
An analytical POC stack operations folding for continuous
and discontinuous Java bytecodes

Lee-Ren Ton *, Lung-Chung Chang, Chung-Ping Chung

Department of Computer Science and Information Engineering, National Chiao Tung University, No. 1001,

Dashiue Rd., 300 Hsinchu, Taiwan, ROC

Abstract

The execution performance of a stack-based Java virtual machine (JVM) is limited by the true data dependency. To

enhance the performance of the JVM, a stack operations folding mechanism for the picoJava-I/II processor was

proposed by Sun Microsystems to fold 42.3% stack operations. By comparing the continuous bytecodes with pre-

defined folding patterns in instruction decoder, the number of push/pop operations in between the operand stack and

the local variable could be reduced. In this study, an enhanced POC (EPOC) folding model is proposed to further fold

the discontinuous bytecodes that cannot be folded in continuous bytecodes folding mechanisms. By proposing a stack

re-order buffer (SROB) to help the folding check processes, the EPOC folding model can fold the stack operations

perfectly with a small size of SROB implementation. Statistical data shows that the four-foldable strategy of the EPOC

folding model can eliminate 98.8% of push/pop operations with an instruction buffer size of 7 bytes and the SROB size

of eight entries.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Java virtual machine; Stack operations folding; POC folding model; EPOC folding model; Java processor

1. Introduction

Internet has become the most feasible means of
accessing information and performing electronic
transactions. Java [1] is the most popular language
used over the Internet owing to its portability,
compact code size, object-oriented, multi-threaded
nature, and write-once-run-anywhere characteris-
tics. With these, Java is suitable for smart phones,

PDAs, Internet TVs, or other consumer and em-
bedded products.

The specification for a virtual machine that
executes Java bytecodes is called Java virtual ma-
chine (JVM) [2,3]. JVM is a stack-based machine
and most operations must push or pop data to or
from the top of stack. This will cause serious data
hazard due to true data dependence. A means of
avoiding such a limitation, i.e. stack operations
folding, was proposed by Sun Microelectronics [4–
6]. While executing, pre-defined and pre-stored
folding patterns are compared with bytecodes in
instruction stream sequentially. In our earlier
study, we proposed a systematic folding solution

Journal of Systems Architecture 48 (2002) 1–16

www.elsevier.com/locate/sysarc

*Corresponding author.

E-mail address: lrton@csie.nctu.edu.tw (L.-R. Ton).

1383-7621/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S1383-7621 (02 )00053-X

mail to: lrton@csie.nctu.edu.tw


named producer, operator, and consumer (POC)
folding model [7]. All bytecode instructions are
classified into three major POC types and typical
stack operations before folding are listed below:

Step 1: The producer writes data accessed from
the constant register or local variable to the
top of the operand stack.

Step 2: The operator gets data from the top of the
operand stack.

Step 3: The operator (ALU/logic type instruc-
tions, branch type instructions or complex
type instructions) operates on the accessed
operand stack data.

Step 4: The operator writes the result back to the
operand stack as needed.

Step 5: The consumer gets the data from the oper-
and stack and writes it back to the local
variable.

This procedure is also shown on the left-hand
side of Fig. 1, with the numbers showing the exe-
cution flow.

If true data dependency occurs among stack
instructions, we can fold them together by redi-
recting the data provided by the producer to the
corresponding instruction, as depicted by step 10

on the right-hand side (after folding) in Fig. 1. The
execution flow will be changed to the following
after folding:

Step 10: The operator gets data directly from the
source of producer.

Step 3: The operator (ALU/logic type instruc-
tions, branch type instructions or complex
type instructions) operates on these data.

Step 50: The operator writes the execution result
back to the destination of the consumer
directly as needed.

In this case, the number of stack accesses is
reduced from five to three. Hence, the system
performance can be increased greatly after folding.

In the POC folding model, two POC types of
continuous bytecode instructions are sent into the
POC folding check unit to determine whether they
are foldable or not. Bytecodes that can be folded
together form a so-called folded bytecode in-
struction (FBI). The further foldability check is
also performed to determine whether these two
bytecode instructions have the possibility to be-
come a larger FBI with the next adjacent bytecode
instruction. The generated information is sent
back to the POC folding model recursively to find

Fig. 1. Concept of stack operations folding.

2 L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16



out the maximum number of continuous bytecode
instructions that form a FBI.

The limitation in both picoJava-I/II processor
and the POC folding model is that they fold con-
tinuous bytecode instructions only. A new ad-
vanced POC model based-on the POC model was
proposed by other researchers [8,9] to provide
partial solutions. In those papers, additional fold-
ing patterns are pre-defined to fold the discontin-
uous bytecode instructions. With the newly added
folding patterns, the bytecodes may be executed in
an out-of-order manner. However, this may re-
quire additional exception handling circuitry for
precise interrupt, which is not concerned in those
papers [8,9]. Furthermore, some mistakes are
found in those papers such that the simulation
results may be incorrect.

