Computer Communications 25 (2002) 1622-1630

computer
communications

www.elsevier.com/locate/comcom

A fast algorithm for reliability-oriented task assignment in a distributed
system

Chin-Ching Chiu®™, Yi-Shiung Yeh®, Jue-Sam Chou"

“Department of Management Information System, Private Takming College, Ney Hwu, Taipei, Taiwan, ROC
®Institute of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC

Received 6 March 2001; revised 7 January 2002; accepted 28 January 2002

Abstract

Distributed systems (DS) have become a major trend in computer systems design today because of their high speed and high reliability.
Reliability is an important performance parameter in DS design. The distribution of programs and data files can affect the system reliability.
Usually, designers add redundant copies of software and/or hardware to increase the system’s reliability. The reliability-oriented task
assignment problem, which is NP-hard, is to find a task distribution such that the program reliability or system reliability is maximized.
In this paper, we developed a reliability-oriented task allocation scheme, based on a heuristic algorithm, for DS to find an approximate
solution. The simulation shows that, in most test cases with one copy, the algorithm finds suboptimal solutions efficiently. When the
algorithm cannot obtain an optimal solution, the deviation is very small; therefore, this is a desirable approach for solving these problems.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Distributed system reliability; Task assignment; Heuristic algorithm

1. Introduction

Distributed systems (DS) have become increasingly
popular in recent years. The advent of VLSI technology
and low-cost microprocessors have made distributed
computing economically practical in today’s computing
environment. DS can provide appreciable advantages,
including high performance, high reliability, resource shar-
ing, and extensibility [1]. Reliability improvements in DS
are possible because of program and data-file redundancy.
Reliability evaluations of DS have been widely published
[1-8]. To evaluate the reliability of a DS, including a given
distribution of programs and data files, it is important to
obtain a global reliability measure that describes the degree
of system reliability [10—15].

For a given distribution of programs and data files in a
DS, distributed program reliability (DPR) [9] is the prob-
ability that a given program can be run successfully and will
access all of the required files from remote sites despite
faults occurring among the processing elements and
communication links. The second measure, distributed
system reliability (DSR), is defined as the probability that
all of the programs in the system can be run successfully.

* Corresponding author. Tel.: +88-62-26585801x393.
E-mail address: chiu@imd.takming.edu.tw (C.C. Chiu).

Kumar et al. [9] demonstrated that redundancy in resources,
such as computers, programs, and data files can improve the
reliability of DS [9]. The study of program and data-file
assignment with redundancy considerations is therefore
important in improving DSR.

Assume that there are n processing nodes, P programs, F
data files and k copies. The total number of possible assign-
ment cases is 7“7, Thus, the optimal program and file
allocation on the processing nodes are a problem of expo-
nential complexity [15]. This implies that optimum solu-
tions can be found only for small problems. For larger
problems, it is necessary to introduce heuristic algorithms
that generate near-optimum solutions.

We have presented some algorithms for computing a DS.
The first algorithm generates disjoint FSTs by cutting differ-
ent links and computing the DPR and DSR based on a
simple and consistent union operation on the probability
space of the FSTs [8]. The second algorithm eliminates
the need to search a spanning tree during each subgraph
generation. The algorithm reduces both the number of
subgraphs generated and the actual execution time is more
required for analysis of DPR and DSR [11]. Both algorithms
assume that the copies of each program and file set are
dynamically dependent upon the system capacity. The
third algorithm reduces the total amount of execution time
for optimizing the k-node reliability under the given

0140-3664/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0140-3664(02)00057-9



C.C. Chiu et al. / Computer Communications 25 (2002) 1622-1630 1623

Nomenclature

G = (V,E) an undirected DS graph, where V denotes a set of processing elements, and E represents a set of commu-
nication links

n the number of nodes in G, n = |V/|

V; an ith node represents the ith processing element

c(v) the capacity of the ith node

e the number of links in G, e = |E]

e an edge represents a communication link between v; and v;
a;j the probability of success of link e;;

b;j the probability of failure of link e;;

dv)) the number of links connected to the node v;
w(v;) the weight of the ith node

w(e;;) the weight of the link e;;

F total number of files in the DS

P total number of programs in the DS
Di distributed program i

fi file i

s(p))  the size of program p;

s(f) the size of data file f;

pfi distributed program or file i

k the number of copies of pf;

AFL(p;) list of files required for p; to complete its execution

APL(f; list of programs, which are required f; to complete their execution

DPR(p,) distributed program reliability of p;

FST file spanning tree consisting of the root node (processing element that runs the program) and some other nodes,
which hold all the files needed for the program held in the root node under consideration

MFST minimal FST containing no subset file spanning tree

MEFEST(p;) set of minimal file spanning trees associated with program p;

Sqeea (V) the total capacity requires from v;

PA,; when a program p; is assigned to a node v;, set bit pa;;_; of PA; = 1, otherwise, set bit pa;;_; of PA; =0

