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Abstract/

In time-varying ground water remediation, the lack of an optimal control algorithm to simultaneously consider
fixed costs and time-varying operating costs makes it nearly impossible to obtain an optimal solution. This study pre-
sents a novel algorithm that integrates a genetic algorithm (GA) and constrained differential dynamic programming
(CDDP) to solve this time-varying ground water remediation problem. A GA can easily incorporate the fixed costs
associated with the installation of wells. However, using a GA to solve for time-varying policies would dramatically
increase the computational resources required. Therefore, the CDDP is used to handle the subproblems associated
with time-varying operating costs. A hypothetical case study that incorporates fixed and time-varying operating costs
is presented to demonstrate the effectiveness of the proposed algorithm. Simulation results indicate that the fixed costs
can significantly influence the number and locations of wells, and a notable total cost savings can be realized by

applying the novel algorithm herein.

Introduction

The pump-and-treat method is one of the most common
ground water remediation methods. The feasibility of cou-
pling optimization techniques with ground water flow and
transport simulation to design pump-and-treat systems has
been extensively studied (Gorelick et al. 1984; Ahlfeld et al.
1988; Andricevic and Kitanidis 1990; Yeh 1992; Sawyer et
al. 1995; McKinney and Lin 1995; Wang and Zheng 1998;
Mansfield and Shoemaker 1999). Chang et al. (1992)
employed an optimal control method, called the successive
approximation linear quadratic regulator (SALQR), to
design a time-varying pumping system for the remediation
of contaminated aquifers. Culver and Shoemaker (1992)
determined that time-varying policies are more cost effec-
tive than time-invariant policies. The SALQR algorithm has
been shown to be efficient in solving time-varying problems
(Mansfield et al. 1998; Yoon and Shoemaker 1999).
Although superior in dealing with the time-varying prob-
lems, SALQR fails to cope with problems with fixed costs.
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Pump-and-treat system design is important because well
locations and pumping rates can markedly affect system per-
formance. Generally, the decision variables involve determin-
ing the values of pumping rates from extraction wells and
selecting the locations of wells. Owing to the discontinuous
nature of well location selection, mathematical programming
is often simplified by neglecting the fixed costs of well instal-
lation. The optimal network normally consists of those wells
whose final, optimized pumping rates are nonzero. However,
this simplification can lead to designs that rely on numerous
wells pumping at small rates over long periods (McKinney
and Lin 1995). Recently, researchers have investigated vari-
ous methodologies for incorporating these fixed costs.
McKinney and Lin (1994, 1995) employed a genetic algo-
rithm (GA) and mixed-integer nonlinear programming
(MINLP) to solve ground water management problems,
including both fixed and operating costs; however, the authors
assumed time-invariant pumping rates and steady-state condi-
tions. Zheng and Wang (1999) integrated tabu search and lin-
ear programming to design optimal ground water remedia-
tion, by accounting for both fixed and operating costs, but,
again, only time-invariant pumping rates were considered.
Aly and Peralta (1999) used the L_ norm as a global measure
of aquifer contamination, rather than the traditional control
locations for contaminant concentrations. They compared the
performance of a GA with that of a MINLP. Rizzo and
Dougherty (1996) solved a large-scale, six-management-
period problem, using simulated annealing. Although the
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models by Aly and Peralta (1999) and Rizzo and Dougherty
(1996) can be applied to a dynamic system with fixed and
operating costs, these authors decoupled the problem into sev-
eral period-wise subproblems, which they solved sequentially
and independently. The approach is thus not one of fully
dynamic optimization, and the results may not be the optimal
solution of the originally defined problem. Huang and Mayer
(1997) and Wang and Zheng (1997) used a GA to find the opti-
mal pumping rates and the discrete fixed costs of well loca-
tions in dynamic ground water remediation management.
Wang and Zheng (1998) applied a GA and simulated anneal-
ing, coupled with the MODFLOW finite difference ground
water flow model, for optimal ground water remediation
design over multiple management periods. and including both
fixed and operating costs. Because a GA or simulated anneal-
ing alone cannot explore the stage-wise structure of the non-
linear dynamic operating cost, the major drawback of applying
these combinatory algorithms to solve the contaminated
ground water problem is the dramatic increase in computa-
tional loading (Culver and Shoemaker 1997). Hence, their
approach has only limited capability to determine dynamic
pumping rates. The maximum number of planning periods
considered by the previous three studies is only four. Watkins
and McKinney (1998) applied a generalized Benders decom-
position and outer approximation to solve an MINLP formula-
tion of a conjunctively managed surface and ground water sys-
tem, involving cost functions with both discrete and nonlinear
terms. They applied the response matrix approach to develop
constraints on their optimization problem. The response matrix
method requires that the system transfer function be assumed
as linear. The approach is not directly applicable to the reme-
diation problem because a ground water remediation problem
always has nonlinear transfer function (Gorelick et al. 1984).
Related investigations have demonstrated that dynamic
policies are more cost-eftective than the best static policies
because pumping policies are allowed to change as the con-
taminant plume moves (Chang et al. 1992; Culver and Shoe-
maker 1992). Owing to dynamic optimal control algorithms
requiring a separable objective function for each stage t, they
face difficulties in solving a problem with an objective func-
tion that contains fixed costs. Culver and Shoemaker (1997)
used quasi-Newton differential dynamic programming
(QNDDP) for ground water reclamation with treatment capi-
tal. Culver and Shenk (1998) also employed QNDDP to solve
a dynamic optimal pump-and-treat ground water remediation
problem with an objective function that included the operating
and capital costs of a granular activated carbon system. Culver
et al. (1997) and Culvet and Shenk (1998) assumed the capital
cost of the system to be a continuous function of the pumping
rate at the first time step. Accordingly, the summation of capi-
tal and operating costs is also a continuous objective function.
The main difference between the work of Culver et al. (1997)
and Culver and Shenk (1998) and this study is that their algo-
rithm cannot be applied to a problem with a discrete objective
function, such as the network design problem considered here.
Sun and Yeh (1998) employed location and schedule opti-
mization to design a ground water remediation system using a
soil vapor extraction system. Although their model determines
extraction well locations and the time-varying extraction
schedule. their approach is essentially numerical and requires