In this paper, an enhanced POC (EPOC) fold-
ing model is proposed with proper cost-effective
implementation to fold almost all foldable byte-
codes. Unlike the pre-defined patterns in the
advanced POC model, a stack re-order buffer
(SROB) that acts like a general stack is proposed
to assist the folding check process. Besides pro-
viding the sequential access nature of general
stacks, the SROB provides out-of-order and mul-
tiple accesses capabilities by its register-like im-
plementation. The EPOC folding model can fold
all foldable bytecodes if the operands are kept in
the scope of the SROB. In other words, if the size
of SROB is large enough, all foldable bytecodes in
the whole program can be folded completely. In
this paper, we will show how to calculate the
folding efficiency and how the proposed EPOC
folding model achieving 100% folding efficiency
with unlimited size of SROB.

This paper is organized as follows. Section 2
describes researches about stack operations fold-
ing. The POC-related folding models are presented
according to their folding styles. Section 3 pro-
poses the EPOC folding model and its corre-
sponding folding procedures. Descriptions of both
folding efficiency and how the EPOC folding
model achieving 100% folding efficiency are shown.
Section 4 shows the trace-driven simulation envi-
ronment, benchmarks, and simulation results.
Section 5 describes one possible hardware imple-
mentation of the EPOC folding model. Further-

more, the SROB architecture to keep precise
interrupt in the Java processor is also given.
Finally, a conclusion about stack operations
folding is given in Section 5.

2. Background

Performance of the stack-based JVM suffers
mainly from the sequential accessing of operands
stack. Sun’s solution revealed in their JavaChip
family is the folding technique. The first imple-
mentation of the JVM in hardware is the Sun’s
picoJava-I/picoJava-II core design [4–6]. The fold-
ing technique is implemented in both picoJava-I
and picoJava-II cores with folding capabilities of
up to two and four bytecode instructions, respec-
tively.

In the stack operations folding research, we
classify different folding approaches into four
categories––continuous-folding with patterns, con-
tinuous-folding without patterns, discontinuous-
folding with patterns and discontinuous-folding
without patterns, as described in the following
four sub-sections.

2.1. Continuous-folding with patterns

By defining various opcode or instruction type
combinations, the continuous-folding with pat-
terns can be implemented using quite simple
matching or table lookup circuitry. Researches
about continuous-folding with patterns are parts
of our early projects in 1997. In [10,11], different
folding patterns with different cost/performance
issues were proposed. Vijaykrishnan also proposed
similar folding method in 1998 [12]. These re-
searches proposed different sets of grouping rules
like what Sun’s picoJava-I and picoJava-II do with
limited folding performance. In this paper, we use
the picoJava-II as a representation of the contin-
uous-folding with patterns.

As described in Sun’s picoJava-II microarchi-
tecture guide [6], bytecode instructions are classi-
fied into six types as shown in Table 1. The
instruction folding unit (IFU) then examines
the top seven bytes in the instruction buffer to

L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16 3



determine how many instructions can be folded
(up to a maximum of four) according to the IFU
grouping rules as shown in Table 2.

The main drawback of the continuous-folding
with patterns is that only continuous bytecode
instructions that exactly match the grouping rules
can be folded. If the sequence of bytecode in-
structions matches no grouping rules, the bytecode
will be executed in serial.

2.2. Continuous-folding without patterns

Further folding benefits can be achieved by
applying the POC folding model, the previous re-
search results of our team in 1998 [7]. As shown in
Table 3, bytecode instructions in the POC folding
model are classified into three types according to
the usage of source and destination storage. ‘O’
type bytecodes are further divided into four sub-
types according to their execution behavior.

In the POC folding model, foldability check is
performed by examining each pair of consecutive
instructions. By applying the POC folding rules,
the two bytecode instructions may be combined
into a new POC type, which is used in further
foldability check with the following bytecode in-
structions. Consequently, the POC folding model
is quite different from previous one because there
is no fixed folding patterns. In the POC folding
model, the valid folding combinations can be
expressed as a regular expression as follows:

ðPCþ PþOE þ PþOB þ PþOC þ P�OEC
þ þ P�OCC

þÞ

According to the regular expression, the POC
folding model can be implemented as a finite au-
tomaton to fold continuous bytecodes efficiently.
The state diagram for the POC folding rules is
shown in Fig. 2. In some states the P and C type
instructions can be repeatedly added according to
the source or destination operands of the following
O or C type instructions. If more P’s are provided
then the O or C need, the extra P’s will be executed
sequentially.

