼ 10,

q1 ¼ 0:4, q2 ¼ 0:6, l1 ¼ 0:8, l2 ¼ 1)

k q EðW �Þ EðW Þ % Error

0.1 0.11 45.1376 45.1361 0.003

0.2 0.22 22.8141 22.8111 0.013

0.4 0.44 12.1250 12.1190 0.049

0.6 0.66 9.6618 9.6528 0.093

0.8 0.88 13.7917 13.7797 0.087

0.9 0.99 115.250 115.2365 0.012
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through maximum entropy principle, and the exact results obtained from Wang et al.
[18]. Comparison between the approximate results and the exact results are shown in Tables 3
and 4, for cases (i) and (ii), respectively. Again, the relative error percentages are very small
(0–0.2%).

6. Conclusions

In this paper, we have developed approximate steady-state solutions for the N policy M/G/1
queueing system by using maximum entropy principle. A comparative analysis of approximate
results with exact results has shown that the relative error percentages are very small (below 4%).
The numerical results indicate that the use of maximum entropy principle is accurate enough for
practical purposes. One observes from Tables 1–4 that the maximum entropy approximation
provides very good results for the N policy M/M/1, the N policy M/E2/1, and the N policy M/H2/1
queueing systems. Through the maximum entropy principle study, we demonstrate that the N

policy M/G/1 queueing system is sufficiently robust to the variations of service time distribution
functions.
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