the pumping rates to be discretized. The computational capa-
bility of their approach is limited for a dynamic system,
because the computational loading increases significantly with
the number of both conceivable pumping rates and planning
periods.

While attempting to resolve the planning problem of
simultaneously considering the fixed costs of well installa-
tion and the operating costs of time-varying pumping rates,
previous studies have their computational limitations. The
GA is attractive because it does not require the differentia-
bility of the objective function. Hence, the GA can easily
incorporate the fixed costs associated with the ground
water remediation problem. However, applying this tech-
nique alone to solve time-varying policies would dramati-
cally increase the computational resources required. There-
fore, this study presents a novel approach for resolving this
optimization problem by effectively combining a GA with
constrained differential dynamic programming (CDDP).

However, system planning commonly assumes that an
“optimal solution” is restricted and defined by its formulation,
the objective function, and constraints, rather than being the
best general solution. The next section defines “optimal
ground water remediation.” No optimization algorithms con-
sider all phases of a real problem. An optimal solution is the
beginning rather than the end of a decision-making process.

Formulation of the Management Model

The management model attempts to minimize the total
cost of remediation, composed of the fixed costs of well
installation and operating costs of the pumping and treat-
ment system. The problem can be formulated as

min
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where Q is an index set that defines all candidate well loca-
tions in the aquifer; and I is a potential network alternative
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(design) and a subset of €. The upper index i denotes a well
in the network design (I). J(+) represents the total cost of I;
X, = [h: cl]T € R("*1c) %1 i the state of continuous variables
representing heads (h,) and concentrations (c,); and n, and
n, denote the total number of hydraulic heads and concen-
trations, respectively; u, (I) e R™*! represents the vector of
control variables whose dimension depends on I; m is the
number of control variables; T(x,uI),t) represents the
transition equation; @ is the set of observation wells; a,, a,,
and a, are factors used to convert the well installation cost,
treatment cost, and operating cost, respectively, into mone-
tary values; L.(I) e R™! is the distance from the ground
surface to the lower datum of the aquifer for wells; h,,, ()
denotes hydraulic head for nodes at time t + 1; y(I) is the
depth of wells; and u,,,, represents the maximum allowable
total pumping rates from all extraction wells. Equation 5
specifies the capacity constraints for each well. The transi-
tion equation, T, in Equation 2 is solved with ISOQUAD
(Pinder 1978), a finite-element ground water flow and
transport model for a confined two-dimensional aquifer.
The transport model includes changes in head caused by
pumping and changes in the contaminant concentration
owing to advection, diffusion, dispersion, and linear equi-
librium sorption. In practical applications, the set of obser-
vation wells (@) is the group of sites that are made to meet
the water-quality standard, and N is the time limit within
which the standard must be met. Certain well locations can
easily be excluded from consideration by excluding the
well sites from the € set that is defined by the user.

The total cost objective function in Equation 1 is
mixed-integer nonlinear. Therefore, the ground water reme-
diation model defined by Equations 1 through 5 is a mixed-
integer time-varying optimization problem. The first com-
ponent in Equation 1 is the costs of well installation, and is
incurred if a well is installed for pumping. The costs of well
installation are a discrete operation and required the use of
binary variables in the optimization model. The second
component in Equation 1 is the operating cost, involving
pumping and treatment costs. These costs are continuous
functions of the state and control variables and are separa-
ble functions for each stage t. Because of the discrete nature
of the installation cost, the problem, defined by Equations 1
through 5, is difficult to solve using CDDP alone (Chang et
al. 1992; Culver and Shoemaker 1992). Meanwhile, the near
global optimization techniques, such as simulated annealing
(Rizzo and Dougherty 1996), a GA (Huang and Mayer
1997), or tabu search (Zheng and Wang 1999), do not
require the objective function to be continuous, convex, or
differentiable. Hence, these techniques are potentially capa-
ble of solving an optimization problem containing fixed
costs. However, applying these techniques to solve time-
varying policies would dramatically increase the computa-
tional resources required (Culver and Shoemaker 1997;
Zheng and Wang 1999). Therefore, the techniques men-
tioned are inappropriate for time-varying optimization.