For example, if the instruction sequence is
ILOAD_2, ICONST_2, ILOAD 5, IADD, IMUL,
ISTORE 6, their corresponding POC types are P,
P, P, OE, OE, and C. By applying the POC folding
rules, the first P must be executed lonely. The
following three and the last two instructions will

Table 1

Instruction types in picoJava-II core

Types Descriptions

LV A local variable load or load from global

register or push constant

OP An operation that uses the top two entries of

stack and that produces a one-word result

BG2 An operation that uses the top two entries of

stack and breaks the group

BG1 An operation that uses only the topmost entry

of stack and breaks the group

MEM A local variable store, global register store, and

memory load

NF A non-foldable instruction

Table 3

POC instruction types

POC Descriptions Occurrence

(%)

P An operation that pushes constant

or loads variable from local variable

to operand stack

41.09

OE An operation that will be executed in

execution units

21.29

OB An operation that conditionally

branches or jumps to target address

12.90

OC An operation that will be executed in

microcoded ROM or trapped as a

sequence of instructions

20.22

OT An operation that will force the

folding check to be terminated for

the difficulty in performing folding

2.30

C An operation that pops the value

from operand stack and stores it into

local variable

2.29
Table 2

Grouping rules defined in picoJava-II core

First

Bytecode

Second

Bytecode

Third

Bytecode

Fourth

Bytecode

LV LV OP MEM

LV LV OP
LV LV BG2

LV OP MEM

LV BG2

LV BG1

LV OP
LV MEM

OP MEM

4 L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16



become two FBIs, which results the issued in-
structions per cycle (IIPC) of two for a single
pipelined architecture. In this case, it is obvious
that the first P is the first operand prepared for the
IMUL instruction, and the result of the IADD in-
struction is the second. If we can fold the first P
with the last two instructions, then these six in-
structions can be issued in two cycles with the IIPC
increasing to three. This could be done using dis-
continuous-folding mechanisms in the following
two sub-sections.

2.3. Discontinuous-folding with patterns

The researches of discontinuous-folding with
patterns were proposed in September 2000 with
the name of so-called advanced POC folding
model [8,9]. Based on the POC folding model, four
new folding sequence types are further added to
fold the discontinuous bytecode instructions. As
opposed to the original POC folding model, the
number of sub-types for the O type bytecodes is
reduced from four to two. The newly defined sub-
types are OP and OC that represents the producible
and consumable operators, respectively. With this
definition type reduction, one of the main contri-
butions in these researches is that the advanced
POC folding model achieves higher folding ratio
with a simpler folding circuitry (Table 4).

As shown in Fig. 3, discontinuous bytecodes
that match one of the sequence types can be folded
easily. In each sequence type, the execution order
is slightly different with the consideration of data
dependency. Consequently, out-of-order execution
occurs except in the sequence type III. Statistical
data [8,9] shows that the percentage of both type II
and III is nearly zero. The proposed folding pat-
terns with the percentages of the corresponding
occurrence are shown in Table 5.

There are some mistakes in the advanced POC
folding model. As shown in Table 4, the occur-
rence percentage of the OP type and OC type
bytecodes is 26.1%. Researches [13] show that the

Fig. 2. Folding rules for POC model. (Remarks: Stars in the

above figure are defined as kleene’s star. The maximum number

of repeating depends on the corresponding O or C type in-

struction.)

Table 4

POC Types in the advanced POC model (cited from [9])

Types Definitions Examples Percentage (%)

P Producers iconst_1,

dload_3

59.5

OP Producible

operators

iadd, fcmpl 22.0

OC Consumable

operators

if_icmpeq,

if_acmpne

4.1

C Consumers lastore,

istore_0

14.4

Fig. 3. New instruction sequence types (cited from [9]).

L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16 5



dynamic frequency of O type instruction is more
than 50% except the 47.5% of mpegaudio bench-
mark. The difference may be caused by wrong
definition of the POC types for each bytecode. As
an example of the C type bytecodes in Table 4, the
lastore bytecode is a memory array store in-
struction with a long data width of 64-bit [2].
Three source operands should be popped from the
top of stack first and the array address is generated
to perform the memory store operation. It is not
applicable to load the array data from memory
(laload: P), compute the result (ladd: OP) and
store to the array structure in memory (lastore:
C) within an instruction cycle. Furthermore, en-
hancing the folding capability without considering
the extra complexity for handling the new out-of-
order problem may cause errors while executing
the bytecodes. For example, if the bytecode se-
quence matches the type I in Fig. 3, the group A is
executed prior to the group B. If the execution of
group B causes an exception, how to decide the
location of the restarting program counter (PC)
may be a problem that is not resolved in the ad-
vanced POC folding model.