FA,; when a data file f; is assigned to a node v;, set bit fa;; | of FA; = 1, otherwise, set bit fa;;_; of FA; = 0.

w(p;)  the weight of program i, the value is the total size of files in AFL(p,)

w(f?) the weight of data file 7, the value is the total size of programs in APL(f;)

capacity constraint [16]. The size of each program and file
set is not discussed separately. Hwang and Tseng proposed k
copies of the distributed task assignment (k-DTA) problem.
The k-DTA models the assignment of k copies for both
distributed programs and their data files to maximize the
DSR under some resource constraints. Because the k-DTA
problem is NP-hard [13], this study proposed a heuristic
algorithm to find an approximate solution. The simulation
results show that the exact solution can be obtained in most
cases with one copy using the proposed algorithm. When the
algorithm fails to obtain an exact solution, the deviation
from the exact solution is very small. When the number of
copies is greater than one, an approximate solution is
obtained, because the number of assigned redundant copies
will be constrained on the nodes, whose size is sufficient to
allocate the file.

2. Computing optimal reliability
To clarify our research objectives, the problem addressed

herein is described.

2.1. Definitions

The following definitions are used in this work.

Definition 1. A DS is defined as a system involving coop-
eration among several loosely coupled computers (proces-
sing elements). This system communicates (by links) over a
network.

Definition 2. A distributed program is defined as a

Section 2 defines the task assignment reliability in a DS.
Section 3 gives our algorithm and an illustrated example.
Section 4 provides the results and a discussion of the problem
from Section 2. Our conclusions are presented in Section 5.

program for some DS that requires one or more files. For
successful distributed program execution, the local host, the
processing elements possessing the required files and the
interconnecting links must be operational [9].



1624 C.C. Chiu et al. / Computer Communications 25 (2002) 1622—1630

Fig. 1. The DS with four nodes and five links.

Definition 3. A dependent set is defined as a set S of
distributed programs and files such that no partition exists
that divides § into two disjoint §; and S,, where S; U S, = §,
and S; NS, =, such that each program and the files
required are within the same subset [13].

Definition 4. The DTA problem is defined finding an
assignment for a dependent set under some resource
constraints in a DS such that the DS has maximum reliabil-
ity [13].

Definition 5. A k-DTA problem is defined as determining
the assignments for k copies of a dependent set to maximize
the DSR under some resource constraints in a DS [13].

2.2. Problem statements

Bi-directional communication channels operate between
processing elements. A DS can be modeled using a simple
undirected graph. For a DS topology with four nodes and
five links, if two programs and three data files should be
allocated, the number of different combinations of programs
and data files for allocation is 4°, that is, 1024. For example,
the program p; requires data files fi, f>, and p, requires data
files fi, f5, f5, for completing execution. Assume that these
files are allocated as shown in Fig. 1.

For program p;, there are three MFSTs, v vse;s,
Vivieiseys,  Viviejgessess.  Therefore, DPR(p)) =
Pr(U?:l MEST;). Once all of the minimal file spanning
trees have been generated, the next step is to find the prob-
ability that at least one MFST is working, which means that
all of the edges and vertices included in it are operational.
Any terminal reliability evaluation algorithm based on path
or cut-set enumeration can be used to obtain the DPR of the
program under consideration. The reliability of program p,
can be computed using a sum of mutually disjoint terms [4].

DPR(p) = b1pa13 + a12a1 3Dy 3024 + @101 352305 4034
* a12a,3a4b34 + A 12023024 F a1 2024034

Assume that the probability of each link is 0.9. Then,
DPR(p;) = 0.98829.
In the same way, all of the eight MFSTs for program p,

are as follows.
V1V2V3V4€12€]13€24,V1V2V3V4€] 2€23€24, V] V2V3V4€]2€34€3 4,
V1V2aV3V4€13€23€34,V1V2V3V4€13€24€34,V1V2V3V4€12€1 3

€34, V1V2V3V4€]3€23€34,VV2V3V4€]2€33€34

8
DPR(pz) = Pr( U MFST,) = a1‘2a1’3b2’3a2,4b3’4

=1
+ayabi3ar3ar4b34 + ayaby3byzaz a3,
+ bi2a13a23a24D34 + a12a1 302302 4b34
+ bipa13br3ay 4034 + a12a1 3Dy 3034

+ b1!2a1,3a2,3a3,4 + 01!202’3613,4 = 097686

DSR = Pr(ﬁpi) = Pr(ﬁ MFST(p,»))

i=1 i=1
Therefore, the results for all MFSTs of the intersection of
the two programs are as follows.
V1V2V3V4€12€13€24,V1V2V3V4€12€23€24,V1V2V3V4€12€24

€34, V1V2V3V4€13€23€3 4, VV2V3V4€]3€24€3 4,V VV3Vy

€12€13€34,V1V2V3V4€12€23€3 4,V V2V3V4€]3€23€34

P
DSR = Pr( npi) = a1a1 333024034

i=1
+ a1,b1 302305 4D34 + a1 by 3Dy 30 4034
+ ai3a33a,4b34 + b12a)3br 305 4034

+ aipa13br3a34 + ajpa 3053034

+ aj a;3a34 = 0.97686

A reliability-oriented task assignment problem can be char-
acterized as follows.
Given

Topology of a DS.