Integration of a GA and CDDP
This investigation integrates a GA and CDDP

(GCDDP) to solve the problem defined by Equations |

Start
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Figure 1. Flowchart for the ground water remediation model.

through 5. In this integrated approach, the GA, a near
global optimization algorithm, is used to locate the optimal
well sites, whereas CDDP is employed to calculate the opti-
mal pumping rates. Figure 1 illustrates the procedure of the
algorithm. According to this figure, the algorithm is a sim-
ple GA with CDDP embedded to compute the optimal
operation costs for a potential network alternative (repre-
sented by a chromosome). The total cost for each network
alternative (chromosome) is the sum of the optimal opera-
tion costs and its fixed costs. In this investigation, time-
varying pumping rates are considered while evaluating the
optimal operation costs using CDDP. These procedures are
clarified by the following step-by-step procedure.

Step 0: Initialization

Encode the network alternatives as chromosomes and
randomly generate an initial population. GA is widely
known to use binary coding to represent a variable. This
study uses a binary indicator to represent the status of the
wells installation on a candidate site. Thus a chromosome,
represented by a binary string, defines a network alterna-
tive. Each bit in a chromosome is associated with a candi-
date site, and the length of the chromosome is equal to the
total number of candidate sites available for well installa-
tion. If the value of a bit is equal to one, the associated can-
didate site will install a well; otherwise, the value of a bit
equals zero, and the associated candidate site will not
install a well.

To demonstrate the operation of chromosome encod-
ing, a hypothetical, homogeneous, isotropic confined
aquifer with dimensions of 600 m X 1200 m serves as an
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Figure 2. Finite-element mesh, boundary conditions, initial plume, and locations of numbered observation and potential extraction

wells for all runs of the ground water reclamation example.

example. Figure 2 presents the finite-element mesh, associ-
ated boundary conditions for hydraulic head and contami-
nant concentration, location of candidate sites for extraction
wells, and location of observation wells. There are 91 finite-
element nodes, along with 24 candidate well sites, and 17
observation wells.

Because the hydraulic head, initial concentration, loca-
tions of observation wells, and candidate sites for pumping
wells, are symmetrical in Figure 2, this study assumes that
the optimal network is also symmetrical. According to this
assumption, the combination of network configurations
will decrease in a GA and the computational effort will
reduce. The chromosome contains 16 bits, where the first
eight bits represent the sites along the centerline and the last
eight bits represent candidate sites in the upper region.
When a bit among the last eight bits has a value, it repre-
sents two wells placed symmetrically to the centerline.
Because the well selection is binary. encoding and decod-
ing the chromosome is straightforward.

Step 1: Evaluate the Total Cost and Fitness
of Each Chromosome.

In this investigation, the fitness equals the reciprocal of
total cost. The chromosome that was described in Step 0
can be represented as a binary string in the form I, =
i,1,,...ig.0g.....1;,, Where I, denotes a chromosome within
the population. Each digit i_ has a value of either 1 or 0. The
number of wells for the chromosome can be calculated as

Gwen

:}: i, +2 i, (6)

The total cost for each chromosome, or network alter-
native, includes the fixed and associated operating costs.
The fixed cost in Equation 1 can be evaluated before opti-
mal operating costs are calculated because each chromo-
some defines the number and location of pumping wells in

484

the network design. For each chromosome, an embedded
CDDP algorithm is then applied to determine the optimal
operating cost.

According to Equations 1 through 5, when a network
alternative is selected, the discrete and inseparable nature
of the problem is eliminated. The optimization model for
each chromosome can then be rewritten as

ILuM) = >

i€l

N
{E{au: (1) + a;u[LLI) — h:»;(m}} Tix

t=1
subject to

Equations 2, 3. 4, and 5 (8)

where I represents a chromosome, and Cy, is a constant that
represents the fixed costs for the chromosome. C;_ is a con-
stant and, therefore, does not influence the determination of the
operating costs. Hence, for each chromosome, Equations 7 and
8 define a standard dynamic optimal control problem that can
be solved by CDDP. The total cost for each chromosome is
calculated after the optimal operating cost is determined using
CDDP. Selection, crossover, and mutation can generate the
next improved generation of chromosomes after the total costs
for all the chromosomes in a generation are determined.