2.4. Discontinuous-folding without patterns

In this paper, we will propose a folding mech-
anism named as an EPOC folding model [14]. By
defining no instruction folding patterns, the EPOC
folding model can fold almost all the possible
combinations in any Java bytecode sequences with
limited hardware. Unlike the out-of-order execu-
tion manner in the advanced POC folding model,
the bytecodes are issued in-order with a special
designed SROB. In the following section, the
EPOC folding mechanism is shown with a simple
example to illustrate its folding effectiveness.

3. The EPOC folding model

The POC folding model handles the continuous
folding well, and the EPOC folding model is de-
signed to further fold the discontinuous P’s with
their corresponding O or C type instructions. In
the following three subsections, we will introduce
the key idea of EPOC folding model and an ex-
ample to compare the POC, advanced POC and
the EPOC folding model. How the EPOC folding
model achieves 100% folding efficiency with un-
limited SROB size is also shown.

3.1. EPOC folding model: folding by observing
stack access behavior

The core concept of the EPOC folding model
can be observed by the nature behavior of the stack
accesses. Consequently, we will first introduce how
to fold all foldable bytecodes by observing the stack
access behavior. Here we use a simplified version of
POC types similar to previous defined POC folding
model. The P type bytecode pushes one item from
local variable onto operand stack. The O type
bytecode pops two items from top of operand stack
and pushes one result item back. The C type byte-
code pops one item from operand stack to local
variable. With these three simplified POC types, an
abstract stack machine (ASM) can be proposed to
show the stack access behavior of the JVM. In the
ASM, there are some features as listed below:

• From the bytecode’s point of view, all bytecodes
are consisted of these POC types.

• From stack item’s point of view, all stack items
are produced by P or O type bytecodes and only
O or C type bytecodes can consume the items
from stack.

Table 5

Instruction folding patterns in the advanced POC model (cited from [9])

Instruction patterns Percentages (%) Instruction patterns Percentages (%)

P–C 31.7 P–P–OP–OC 0.6

P–OP–C 1.0 P–P–P–C 10.7

P–P–C 3.6 P–P–P–OP–C 8.4

P–P–OC 18.9 P–P–P–OP–OC 2.6

P–OP–OP–C 0.6 P–OP–P–OP–C 0.1

P–P–OP–C 21.2 P–P–P–P–OP–C 0.5

6 L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16



In the POC folding model, only POC types
of the bytecode stream are considered. The en-
hancement of the EPOC folding model is that the
produced items are considered altogether. Here we
use a simple example to show the behavior of the
POC folding model and observe the chance for the
EPOC folding model to fold more stack opera-
tions. If the instruction sequence is ILOAD_2,
ICONST_2, ILOAD 5, IADD, IMUL, ISTORE 6,
their corresponding POC types in the ASM are P,
P, P, O, O, and C. The execution process in the
POC folding model is shown in Fig. 4. In cycle 1,
the first P is pushed onto the stack. The following
P, P, and O are folded and the result shown as P0 is
pushed onto stack in cycle 2. In cycle 3, C is folded
with O and the source operands P and P0 are
popped from the stack.

In Fig. 4, the key concept of EPOC folding
model can be observed in the snapshot of cycle 2.
The stack items in conjunction with the remaining
bytecode sequence can be treated as a FBI con-
sisting of four (P, P0, O, and C) types by using the
same POC folding concept. In other words, if the
stack items are considered for folding, the first P
can be folded also. The only one problem for doing
this is that the first P is pushed onto the operand
stack already and further cycles are required to pop
the P from the operand stack. Consequently, the P
and P0 are not possible to be written onto operand
stack and popped again for folding check. What we
need is a new structure to temporary keep the in-
formation of P and P0 with multiple read/write
capability. With this structure, the EPOC can fold
discontinuous P’s than the POC folding model. In
summary, the design considerations of the EPOC
folding model include the following to out-perform
the original POC folding model:

• Besides the original bytecode sequence, the stack
items are also included as the input data for
EPOC folding check.

• A data structure must emulate the behavior of
the original stack items and further provide
the ability like a content-addressable memory
with multiple read/write ports for EPOC folding
check.

• Instead of issuing the discontinuous P’s, the
EPOC folding model must find out the first O
or C type bytecode followed by discontinuous
P’s and log the discontinuous P’s into the data
structure.

In the EPOC folding model, a structure called
SROB is provided for both continuous and dis-
continuous P’s folding capabilities. With the
SROB structure, discontinuous P’s are logged into
the SROB instead of issuing them sequentially.
The processing steps of the EPOC folding model
are shown in Fig. 5.