The reliability of each communication link.

The available memory space for each processing element.
A set of distributed programs.

A set of data files.

The sizes of each distributed program.

The size of each data file.

Files required by each distributed program for execution.

Assumption

Each node is perfectly reliable.
Each link is either in the working (ON) state or failed
(OFF) state.



C.C. Chiu et al. / Computer Communications 25 (2002) 1622-1630 1625

A graph G does not have any self-loops.

The failure of a link is independent of the failure of other
links.

Each node on a DS can have only one copy of the data
files.

Constraint
The memory space limitation of each processing element.
Goal

Maximize the DSR of the system (or maximize DPR of a
given program).

Reliability optimization can be defined as the maximum
reliability for computing a given task under some
constraints. For a given task, the reliability can be computed
as R, R,, ..., R, for x situations, where x may be an astro-
nomical figure. In doing so, the reliability optimization for
the task is the maximal reliability in R{,R,,...,R,. The
heuristic algorithm involves obtaining an approximate solu-
tion, which is close to the maximal reliability in
R{,R,,...,R,. Restated, a task assignment must be found
under the given DS such that the DPR of a given program
or DSR of the system is adequate.

The main problem can be mathematically stated as
follows:

Given

distributed system parameters,

memory capacity of each node,

memory requirement of each program and data file,
number of copies of each program and data file;

P
Object : maximize DSR = Pr[ﬂp,],

i=1

subject to
P F
D spPA; + D S(HFA; | = e, i=1,....n,
j=1 j=1

Z PA; = k, k is the number of copies of pf;,
i=1

Z FA;; =k, k is the number of copies of pf;
i=1

Obviously, this problem requires a large execution time.
Herein, we develop an efficient method that allows task
assignment optimization in the DS that achieves the desired
performance. Owing to its computational advantages, a
proposed method may improve the execution time.

3. Heuristic algorithm for reliability-oriented task
assignment methodology

Our problem involves program and data file assignments.
The network topology is fixed. The size of every node is also
fixed. The proposed algorithm generates two node queues
according to the weight of the node and link, respectively,
constructs the access relation list and assigns each program
and data file dependent upon the above two results.

3.1. Development of HROTA

The development of HROTA is described in the follow-
ing subsections.

3.1.1. Compute the weight of each node

The number of ports at each node (degree of a node) and
number of links directly impact the system reliability. Relia-
bility decreases with a decrease in the number of links [5].
For any node, the degree that node affects the number of
information paths that can be transferred from other nodes.
The node with the higher degree is more likely to have more
paths to the destination nodes than those with lower degrees.
Therefore, we employed a simple means for computing the
node weight, which takes less time and can quickly compute
the weight of every node. The following formula is used to
compute the weight of node v; [16].

dv)

w) =1-T]b. (1)
=1

Subproc NodeWeight(v;)
Let E; = {¢; j|e; ; is incident with v;}.
Select a link e; ; from E;.
Let w(v;) = a;;.
Let E; = E; — ¢;.
Dowhile (|E{| > 0)
Select a link ¢; ; from E;.
Let w(v;) = w(v;) + (1 = w(v;))a; ;.
LetE,=E, — ¢
End_Dowhile
Return w(v;).
end NodeWeight

i

3.1.2. Sort nodes in descending according to their weight

After obtaining each node weight, all of the nodes are
sorted according to their weight in descending order and
placed into a queue.

Subproc NodeDesByNodeWeight( )

Let queue O, = .

Dowhile (there is a node v; € V and v; & Q))
Let v; = max{w(v;)|v; € V and v; & Q,}
Add v; to queue Q.

End_Dowhile



1626 C.C. Chiu et al. / Computer Communications 25 (2002) 1622—1630

Return Q.
End NodeDesByNodeWeight

3.1.3. Compute the weight of each link

The reliability of a set of two nodes depends on their links
and the link reliability. In the network, two nodes may
contain many paths between them. The length of a path is
between 1 and n — 1. To reduce the computational time, we
considered a path in which the length is not greater than two.
The following formula is used to evaluate the weight of link
e

Vi

= b l_[ bix.arj) 2

z=1

W(eiJ) =1

where y; ; denotes the number in which the length of a path
between v; and v; is two. In addition, y; ; is not greater than
n — 2. The weight of e; ; can be computed in one subtraction
and 2(y; ; + 1) multiplication. Thus, in the worst case, when
the graph is a complete graph, we can obtain all of the
weights for each link in n(n — 1)/2 subtractions and
n(n — 1)(n — 2)/2 multiplication.