The CDDP used herein is a modification of SALQR
(Chang et al. 1992). Using a penalty function to incorporate
the water quality and extraction constraints (Equations 3
through 5 into Equation 7), SALQR solves the optimization
problem as an unconstrained problem. This study uses the
penalty function to resolve the water quality constraints
(Equation 3) and applies quadratic programming at each
stage in the backward and forward sweep of CDDP algo-
rithm to handle the control constraints in Equations 4 and 5
(Murray and Yakowitz 1979). The penalty function used in
this study has the following form (Lin 1990):
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Table 1
Aquifer Properties of the Example Application

Parameter Value

Hydraulic conductivity 431 x 107 m/sec

Longitudal dispersivity 70 m
Transverse dispersivity 3m
Diffusion coefficient I X 107 m%/sec
Storage coefficient 0.001
Porosity 0.2
Sorption partitioning coefficient 0.245 cm’/g
Media bulk density 2.12 gfem?
Aquifer thickness, b 10 m
L 120 m
P (f) = &, & =1 9)
P, (f) = ¢ & + .8/ + ¢, (10)
with
&=L + )2+ wi (11)

where w, is the weighting coefficient of the kth constraint,
€, is a shape parameter of the hyperbolic function &, and
€, ¢,, and ¢, and are constant coefficients. Chang et al.
(1992) demonstrated that this hyperbolic penalty function,
€. is numerically efficient; Culver and Shoemaker (1992,
1993, 1997), as well as Mansfield and Shoemaker (1999)
later used it. In all cases, weights on the penalty function
increased until an optimal solution that did not signifi-
cantly violate the constraints was found. Each CDDP cal-
culation requires an initial nominal policy to start. This
study uses a “do nothing” policy (all zero pumping rates)
as an initial nominal policy for all the chromosomes.

Step 2: Reproduce the Best Strings

The GA selects parents from a population of strings
(chromosomes) based on the fitness associated with each
string. This study carries out reproduction by tournament
selection (Wang and Zheng 1997). The selection mecha-
nism plays a prominent role in driving the search toward
superior individuals and maintaining high genotypic diver-
sity in the population. In each tournament selection, a
group of individuals is randomly chosen from the popula-
tion, and the fittest individual is selected for reproduction.
The procedure is repeated until the number of chromo-
somes required for crossover is fulfilled.

Step 3: Perform Crossover

Crossover involves randomly coupling the newly
reproduced strings, with each pair of strings partially
exchanging information. Crossover aims to exchange gene
information to produce new offspring strings that preserve
the best material from both parent strings. Generally, the
crossover is performed with a certain probability (p_,,) to
ensure that it is performed on most of the population.
Herein. one point crossover is selected.

Table 2
Sensitivity Analysis on the Parameters
for the Case of $120/m Unit Fixed Cost

PiS 0.5 0.6 0.7 0.8
Population O.V. O.V. OV O.V.
60 90.10 89.49 89.49 90.10
70 89.49 90.20 89.49 90.10
80 96.26 90.10 89.49 90.10
90 90.10 89.49 90.10 89.49
p = crossover probability.

Cross

Population = population size.
O.V. = The optimal value of objective function (divided by 1000).

Step 4: Implement the Mutation

Mutation restores lost or unexplored genetic material
to the population, preventing the GA from prematurely
converging to a local minimum. A mutation probability
{(Pput) 18 specified so that random mutations can be applied
to individual genes. DelJong (1975) originally suggested
that a mutation probability inversely proportional to the
population size would prevent the search from locking onto
a local optimum. This study follows DeJong’s suggestion.
Before implementing a mutation, a random number with
uniform distribution is generated. If this number is smaller
than the mutation probability, than mutation is performed:;
otherwise, mutation is disregarded. Notably, according to
the specific probability, mutation changes a specific gene
(0—=1 or 1-0) in the offspring strings produced by the
Crossover operation.

Step 5: Perform Termination

After completion of Steps | to 4, a new population is
formed. The new population requires evaluating the total
cost as in Step 1, which is used to assess the stopping cri-
terion. The stopping criterion is based on the change of
either objective function value (total cost) or optimized
parameters. If the user defined stopping criterion is satis-
fied or when the maximum allowed number of generations
is achieved. the procedure terminates: otherwise, return to
Step 1 to perform another cycle. The success and perform-
ance of the GA depend on several parameters: population
size, number of generations, and the probabilities of
crossover and mutation (McKinney and Lin 1994). Gold-
berg (1989) has suggested that a good GA performance
requires the choice high-crossover and low-mutation prob-
abilities and a moderate population size. Therefore, the GA
does not generally guarantee optimality. However, GAs are
robust and easy to hybrid with other optimization methods
or simulation models.