According to the EPOC folding steps, the same
bytecode sequence in Fig. 4 can be executed in the
manner shown in Fig. 6. Note that the operand
stack is replaced by the newly proposed SROB
structure.

3.2. A folding example for comparison

A simple trace that is commonly used in sorting
is shown in Table 6. There are 27 bytecodes in this
trace and their corresponding POC types are
shown in the table. Five discontinuous P’s who
provide source operands but not used immediately
by O or C type instructions are shown in bold italic
style with subscripts from ‘a’ to ‘e’. The O type
instruction with mOn notation means that it needs

Fig. 4. Stack accesses of the sample bytecodes in the POC folding model.

L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16 7



m source operands and produces n results from/to
operand stack. In Table 7, the issued FBIs in each
cycle are shown for POC, advanced POC and
EPOC folding model. The P0

i symbols with pa-
rentheses are used to represent the result of O type
bytecode stored in SROB.

In the above example, we can observe that the
POC folding model tries to fold continuous byte-
codes from the first bytecode in the instruction
buffer. If the first bytecode cannot be folded with
later bytecodes, the POC folding model issues the
first bytecode to the execution unit. In contrarily,
the EPOC folding model tries to fold bytecodes
from the first O or C type instruction. This ensures
that the bytecodes before the first O or C type in-
struction are all of P type. Consequently, P type
bytecodes folding is done by selecting the nearest
P’s according to the number of source operands
that the first O or C needs. At the same time, if the
O type instruction does have to produce result
values to operand stack, the EPOC folding will
examine whether the bytecodes followed are of

Fig. 5. Flow chart for the EPOC folding rules check.

Fig. 6. Execution of the sample bytecodes in the EPOC folding

model with SROB.

8 L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16



C type instructions. As a result, C type instructions
are folded to the O type instruction if the matching
is found.

The folding behavior of the advanced POC
folding model here shows that the folding patterns
are not properly defined. The unsatisfied folding
performance is not comparable to the other two
models. The main advantage of the EPOC folding
over the POC folding model is the foldability of
discontinuous P type instructions. In the above
example, the IIPC is enhanced from 1.8 to 2.7, or
50% enhancement with the SROB size of only four
entries.

3.3. Achieving 100% EPOC folding efficiency

In this subsection, we will first show how to
calculate the folding efficiency for folding perfor-

mance evaluation. Next, the way to achieve 100%
folding efficiency for the EPOC folding model is
given as an implementation guideline.

The folding efficiency is calculated as follows:

Folding efficiency

¼ Number of folded stack operations

Number of foldable stack operations
� 100%

All P and C type bytecodes are of stack operations.
The O type bytecodes require an ALU or other
kinds of functional unit to execute and cannot be
folded intrinsically. All the P type bytecodes are
foldable. For C type bytecodes, there are two
cases. First, if one C type bytecode is folded with
one O type bytecode, we say that this kind of C
type bytecode is foldable. Second, if one C type
bytecode is folded with one P type bytecode, we
say that P is folded into C and thus the C one is

Table 6

An example program slice and the corresponding POC types

Instructions # Memory address Bytecode trace Types in POC Types in advanced

POC

Source statement

1 719 aload_1 P P if (a½j	 > a½jþ 1	)
2 720 iload_3 P P
3 721 iaload 2O1 P
4 722 aload_1 Pa P
5 723 iload_3 P P
6 724 iconst_1 P P
7 725 iadd 2O1 OP

8 726 iaload 2O1 P
9 727 if_icmple 750 2O0 OC

10 730 aload_1 P P T ¼ a½j	
11 731 iload_3 P P
12 732 iaload 2O1 P
13 733 istore 4 C C

14 735 aload_1 Pb P a½j	 ¼ a½jþ 1	
15 736 iload_3 Pc P
16 737 aload_1 Pd P
17 738 iload_3 P P
18 739 iconst_1 P P
19 740 iadd 2O1 OP

20 741 iaload 2O1 P
21 742 iastore 3O0 C

22 743 aload_1 Pe P a½jþ 1	 ¼ T
23 744 ilaod_3 P P
24 745 iconst_1 P P
25 746 iadd 2O1 OP

26 747 iload 4 P P
27 749 iastore 3O0 C

L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16 9



non-foldable. With 100% folding efficiency and the
assumption of a single-pipelined stack machine
with the execution latency of one cycle for each
bytecode, the total required execution cycles could
be reduced to the number of intrinsically non-
foldable bytecodes.