Subproc LinkWeight(e; ;)
Let S; = {ei,kek‘j|path e; xerj exists between v; and v;}
Let w(e;;) = a;;. /” the reliability of a link e;;. */
Dowhile (|S;]| > 0)
Select a path e; e, ; from S;
Let w(e; ;) = wle;;) + (1 — w(e;j))a; xa -
Let S,’ = S,’ - ei’ké’k‘]’.
End_Dowhile
Return w(e; ;)
End LinkWeight

3.1.4. Sort nodes in descending according to all of the link
weight

After obtaining the link weights, the nodes are sorted in
descending order according to the link weights. This method
chooses two nodes incident to the link with the greatest
weight first. The order nodes are then appended one by
one according to their link weight and the link incident to
the selected nodes.

Subproc NodeDesByLinkWeight( )

Let queue Q, = .

Let ¢;; = max{w(e;))|e;; € E}.

If (w(v;) = w(v)))
Add v;, v; to queue @, in order.

Else
Add v;, v; to queue Q, in order.

End_If

Dowhile(there is a node, say v; € V, v; € Q,)
S; = {e; e, is incident with a node in queue Q,,
either v; or v; is in O,}
S, = {vi|vi is adjacent to a node in queue Q, and v; is
not in O}

Let v; = max{w(e;)|e;; € S; and v; € S,}
Add v; to queue O,
End_Dowhile
Return Q,.
End NodeDesByLinkWeight

3.1.5. Construct APL( f;) and AFL(p;)

In most cases, the total required memory size dominates
the number of nodes needed. We therefore simply used the
total memory size of p; and its associated files to approx-
imate the number of required nodes. We used the following
formula to evaluate the weight of each program and data
file.

w(p) = > s(f), where f; € APL(f).

w(f;) = > s(p;), where p; € AFL(p)).

Assume that s(py) =2, s(py) =3, s(fi) =2, s(fr) =23,
S(fi) = 3’ AFL(pl) = {fl’fZ}’ AFL(p2) = {f2’f3}’ there-
fore, APL(f) = {p1}, APL(f2) = {p1.p2}, APL(f3) =
(P2}, wpy) = s(f) +5(f) =35, wpy) = s(f) + s(f3) =
6, w(fi)=sp) =2, w(fy)=sp)+sp)=5 and
w(f3) = s(p,) = 3. The order of program according to
weight is p,, p;, and the order of file is f,, f; and f;. We
rearrange the APL(f;) and AFL(p;) as follows: AFL(p,) =
(i}, AFL(p2) = {fo.f3}, APL(f) = {p1}, APL(fy) =
{P2,p1}, and APL(f3) = {p,}.

3.1.6. Construct AR-list

An AR-list represents that the sequence of programs and
data file assignment will be considered. We constructed an
AR-list according to each APL(f;) and AFL(p,).

For example, according to Section 3.1.5, the AR-list was

constructed as py = fhr = fs—=pr—=p—~fi—=Hh—f—
p1 — fi if the number of copies is two.

Subproc AccessRelateList(copy)
Let queue O3 = .
Let pf; = max{w(p,)|i = 1,..., P}. /" start at a program
for assignment */
Let type = 0. /” set task type to denote program “/
Let parent = NULL.
Add (pf;, type) to queue Q3. /” save the information for
processing */
Add (pf;, type, parent) to the tail of AR-list. /* append
the record to AR-list */
Let k_copylpfilltypel = k_copylpfilltype]l = 1. /" a
copy of the task has assigned */
Dowhile (Q; # &)
Let (pf;, type) = delete (Qs, front).
Let parent = the address of the node of AR-list that
include (pf;, type).
If (type = 0) /" a program */
Copy AFL(pf) to S;. /" all files required for the



C.C. Chiu et al. / Computer Communications 25 (2002) 1622-1630 1627

current program "/
next_type = 1. /" set task type to denote data file */
Else /* a data file "/
Copy APL(pf) to S,. /" programs, which are
required the data file */
next_type = 0. /" set task type to denote program */
End_If
Let (Q4 # ). /" reset the queue Q, */
Dowhile (S, # &)
pf; = delete(S, first). /* obtain a task */
If (k_copylpfilltype] > 0) /* the copies of the task
is insufficient */
If ((pfi, next_type) is same as its grand_parent)
Add (pf,, next_type) to queue Q,. /" delay to
assign the task */
Else /* assign the task to the current node */
Add (pf;, next_type, parent) to AR-list.
Add (pf;, next_type) to queue Qs.
Let k_copylpfilltype]l =
k_copylpfilltype] — 1
End_If
End_If
End_Dowhile
If (Q4 # ©)
Let (pf;, next_type) = delete (Qy, front)
Add (pf;, next_type, parent) to AR-list.
Let k_copylpfilltypel = k_copylpfilltype] — 1.
End_If
End_Dowhile
Return AR-list.
End AccessRelateList

3.1.7. Allocate each program and data file according to the
AR-list and either Q; or Q,

The most reliable assignment for k copies of some program
or data file is to assign these copies to k distinct nodes [13].
The total number of programs and file size assigned to a node
is at most as large as the capacity of the node.