Numerical Results

A ground water reclamation test problem, which is a
modification of the example from Chang et al. (1992) and
Culver and Shoemaker (1993, 1997). is adopted to verify
the effectiveness of the methodology discussed in the pre-
ceding section. Figure 2 displays the aquifer. The hydraulic
head distribution prior to pumping is assumed to be steady.
the initial peak concentration within the aquifer is 150
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Table 3
The Values of the Cost Function Coefficient
in the Example Problem

Coefficient Value
a, $O0/m to $240/mp
a, $40,000/(m*/sec-simulation period)
a, $1000/(m?/sec-m-simulation period)

mg/L, and the water quality goal at the end of five years
must be < 0.5 mg/L (¢ ) at all the observation wells. The
time between each stage in the management model is 91.25
days. Table 1 lists the properties of the aquifer. The per-
formance of all examples relies on proper setting of the
crossover probability (p,,...)» population size, and mutation
probability (p_ ) Numerical experiments with a unit
fixed cost (a,) that equals $120/m are performed for sensi-
tivity analysis. This is then applied to the GA’s parameters
with p_, ., that ranges from 0.5 to 0.8, and a population size,
which ranges between 60 and 90, and p,_ ., = 1/population
(adapted from DeJong’s 1975 suggestion). Table 2 presents
experimental results, which indicates that within the
selected range the parameters affect the optimal values only
slightly. Although the sensitivity analysis is applied to the
case with the unit fixed cost equal to $120/m, the prob-
lem’s structure is similar for cases with other unit fixed
costs. Therefore, the following examples are solved with
Peross = 0.7 and population size = 70, based on the results
of the sensitivity analysis.

Cases with Uniform Unit Fixed Costs

This case contains 24 potential installation sites for
pumping wells that remove the contaminant plume (Fig-
ure 2). The optimization problem determines a network
design, which includes the number and locations of wells
as well as pumping scheme, to remove the plume with min-
imum total cost. As stated in the Introduction, mathemati-
cal programming often neglects the fixed cost of well
installation because of its discontinuous nature. The opti-
mal network normally contains wells that have final, opti-
mized nonzero pumping rates. However, the simplitication
can facilitate designs that rely on numerous wells that
pump at small rates over long periods (McKinney and Lin
1995). This example was used to demonstrate that the net-
work design problem with fixed costs could be resolved via
GCDDP. In this situation, the number and locations of
pumping wells as well as the pumping rates for each well
are all decision variables. Table 3 displays the value of the
cost-related coefficients, a,, a,, and a,. Table 4 summarizes
the solutions of this case. As presented in Table 4, when the
fixed unit cost increased from $0/m to $240/m, the number
of wells decreased and the operating cost increased. For no
fixed cost, the optimal design requires seven wells, whereas
when the unit fixed cost is $240/m, only one well is
required. For no fixed cost and a fixed cost of $240/m, the
minimum total pumping volume among the wells is only
4.37 (L/s-simulation period) and 502.59 (L/s-simulation

Table 4
Optimal Solutions and CPU Time for the
GCDDP with Uniform Unit Fixed Costs

Fixed Unit Costs $0/m $60/m  $120/m  $240/m
No. of well 7 2 2 1
Total operating cost ($) 56,341 60,690 59,909 75,690
Total cost ($) 56,341 75,090 88,709 104,490
Minimum total pumping

volume (L/sec-simulation

period) 4.37 74.27 179.15 502.59
Number of generation 21 23 33 16
CPU time with bookkeeping

method (second) 36,918 42,825 53,606 37,460

CPU time without

bookkeeping method

(second) 238,051 152,423 196,461 135,198
Runs are on a PC with AMD Athlon™ 1000 MHZ CPU.

Table 5

Total Cost Comparison With/Without Unit
Fixed Costs in GCDDP Optimization Model

Coefficient a, $120/m $240/m
Total cost for the network designed 157,141 257,941
without fixed costs (J,) (7 wells) (7 wells)
Total cost for the networks designed 88,709 104,490
with fixed costs (J,) (2 wells) (1 well)
Ratio of difference (,[JI—lell:)% 77.14% 146.84%

period), respectively. This confirmed that if fixed cost is not
considered, an optimal design tends to have several wells
that pump at small rates. Table 4 also lists the CPU time and
generation requirements of these cases. These cases were
implemented on a PC with AMD Athlon® 1000 MHZ
CPU.

Figure 3 depicts the optimal network design and pollu-
tant concentration distribution for the final planning period.
Notably, all the concentration distributions are very similar
to each other and satisfy the specified water quality stan-
dard at the observation wells shown in Figure 2. As the con-
taminant diffuses from west to east, pumping wells, which
are located within the western region, are better equipped
to remove the contaminant. In addition, the hydraulic head
of the western region is higher than that of the eastern
region. Therefore, the former pumping well requires less in
pumping costs. Owing to these two reasons, pumping wells
that have uniform unit fixed costs (Figure 3) are more
likely to be situated in the western region.

Table 5 presents a comparison of the total network
design costs of both fixed and no tixed cost. Within the
comparison, the total cost design with no fixed costs was
estimated by adding the operating costs to the fixed costs,
which were estimated by multiplying the well depth by the
unit fixed cost. Because the number of wells is unchanged,
this total cost remains constant. Alternately, the total costs
as well as number of wells in the designs with fixed costs
varied according to the unit fixed cost. Table 5 displays
that when the value of coefficient a, is $240/m, the total
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Figure 3. The optimal number of wells and concentration distribution by GCDDP at the end of five years.
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Figure 4. The objective function values and the number of wells versus the number of generations for the case of a, = $240/m.

cost of the no fixed cost design exceeds the one with fixed
costs by 146.84%. Therefore, designing a remediation
network using an algorithm that considers fixed cost is
important.