Here we start to discuss how to achieve 100%
folding efficiency for the EPOC folding model. In a
stack-based architecture, any high level language
can be compiled into the postfix expression. While
executing the postfix expression, a sequence of
machine codes forms an instruction trace that can
be expressed as a directed acyclic graph (DAG)
with an inforest structure. A DAG is called an
inforest if the out degree of every equals either zero
or one. In an inforest, a vertex with an out degree
equals to zero is called a root. An inforest is an
intree if only one root is present. Any valid Java
bytecode trace is either an inforest or an intree
because the life cycle of a stack variable begins at
stack pushing and ends by stack popping. This
property holds for stack machines and is quite

different from register-based machines. As shown
in Fig. 7, all bytecodes in the postfix expression are
converted to P, O, and C types. The example is an
intree and by using the post-order traversal of the
DAG, the output sequence is exactly the same as
the original bytecode trace. After execution, a
valid trace will not leave any unused stack vari-
ables. If any unused stack variable is left, there
must be some P or O type instruction sequences
that should be treated as dead-codes. Here we
assume that any valid bytecode trace will not leave
any unused stack variables.

Here we conclude two cases of bytecode
sequence as shown in Fig. 8 below.

Case I. The trace is a postfix expression that two
sub-sequence of bytecodes provide source

Fig. 7. An example of bytecode trace to Intree DAG expres-

sion.

Table 7

Issued FBIs in each folding model

Execution

cycle

POC Advanced

POC

EPOC

1 P P 2O1 (P0
1) P P P 2O1 (P0

1)

2 Pa P P P 2O1 (P0
2)

3 P P 2O1 (P0
2) P Pa P0

2 2O1 (P0
3)

4 Pa P0
2 2O1 (P0

3) P P0
1 P0

3 2O0

5 P0
1 P0

3 2O0 P P P 3O1 C
6 P P 2O1 C P P P2O1 (P0

4)

7 Pb OP Pd P0
4 2O1 (P0

5)

8 Pc P Pb Pc P
0
5 3O0

9 Pd OC P P 2O1 (P0
6)

10 P P 2O1 (P0
4) P Pe P

0
6 P3 O0

11 Pd P0
4 2O1 (P0

5) P –

12 Pb Pc P
0
5 3O0 P C –

13 Pe P –

14 P P 2O1 (P0
6) P –

15 Pe P
0
6 P 3O0 P –

16 – P –

17 – P –

18 – OP –

19 – P C –

20 – P –

21 – P –

22 – P –

23 – OP –

24 – P C –

Fig. 8. Bytecode sequence analysis.

10 L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16



operands for the last O type bytecode.
These two sub-sequences of bytecodes
can be shown in two sub-intrees and the
last O type bytecode is the root node of
the DAG. In the EPOC folding model
with the SROB, the O will get both source
operands from SROB instead of the oper-
and stack in the original stack architec-
ture. Consequently, the left sub-intree
and right sub-intree provides two source
operands of P or P0 type to the O type
bytecode. According to the EPOC folding
model, this folding sequence (P or P0) (P
or P0) Omakes it to be folded into a single
FBI. That is, if the discontinuous P’s are
written into SROB with large enough
size, the O would fold the required P’s
from the SROB instead of popping it
from the operand stack. Note that if the
content provided by the SROB is P0, we
say that the P0 is forwarded from the
SROB instead of folding.

Case II. If the last bytecode in the trace is C, there
must be some bytecodes providing the
source for C, or the C will cause the stack
underflow error. The bytecodes prior to C
are expressed as a sub-intree in the right
of Fig. 8. If the size of SROB is large en-
ough, the source of C will be kept in the
SROB and the C can read it out. Accord-
ing to the content types of top of the
SROB, two sub-cases are considered.
With the type of P this P will be folded
into C and the P is folded into C. With
the other type of P0, the C is said to be
folded to the corresponding O type byte-
code that generates this P0. Clearly, the C
is folded earlier while performing the
folding check for the corresponding O
type bytecode and only one FBI is gener-
ated to include both O and C type byte-
codes. Consequently, the C is folded by
previous O one already.

Note that if the last node is of P type, one entry
in the SROB is allocated because P is not depen-
dent on any previous bytecode. Consequently, no
extra cycles are required to push the discontinuous

P’s onto operand stack if the size of SROB is large
enough. With the above analysis, we know that if
the SROB size is large enough, all the discontin-
uous P’s will be kept in the SROB for later folding.
With the SROB, the exception can be easily han-
dled because the bytecodes are logged into SROB
in-order. That is, if we keep the program counter
field for each bytecode logged into SROB, the
precise interrupt can be handled like what is done
in general superscalar processors [15].

4. Performance comparison of various foldingmodels

In this section, the simulation environment and
the benchmark suit are introduced. A formula for
calculating folding performance gain is given. The
folding ratio and issued instructions per cycle are
given to compare the effectiveness of various
folding models including picoJava-II, POC, and
EPOC folding model.