Subproc TaskAssign(AR-list, Q)
Let v; = delete (Q, front). /* obtain the weightiest node
from queue Q */
Let ptr = AR-list. /* initialize the pointer ptr as the
starting address of AR-list */
Let PA; = PA;|(0 X 0001 < (ptr — j — 1))./" assign p;
tov; "/
Let c(v) =c(v) — s(pp. /* compute the remainder
capacity of node v; */
Delete the node pointed to by the ptr pointer from the
AR-list.
Let ptr = AR-list./* move the pointer ptr to next record */
Dowhile(TRUE) /* traversal each record of AR-list */
Let difference = Maxvalue. /* set all of the bits of
difference to 1 */
Dowhile (ptr! = NULL) /* use best fit to assign task */
Let size = (ptr — type = program)?s(py,—.;):

$(fo—j)- /* obtain the current task size */
If (difference = c(v;)-size)
/" k-copies of some program of data file is to
assign to distinct nodes */
If ((ptr — type = program) and (PA;, and (0 X
0001 < (ptr—j — 1))) = 0)||
((ptr — type = file) and (FA,;, and
0 X 0001 < (ptr]j — 1))) = 0)
Let candidate_ptr = ptr. /" the best record in
AR-list until current */
Let difference = c(v;)-size.
End_If
End_If
ptr = ptr— next. /" examine next record of AR-
list. ¥/
End_Dowhile
If (difference = Maxvalue) /* c(v;) is insufficient to
assign a program or file */
Let v;=delete (Q, front). /" the next node for
assigning task */
Else
If (candidate_ptr — type = program) /" assign p;
tov; /
Let PA;=PAJ|0X 0001 < (candidate_ptr —
j— 1)) /" to assign */
Let C(Vi) = C(Vi) - s(pz'andidarethj)~ /" Compute
the available capacity of v; */
End_If
If (candidate_ptr — type = file) /" assign f; to v; */
Let FA,= FA;|0 X 0001 < (candidate_ptr—
j— 1) /" to assign */
Let C(Vi) = C(Vi) - S(f‘candidate_prr—j)' /* Compute
the available capacity of v; */
End_If
If (c(v;) = 0) /" there is no available capacity in v; */
Let v;=delete (Q, front). /* next node be
consider to assign */
End_If
/* the task in the record point by candidate_ptr
pointer has been assigned */
Delete the node point to by the candidate_ptr
from the AR-list.
End_If
ptr = AR-list. /* reset the ptr pointer point to the
starting address of AR-list"/
End_Dowhile
Return PA;, FA; fori=1,...,n.
End Task Assign

3.2. Complete algorithm of HROTA

The detail steps for HROTA are described as follows:

Algorithm HROTA
step 0 /* Initialize DS, and task parameters */



1628 C.C. Chiu et al. / Computer Communications 25 (2002) 1622—1630

c(n)=5 c(v)=4 c(v3)=6
c(va)=6 c(vs)=5 c(ve)=5
a1,2=0.70 a1,3=0.80 02‘3=0.90 a2,4=0.75
a3,5=0.95 04,5=0.85 a4,5=0.90 a5,6=0.95

Fig. 2. The DS with six nodes and eight links.

Read DS parameters: n, e, a; j, c(vy),
task parameters: k, P, F, s(p;), s(f;), AFL(p;).
step 1 /* Compute each node weight using Eq. (1), each
link weight using Eq. (2). */
For each v; € V do
w(v;) = NodeWeight(v;). /* call function to evaluate
the weight of v; */
End_do
For each ¢; ; € E do
w(e; ;) = LinkWeight(e; ;). /* call function to evalu-
ate the weight of e; ; */
End_do
step 2 /* Generate two queue according to the weight of
the node and link, respectively. */
0, = NodeDesByNodeWeight( ). /* sort nodes depen-
dent on the node weight */
0, = NodeDesByLinkWeight( ). /* sort nodes depen-
dent on the link weight */
step 3 /* Construct APL(f)) and AFL(p;). */
Compute the weight of each program and data file, then
construct APL(f;) and AFL(p)).
step 4 /* Construct AR-list */
Access Relate List(k)
step 5 /* Allocate each program and data file according to
the AR-list and either O, or Q,. "/
Task Assign (AR-list, Q,). /*call function”/
Task Assign (AR-list, Q,). /*call function”/
step 6 /° Compute the DSR and output the best task
assignment. */
Compute the reliability for the final result task assign-
ment indicated at PA; and FA; using SYREL [4] and
Output the task assignment.
End HROTA

pufi )29

)29

e LS

Fig. 3. The program and data file assignment results.