The GCDDP computation generates one superlative
design (chromosome) among the population (70 chromo-
somes in this study) for each generation, and the best
design is improved from generation to generation. Figure 4
demonstrates the evolution of the best design versus gener-
ation for the case of = $240/m. Figure 4 also illustrates the
change in the objective function value and the number of
wells for the best chromosome of each generation.
Although the operating costs increase at the fifth genera-
tion, the total costs always decrease in each generation and
the solutions converge after the fifth generation.
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Cases with Varying Unit Fixed Cost, a,,
According to the Geological Conditions

Previously, both the unit fixed cost (a,) and hydraulic
conductivity were assumed to remain constant. However,
because of geological heterogeneity. this is unlikely in real-
ity. That is, the unit fixed cost (a,) should vary according to
the geological condition, and the optimal locations and well
numbers will differ from that, which assumes a uniform
unit fixed cost. A series of numerical examples was per-
formed to examine the geological etfects. Figure 5 depicts
that the hypothetical examples consist of two distinct geo-
logical zones in which the unit fixed costs (a,) vary among
$0/m, $60/m. and $240/m. The hydraulic conductivity is
1.29 X 10 m/sec. in Zone I and 8.62 X 107 in Zone 1L
Figure 5 also presents the optimal concentration distribu-
tion at the end of planning period and the optimal well
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number and location. All the concentrations satistied the
constraint (0.5 mg/L.) at the observation wells. As described
previously, when the unit fixed cost is uniform, the pump-
ing wells are likely to be located on the upstream (the west-
ern region) of the aquifer because of initial concentration
distribution and boundary hydraulic head condition. Never-
theless, when the unit fixed cost (a,) varies based on geo-
logical conditions, pumping well distribution also varies
(Figure 5). Figure 5a displays that, because a well costs less
in Zone I than in Zone II, most wells are located in Zone 1.
Conversely, the pumping wells are concentrated in Zone 11,
where well installation costs are less (Figure 5b). When the
fixed cost of zero (Figures 5a and 5b) increased to $60/m
(Figures 5¢ and 5d), well distribution in Figures 5c and 5d

is similar to that of Figures 5a and 5b; however, the num-
ber of wells is reduced in the former set because of a fixed
cost increase. This demonstrates that the number and loca-
tions of wells vary according to the value and spatial pat-
tern of the fixed cost, which depend on the geological con-
ditions. Revealing this phenomenon via a conventional
network design procedure, which ignores the fixed cost, is
difficult. Accordingly, the proposed GCDDP algorithm
provides a design that is nearer the true optimal solution
than that of conventional algorithms.

Other Computational Issues
Considering the complexity of the proposed remedia-
tion problem, the programming efforts required to imple-

488 L-C Changand C-T. Hsiao GROUND WATER 40, no. 5: 481-490

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ment particular programming techniques to increase com-
putational efficiency are not surprising. There are three
methods to accelerate the computation, two of which have
been implemented herein. The first one is to increase the
computational efficiency of CDDP algorithm. Because
each chromosome in the GCDDP algorithm requires a
CDDP computation, accelerating the CDDP algorithm will
reduce the computational time of the GCDDP algorithm sig-
nificantly. The computing time of CDDP is reduced herein
by exploring the sparse structure of the state derivative
matrices of transition function (dT/0x,) (Mansfield et al.
1998). Table 6 displays results with/without employing the
sparsity in computation, which indicates that the CPU times
are reduced roughly 7% of an algorithm that neglects it.

The second method is “bookkeeping.” This method is to
reduce the number of chromosome that must be evaluated by
CDDP algorithm. As stated previously, a network design (a
chromosome) is a subset of all candidate sites. Because the
number of candidate sites is limited, the number of the subset
(the chromosome) is countable and finite. Therefore, a chro-
mosome with high fitness may likely repeat itself from gen-
eration to generation in the GA computation. Hence, a book-
keeping procedure records all chromosomes that the CDDP
algorithm has evaluated. Within each GCDDP algorithm gen-
eration, a new chromosome is compared to previously
recorded ones. If the chromosome already exists, a CDDP
computation is not required and the algorithm proceeds to the
next chromosome. The case with unit fixed costs of $240/m is
employed to illustrate the efficiency of this method. Notably,
this case converges after 16 generations. The total number of
required chromosomes is 1120; however, the CDDP algo-
rithm calculates only 217 distinct chromosomes. Therefore, in
this case. the bookkeeping method saves roughly 79% of
chromosomes that require calculated by CDDP algorithm.
Table 4 also gives the CPU time required for CDDP
with/without the bookkeeping method. The table shows that
the bookkeeping method can save significant CPU time. Fig-
ure 6 depicts the number of calculated chromosomes within
the 16 generations. Figure 6 confirms that the number of cal-
culated chromosomes decrease rapidly and saves significantly
CPU resources. Owing to the high efficiency of chromosome
encoding, each well requires only a single bit, and the addi-
tional memory that is required to implement the bookkeeping
is minor.