4.1. Simulation environment

By modifying the Sun’s JDK virtual machine
[16], runtime bytecode traces are generated when
the benchmark program is running. In this re-
search, we developed a benchmark profiler and a
trace-driven simulator with three different folding
models for our performance study. The bench-
mark profiler scans the input traces and collects
the information about instruction count, occur-
rence percentages of for three POC types, and
occurrence frequency for each bytecode, etc. Three
different folding models including picoJava-II,
POC and EPOC folding models are built in the
trace-driven simulator. We use the run-time traces
collected from the SPECjvm98 benchmark [17] as
our simulation source data. There are three input
data set scales for the SPECjvm98 benchmarks: s1,
s10, and s100. In this paper, we use s10 data set as
the simulation basis. As shown in Table 8, the
instruction counts of the traces for the SPECjvm98
benchmarks are collected by the benchmark pro-
filer. The detailed occurrence percentages for three
POC types are shown in Table 9.

In order to analyze the folding performance gain
associated with the eliminated stack operations or

L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16 11



execution cycles, we need to calculate the theo-
retical performance upper bound that stack oper-
ations folding can achieve. The theoretical
performance upper bound is calculated by first
finding the theoretical foldable instruction groups,
then eliminating all foldable stack operations, and
counting the resulted execution cycles. Finally, the
speedup upper bound is calculated accordingly.
The following equation calculates the overall
speedup:

Speedup ¼
fðCyclesP þ CyclesO þ CyclesCÞ=ðCyclesP �
ð1� FPPÞ þ CyclesO þ CyclesC �
ð1� FRC � FPCÞÞg

where

Cyclesx ¼ Execution cycles
FPx ¼ Folded percentage
FRC ¼ Max: Foldable Ratio for C

for x type bytecodes.

In Table 9, the average occurrence percentage
for P and C type bytecodes are 43.38%. Unlike the
P type bytecodes that could be folded completely,
not all of the C type bytecodes could be folded.
The only two foldable combinations for the C type
bytecodes are Pþ C and OE þ C. In the case of
Pþ C folding, the P type bytecode is folded into
the C type bytecode to write the result back to the
local variable. Consequently, only the C type
bytecodes in the OE þ C combination could be
folded. In the case of C type bytecodes, only 40%
(FRC) of them could be folded. This also indicates
that the maximum performance speedup with the
folding efficiency of 100% can be derived from
the above formula. According to the formula, the
ideal speedup for the SPECjvm98 benchmark is
1.74 if all foldable P and C type bytecodes are
folded.

4.2. Simulation results for various folding models

The following simulation results are gathered
using the parameter of a 7-byte instruction buffer
and an 8-entry SROB. As shown in Fig. 9, the
percentages of folded P type operations for each
folding model are compared.

For POC and EPOC folding model, the fol-
dability with 2, 3, 4 and unlimited number of
instructions that can be folded together are simu-
lated. Results show that three-foldable is enough
for both POC and EPOC folding models if we
want to fold P type bytecodes only. With the in-
formation from Table 9, the average occurrence

Table 8

Dynamic instruction counts of SPECjvm98 benchmark suite

Trace names Instruction counts

compress 1137M

db 74M

jack 341M

javac 63M

jess 121M

mpegaudio-3 1220M

raytracer 160M

Table 9

Occurrence percentages of the POC types

Trace names P (%) OALL OALL (%) C (%)

OE (%) OB (%) OC (%) OT (%)

compress 40.02 26.24 8.54 19.61 1.39 55.77 4.21

db 44.14 20.48 13.51 14.13 5.63 53.76 2.10

jack 32.67 25.04 13.10 27.87 0.46 66.48 0.85

javac 41.82 15.00 14.76 21.94 3.31 55.01 3.16

jess 44.00 9.31 19.78 20.72 2.43 52.23 3.77

mpegaudio-3 45.61 38.00 4.20 8.99 1.85 53.04 1.35

raytracer 39.35 14.28 16.44 28.27 1.03 60.03 0.62

Average 41.09 21.19 12.90 20.22 2.30 56.62 2.29

12 L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16



percentage of P type bytecodes is 41.09% in the
whole program. Consequently, the Java processor
would execute 82.8%, 66.4% and 59.5% of the
original bytecodes with the picoJava-II, three-
foldable POC and three-foldable EPOC folding
mechanisms, respectively.

In Fig. 10, the percentages of folded C type
bytecodes are shown. The average occurrence
percentage of C type bytecodes is far less than the
occurrence percentage of P type bytecodes. Ar-
chitecture designers of Java processors may treat
the folding circuitry for C type bytecodes as a de-
sign option. Simulation shows that using a four-
foldable POC or EPOC folding mechanism can
fold all the foldable C type bytecodes.