3.3. An illustrate example

The topology of a DS with six nodes and eight links is
described as follows. The c(v;) represents the capacity of
node v;, and g, ; represents the reliability of link e; ; (Fig. 2).

If there are two programs, p, p,, and three data files, f;, f>,
f3, with sizes py, p2, fi, o, 3,18 2, 3, 2, 3, and 3, respectively.
The program p; needs fi, f>, and program p, needs fi, f>, f5,
for complete execution, e.g. AFL(p)) is {fi, f>}, AFL(p,) is
{f1, />, /3}. Our problem is to find the maximal DS reliability
under the allocated programs and files.

In step 1, the weight of each node and link are evaluated
using Eqgs. (1) and (2), respectively. The weight of v,
Vo,V 18 0.94, 0.9925, 0.999, 0.9962, 0.9996, 0.995,
respectively. The weight of e ,, e;3,....65¢ is 0.916, 0.926,
0.956, 0.75, 0.95, 0.9783, 0.9808, and 0.9883, respectively.

In step 2, after sorting by the weight of nodes, we
obtained Q; = vs, V3,4, Vg, Vo, V;. After sorting by the
weight of links, we obtained Q, = vs, vg, V4, V3, V2, Vy.

In step 3, AFL(p)) = {f2. fi}, AFL(pp) = {f2./1./3}
APL(f1) = {p2.p1}, APL(f2) = {p2,p1}, APL(f3) = {p»}.

In step 4, AR-list=p,—=H—=fi—=fr—=pi—p—
pn—h—=h—5

In step 5, (a) task assignment according to AR-list and Q;,
we obtained PA; =0, >PA, =1, PA; =0, PA, =2,
PA5 = 2,PA6 = l,andFAl = O,FAZ = 1,FA3 = 6,FA4 =
2, FAs =1, FAq = 4. That is, the task assignment is as
shown in Fig. 3.

(b) task assignment according to AR-list and Q,, we
obtained PA; =0, PA, =1, PA; =0, PA, =2, PAs =2,
PAG = l,andFAl = 0, FAz = 1,FA3 = 6, FA4 = 4, FA5 =
1, FAg = 2. That is, the task assignment is as Fig. 3, except
f5 is allocated into v, and f; is allocated into vg.

In step 6, generate all of the MFSTs according to the
results in step 5. In case (a), we obtained v,v3vse;sess,
VaV3V4Vs5€24€35€45, V1V2V3V5€12€13€23€35, V3Vs5V6€35€56,
VaV3V4€33€54, V1V2V3V4€12€13€24, V2VaVe€)4€46, V4VsVe
€45€46, ViVsV6€s €56, VaVsVelssesg. In case (b), we
obtained Vv,V3Vse;3€35, V3VsVe€3s5€s6, ViVaViVs€|2€13€33
€35, VaV3V4V5€24€35€4 5, V3V5V6€35€56, VaV3Va€r3€24, ViVa
V3V4€12€13€24, V2VaV6€24€46, V4V5V6€45€46, V4V5V6€45€56,
V4VsVeess€ss. The algorithm computes the DSR using
SYREL and Outputs the task assignment. The reliability is
0.9994969. In each case, we use the formula DSR =
pr("Y_, p)) = pr((.—; MEST(p;)) to compute its reliability.
Therefore, the reliability count is equal to 2.



C.C. Chiu et al. / Computer Communications 25 (2002) 1622-1630 1629

Table 1

The results obtained using exhaustive method, Hwang and Tseng method and our proposed method for various DS topologies and k&-DTAs (n, the number of
nodes in G; e, the number of links in G; NRC, the number of reliability computation; Exhaust, the exhaustive method; &, the number of copies of programs and
data files)

Size k-DTA AFL Global optimal solution Exhaust Hwang and Tseng Proposed method

n e k P F p P2 P3 NRC Time (s) Time (s) Absolute err Time (s) NRC Absolute err
6 8 1 2 3 fih fifs - 0.9883041 4032 16 0.11 0.0099509  0.11 1 0

6 8 1 2 4 fifis fufa - 0.9883041 18756 145 0.11 0.0099509  0.11 1 0

6 8 1 3 3 fih Lffi fifs 0.9883041 13968 55 0.16 0.0207249  0.16 1 0

6 8 1 3 4 fififs Kb fifa 0.9745220 57624 266 0.22 0.0101783  0.22 1 0

6 8 1 3 5 fififi Lfsfs  fifa 0.9745220 210168 1072 0.22 0.0055219  0.22 1 0

6 8 2 2 3 firh Hib - 0.9998719 21312 97 0.16 0.0146482  0.16 1 0.0003515
6 8 2 2 3 fih fihefs - 0.9992175 21312 34 0.22 0.0137254  0.22 1 0.0002513
6 8 2 2 4 fihfs Hiofali — 0.9984149 11691 19 0.38 0.0003736  0.38 1 0