The third method, which increases computational
capability, is parallel computation. The GA is known to be
easy and highly efficient for parallelism, which confirms its
superiority over other combinatory algorithms when
resolving a ground water remediation design problem, such
as simulation annealing and tabu search. Although this
work does not review parallel computing the proposed
model can be parallelized. Within the GCDDP algorithm,
nearly 98% of CPU time is expended on chromosome eval-
uation (CDDP computing), which would benefit parallel
computing because each chromosome is computed inde-
pendently. Therefore, parallel computing can potentially
increase the computational capacity of the GCDDP algo-
rithm significantly and resolve large-scale problems.

Although GAs is a heuristic algorithm and provides no
guarantee to converge on the global optimum, this does not

Table 6
CPU Time Per Iteration Comparison With/Without
Employing the Sparsity in CDDP Algorithm

CPU Time Per Iteration, (s)

$0/m $120/m $240/m
Coefficient a, (7 wells) (2 wells) (1 well)
With employing the sparisity (TI) 2.69 2.44 2.32
Without employing the sparisity (T,)| 2.88 2.66 2.47
Ratio of difference (T, -T)T,)% T | 6.60% 8.27% 6.07%

Runs are performed on a PC with AMD Athlon™ 1000 MHZ CPU.

affect its usage (Goldberg 1989). The proposed GCDDP
model is essentially also a heuristic algorithm. However,
because the defined remediation problem is a discrete nonlin-
ear and nonconvex one, no algorithms exist which can resolve
it effectively. The proposed GCDDP model is the only algo-
rithm that can provide a reasonable and valuable solution.

Conclusion

A GCDDRP (an integration of a GA to CDDP) ground
water remediation-planning model was developed to mini-
mize the total cost of a pump-and-treat aquifer remediation
system. Although the total cost including the fixed and
operating costs should be included in the objective function
of a ground water remediation problem, previous studies
have never proposed an efficient algorithm to resolve this
problem, owing to its combinatory and dynamic character-
istics. The proposed GCDDP algorithm calculates the min-
imum total cost while simultaneously considering the fixed
and time-varying operating costs. A numerical study based
on a homogeneous, isotropic confined aquifer revealed sev-
eral prominent results.

When omitting the fixed costs in the optimization
model, the GCDDP algorithm consistently designs a reme-
diation plan with many wells pumping at small rates. On
the contrary, the fixed costs considered can reduce the
number and influence the locations of wells in the network
design. Therefore, the total cost of GCDDP design can
save significantly when the fixed costs are considered. In
addition, this numerical study also demonstrates that the
number and locations of wells may vary according to geo-
logical conditions. This phenomenon is difficult to reveal
via a conventional network design procedure, which
ignores fixed cost. Although the computational burden
increased, this work increases the computation efficiency
of the proposed GCDDP algorithm by exploring the sparse
structure of the state derivative matrices of transition func-
tion and applying a bookkeeping programming procedure.
Thus, the GCDDP algorithm is a feasible ground water
remediation planning method. In summary, the novel
GCDDP algorithm considers fixed cost, which is a signif-
icant factor of ground water remediation planning, to pro-
vide a more realistic solution. Parallel computation can
further enhance the computational capacity of GCDDP to
solve large-scale problems, which is receiving subsequent
examination.

L-C. Chang and C.-T. Hsiao GROUND WATER 40, no. 5: 481-490 489

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Acknowledgments

The authors would like to thank the National Science
Council of the Republic of China for financially supporting
this research under Contract No. NSC 89-2211-E-009-039.
The authors would also like to thank the useful comments
of anonymous reviewers.
Editors’s Note: The use of brand names in peer-reviewed
papers is for identification purposes only and does not con-
stitute endorsement by the authors, their employers, or the
National Ground Water Association.

References

Ahlfeld, D.P., JM. Mulvey, G.F. Pinder, and E.F. Wood. 1988.
Contaminated ground water remediation design using simu-
lation, optimization, and sensitivity theory, 1, Model devel-
opment. Water Resources Research 24, no. 5: 431-441.

Andricevic, R., and PK. Kitanidis. 1990. Optimization of the
pumping schedule in aquifer remediation under uncertainty.
Water Resources Research 26, no. 5; 875-885.

Aly, A.H., and R.C. Peralta. 1999. Comparison of a genetic algo-
rithm and mathematical programming to the design of
groundwater cleanup systems. Water Resources Research
35, no. 8: 2415-2425.