6 8 2 2 3 hHfsi fih - 0.9998719 21312 104 0.22 0.0002890  0.22 1 0.0007716
6 8 2 2 3 AHfsi fifs - 0.9998719 21312 48 0.22 0.0002890  0.22 1 0.0007716
6 8 2 3 3 fifi fib fifss 0.9998698 3699 24 0.27 0.0053454  0.27 1 0.0011843
6 10° 2 2 3 fAHfi fih - 0.9999917 10260 113 0.22 0.0127541  0.22 1 0.0000811
6 10° 2 3 3 fip fufs fifs 0.9999951 272157 3433 0.44 0.0274293  0.44 1 0.0000882
6 10° 2 3 4 fifi fihfs  fifsfi® 1.0000000 5288498 38122 0.38 0.0291030  0.38 1 0.0000172

* Addition two links €35, €34 and ar3 = 0.9, az 4 = 0.95.
b s(fa) = 1; s(p1) = 2, s(py) = 3, s(p3) = 3, s(f1) = 2, s(f,) =3, s(3) =3, s(fy) = 2, s(fs) = 2; if k =1, then c(v;) =5, c(v,) =4, c(v3) =6, c(v4) =6,

c(vs) =5, c(vg) = 5,; if k =2, then c(v;) =6, c(vy) =5, c(v3) =7, c(vy) =7, c(vs) = 6, c(vs) = 6.

4. Results and discussion

Table 1 presents the data on the results obtained using
three different methods for various DS topologies with
different allocated programs and data files. In contrast to
the exhaustive method, the number of reliability computa-
tions grows rapidly, when the size of the DS topology or the
number of programs and data files are increased. The
proposed method is constant, which is independent of the
size of the DS topology and the number of programs and
data files. The deviation is very small, when the proposed
method cannot obtain an optimal solution. These data show
that the proposed method is more effective than the conven-
tional methods.

In this paper, we proposed a new technique for solving
the k-DTA reliability problem. The complexity of the
proposed algorithm in steps 0, ...,6 is O(1), O(n3), O(en),
O(P + F), O(k(P + F)), O(P + F)?), and O(m?), where k
denotes the number of copies of the programs and files and
m represents the number of paths for the set of assigned
nodes [4]. Other notations, such as n, ps, P, F, cc and mc,
are defined in Nomenclature. Therefore, the complexity of
the proposed algorithm is o + (P + F)* + m%). Results
obtained from our algorithm were compared with those
from the exhaustive method and the Hwang and Tseng
method [13]. Although the exhaustive method, which has
a time complexity of Om?n* 1, can yield the optimal
solution, it cannot effectively reduce the number of reliabil-
ity computations and the time complexity. An application
occasionally requires an efficient algorithm for computing
reliability owing to resource considerations. Under this
circumstance, deriving the optimal reliability may not be a
promising option. Instead, an efficient algorithm yielding

approximate reliability is preferred. The time complexity
for the Hwang and Tseng method [13] is o’ + kn(P +
F) + m?), which is slightly quicker than our method, but
the deviation from the exact solution is not ideal [13].

In contrast to the computer reliability problem, which is
static-oriented, the task assignment problems in the DS are
dynamically oriented, because many factors, such as the DS
topology, node capacity, link reliability, the size of the
programs or files, files requested by each program, copies
of programs and files and the number of paths between each
node can significantly affect the efficiency of the algorithm
[4]. Thus, quantifying the time complexity exactly is extre-
mely difficult. The accuracy and efficiency of the proposed
algorithm were verified by implementing simulation
programs in C language executed in Pentium III with
128M-DRAM on MS-Windows 98. In our simulation
case, the number of reliability computations for the
proposed algorithm was constant. The exact solution can
be obtained in most cases, when there is only one program
and file copy. In almost every case, if the number of copies
exceeds one, the DSR is close to one and the redundant file
may constrain the remaining node capacity. The proposed
method can obtain an approximate solution, in which the
average deviation from the exact solution is under 0.001.

5. Conclusion

This paper presented a heuristic algorithm for computing
k-DTA reliability problem. The proposed algorithm uses an
effective algorithm to select a program and file assignment
set that has maximal or nearly maximal system reliability.
Our numerical results show that the proposed algorithm may



1630 C.C. Chiu et al. / Computer Communications 25 (2002) 1622—1630

obtain the exact solution in most one copy cases and the
computation time is significantly shorter than that needed
for the exhaustive method. When the proposed method fails
to give an exact solution, the deviation from the exact solu-
tion appears very small. The technique presented in this
paper might be helpful for readers to understand the rela-
tionship between task assignment reliability and DS topol-

ogy.

References

[1] K.K. Aggarwal, S. Rai, Reliability evaluation in computer commu-
nication networks, IEEE Trans. Reliab. R-30 (1981) 32-35.