Chang, L.C.. C.A. Shoemaker, and P.L.F. Liu. 1992. Optimal
time-varying pumping rates for groundwater remediation:
Application of a constrained optimal control algorithm.
Water Resources Research 28, no. 12: 3157-3171.

Culver, T.B., and C.A. Shoemaker. 1992. Dynamic optimal con-
trol for groundwater remediation with flexible management
periods. Water Resources Research 28, no. 3: 629-
641.

Culver, T.B., and C.A. Shoemaker. 1993. Optimal control for
groundwater remediation by differential dynamic program-
ming with quasi-Newton approximations. Water Resources
Research 29, no. 4: 823-831.

Culver, TB., and C.A. Shoemaker. 1997. Dynamic optimal
ground-water reclamation with treatment capital costs.
Journal of Water Resources Planning and Management,
ASCE 123, no. 1: 23-29.

Culver, T.B., and G.W. Shenk. 1998. Dynamic optimal ground-
water remediation by granular activated carbon. Journal of
Water Resources Planning and Management, ASCE 12, no.
4: 59-64.

DeJong, K.A. 1975. An analysis of the behavior of a class of
genetic adaptive systems. Ph.D. dissertation, University of
Michigan, Ann Arbor.

Gorelick, S.M., C.I. Voss, PE. Gill, W. Murray, M.A. Saunders,
and M.H. Wright. 1984. Aquifer reclamation design: The
use of contaminant transport simulation combined with non-
linear programming. Water Resources Research 20, no. 4:
415-427.

Goldberg, D.E. 1989. Genetic Algorithm in Search, Optimization,
and Machine Learning, Reading, Massachusetts: Addison-
Wesley.

Huang, C., and A.S. Mayer. 1997. Pump-and-treat optimization
using well locations and pumping rates as decision vari-
ables. Water Resources Research 33, no. 5: 1001-1012.

Lin, T.W. 1990. Well behaved penalty functions for constrained
optimization. Journal of the Chinese Institute of Engineers
13, no. 2: 157-166.

Mansfield, C.M., C.A. Shoemaker, and L.Z. Liao. 1998. Utiliz-
ing sparsity in time-varying optimal control of aquifer
clearup. Journal of Water Resources Planning and Manage-
ment, ASCE 124, no. 1: 15-21.

Mansfield, C.M., and C.A. Shoemaker. 1999. Optimal remedia-
tion of unconfined aquifers: Numerical applications and
derivative calculations. Water Resources Research 35. no. 5:
1455-1469.

McKinney, D.C., and M.D. Lin. 1994. Genetic algorithm solu-
tion of groundwater management models. Wazer Resources
Research 30, no. 6: 1897-1906.

McKinney, D.C., and M.D. Lin. 1995. Approximate mixed-inte-
ger nonlinear programming methods for optimal aquifer
remediation design. Water Resources Research 31. no. 3:
731-740.

Murray, D.M., and S.J. Yakowitz. 1979. Constrained differential
dynamic programming and its application to multireservoir
control. Water Resources Research 15, no. 5: 1017-1027.

Pinder, G.F. 1978. Galerkin finite element models for aquifer
simulation. Rep. 78-WR-5, Department of Civil Engineer-
ing, Princeton University, Princeton, New Jersey.

Rizzo, D.M., and D.E. Dougherty. 1996. Design optimization for
multiple management period groundwater remediation.
Water Resources Research 32, no. 8: 2549-2561.

Sawyer, C.S., D.P. Ahlfed, and A.J. King. 1995. Groundwater
remediation design using a three-dimensional simulation
model and mixed-integer programming. Water Resources
Research 31, no. 5: 1373-1385.

Sun, YH., and WW.G. Yeh. 1998. Location and schedule opti-
mization of soil vapor extraction system design. Journal of
Water Resources Planning and Management, ASCE 124, no.
1: 45-58.

Wang, M., and C. Zheng. 1997. Optimal remediation policy
selection under general conditions. Ground Water 35, no. 5:
757-764.

Wang, M., and C. Zheng. 1998. Ground water management opti-
mization using genetic algorithms and simulated annealing:
Formulation and comparison. Journal of the American
Warer Resources Association 34, no. 3: 519-530.

Watkins, Jr. D.W,, and D.C. McKinney. 1998. Decomposition
methods for water resources optimization models with fixed
costs. Advances in Water Resources 21, no. 4: 283-295.

Yeh, WW.G. 1992, System analysis in ground-water planning
and management. Journal of Water Resources Planning and
Management, ASCE 118, no. 3: 224-237.

Yoon, J.H., and C.A. Shoemaker. 1999. Comparison of optimiza-
tion methods for groundwater bioremediation. Journal of
Water Resources Planning and Management 125, no. 1: 54-
64.

Zheng, C., and P.P. Wang. 1999. An integrated global and local
optimization approach for remediation system design. Warer
Resources Research 35, no. 1: 137-148.

430 L-C Chang and C-T. Hsiao GROUND WATER 40, no. 4: 481-490

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