[2] K.K. Aggarwal, Y.C. Chopra, J.S. Bajwa, Topological layout of links

for optimizing the S—-T reliability in a computer communication

system, Microelectron. Reliab. 22 (3) (1982) 341-345.

A. Satyanarayna, J.N. Hagstrom, New algorithm for reliability analy-

sis of multiterminal networks, IEEE Trans. Reliab. R-30 (1981) 325—

333.

S. Hariri, C.S. Raghavendra, SYREL: a symbolic reliability algorithm

based on path and cuset methods, IEEE Trans. Comput. C-36 (1987)

1224-1232.

F. Altiparmak, B. Dengiz, A.E. Smith, Reliability optimization of

computer communication networks using genetic algorithms, Proc.

IEEE Int. Conf. Syst. Man Cybern. 5 (1998) 4676-4680.

[6] D.W. Coit, A.E. Smith, Reliability optimization of series—parallel
systems using a genetic algorithm, IEEE Trans. Reliab. R-45 (1996)
254-260.

[7] D. Torrieri, Calculation of node-pair reliability in large networks with
unreliable nodes, IEEE Trans. Reliab. R-43 (1994) 375-377.

[8] D.J. Chen, T.H. Huang, Reliability analysis of distributed systems
based on a fast reliability algorithm, IEEE Trans. Parallel Distribut.
Syst. 3 (1992) 139-154.

[9] V.K.P. Kumar, C.S. Raghavendra, S. Hariri, Distributed program relia-
bility analysis, IEEE Trans. Software Engng SE-12 (1986) 42-50.

[10] A. Kumar, D.P. Agawal, A generalized algorithm for evaluation
distributed program reliability, IEEE Trans. Reliab. R-42 (1993)
416-426.

[11] D.J. Chen, R.S. Chen, T.H. Huang, Heuristic approach to generating
file spanning trees for reliability analysis of distributed computing
systems, J. Comput. Math. Appl. 34 (1997) 115-131.

[12] P. Tom, C.R. Murthy, Algorithms for reliability-oriented module
allocation in distributed computing systems, J. Syst. Software 40
(1998) 125-138.

[13] G.J. Hwang, S.S. Tseng, A heuristic task assignment algorithm to
maximize reliability of a distributed system, IEEE Trans. Reliab. R-
42 (1993) 408-415.

[14] M. Kafil, I. Ahmad, Optimal task assignment in heterogeneous
distributed computing systems, IEEE Concurrency 6 (1998) 42-51.

[3

=

[4

—

[5

—_

[15] A. Kumar, R.M. Pathak, Y.P. Gupta, Genetic algorithm based

approach for file allocation on distributed systems, Comput. Ops.
Res. 22 (1) (1995) 41-54.

[16] C.C.Chiu, Y.S. Yeh, R.S. Chen, Reduction of the total execution time

to achieve the optimal k-node reliability of distributed computing
systems using a novel heuristic algorithm, Comput. Commun. 23
(2000) 84-91.

Chin-Ching Chiu

Education: September 1993—October 2000 PhD in Computer Science
and Information Engineering, Department of EE and CS, National
Chiao-Tung University. September 1988—June 1991 MS in Computer
Science, Department of EE and IE, Tamkang University. He received a
BS degree in Computer Science from Soochow University.
Professional Background: December 2000—Now Associate Professor,
Department of Information Management, Tak-Ming College. September
1991—-November 2000 Instructor, Department of Information Manage-
ment, Tak-Ming College. April 1984—August 1991 Computer Engineer
in Data Communication Institute of Directorate General of Telecom-
munications. October 1982—April 1984 System Analyst of SYSCOM
computer company.

Research Interest: Reliability Analysis of Network and Distributed
Systems, Genetic Algorithms, DNA computing.

Yi-Shiung Yeh

Education: September 1981-December 1985 PhD in Computer
Science, Department of EE and CS, University of Wisconsin-Milwau-
kee. September 1978—June 1980 MS in Computer Science, Department
of EE and CS, University of Wisconsin-Milwaukee.

Professional Background: August 1988—Now Associate Professor,
Institute of CS and IE, National Chiao-Tung University. July 1986—
August 1988 Assistant Professor, Department of Computer and Infor-
mation Science, Fordham University. July 1984—December 1984
Doctorate Intern, Johnson Controls, Inc. August 1980—Octpber 1981
System Programmer, System Support Division, Milwaukee County Gov.
Research Interest: Data security and Privacy, Information and Coding
Theory, Game Theory, Reliability and Performance.

Jue-Sam Chou

Education: He is currently working towards the PhD degree in Depart-
ment of CS and IE, National Chiao-Tung University.

Professional Background: September 1991—Now Instructor, Depart-
ment of Information Management, Ta-Hua College.

Research Interest: Reliability and Performance Evaluation: Networks
and Distributed Systems, DNA computing.