Fig. 11 shows the folding efficiency for each
folding model. If the POC and the EPOC folding
models can fold up to four bytecodes like pico-
Java-II, the average percentages of folded stack
operations are 42.32%, 82.9% and 98.83% for the
folding mechanism of picoJava-II, POC and
EPOC folding model, respectively. Note that the
SROB size for the EPOC folding model is only
eight entries.

The numbers of IIPC for a single pipelined
picoJava-II architecture are shown in Fig. 12. The
average numbers of IIPC are 1.25, 1.54 and 1.74
for the folding mechanism of picoJava-II, POC
and EPOC folding model, respectively. As men-
tioned in Section 4.1, the average upper bound of

Fig. 10. Percentages of folded C type bytecodes.

Fig. 9. Percentages of folded P type bytecodes.

L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16 13



IIPC is 1.74. This reveals that with the SROB size
of only eight entries, the EPOC folding model
almost achieves the highest folding efficiency as
compared to all other folding models.

5. Conclusion

5.1. Summary and discussion

In this paper, we have proposed the EPOC
folding model based on the previously proposed
POC folding model. Discontinuous-folding is
shown more powerful and overrides the continu-
ous-folding used in picoJava-II. Furthermore, the

folding mechanism with patterns is shown more
restricted than the one without patterns. With the
EPOC folding model, the folding ratio is higher
than the picoJava-II for 133%.

The performance enhancement from POC to
EPOC folding model benefits mainly from the
foldability of discontinuous P type instructions by
the proposed SROB structure of only eight entries.
Precise exception and data forwarding are also
provided for both execution correctness and per-
formance enhancement requirements. According
to the simulation results, the four-foldable strategy
which folds up to four bytecodes for POC and
EPOC folding model eliminates 82.9% and 98.8%
of foldable bytecodes, respectively. For all the

Fig. 12. Issued instructions per cycle for each folding model.

Fig. 11. Folding efficiency for each folding model.

14 L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16



bytecodes, the percentages of eliminated instruc-
tions for POC and EPOC are 36% and 43%, re-
spectively. In other words, execution performance
is greatly enhanced because less than 60% of
bytecodes are executed by the single-pipelined Java
processor with the EPOC folding model.

5.2. Sample application: An EPOC Java processor

Here we show one possible hardware imple-
mentation of the EPOC Java processor. As shown
in Fig. 13, the design parameters are similar with
the design of the Sun’s picoJava-II processor. The
EPOC folding design shown in gray scale block-
sand the SROBwith corresponding fields are given.
Detailed descriptions would probably exceed the
scope of the paper and thus not shown here.

In our future research, the SROB will play an
important role in a superscalar Java processor. By
using the EPOC folding model with SROB, mul-
tiple FBIs might be issued in parallel to exploit
higher ILP with lower hardware cost as compared
to traditional superscalar processors.

References

[1] J. Gosling, B. Joy, G. Steele, The Java Language Speci-

fication, Addison-Wesley, Reading MA, 1996.

[2] T. Lindholm, F. Yellin, The Javae Virtual Machine

Specification, Addison-Wesley, Reading MA, 1996.

[3] B. Venners, Inside the Java Virtual Machine, McGraw

Hill, New York, 1998.

[4] M. O’Connor, M. Tremblay, picoJava-I: The Java virtual

machine in hardware, IEEE Micro 17 (2) (1997) 45–53.

Fig. 13. Overview of an EPOC java processor architecture.

L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16 15



[5] H. McGhan, M. O’Connor, picoJava: a direct execu-

tion engine for Java bytecode, IEEE Computer (1998) 22–

30.

[6] Sun Microsystems Inc., picoJava-II Microarchitecture

Guide, Sun Microsystems, CA, USA, March 1999.

[7] L.C. Chang, L.R. Ton, M.F. Kao, C.P. Chung, Stack

operations folding in Java processors, IEE Proceedings on

Computer and Digital Techniques 145 (5) (1998).

[8] A. Kim, M. Chang, An advanced instruction folding

mechanism for a stackless Java processor, in: Proceeding

of the International Conference on Computer Design

(ICCD), September 2000, pp. 565–566.

[9] A. Kim, M. Chang, Advanced POC model-based Java

instruction folding mechanism, in: Proceedings of 26th

EUROMICRO Conference, vol. 1, September 2000, pp.

332–338.

[10] H.-M. Tseng et al., Performance enhancement by fold-

ing strategies of a Java processor, in: Proceedings of

International Conference on Computer Systems Technol-

ogy for Industrial Applications––Internet and Multimedia,

1997.

[11] L.-R. Ton et al., Instruction folding in Java processors, in:

the International Conference on Parallel and Distributed

Systems, 1997.

[12] N. Vijaykrishnan, N. Ranganathan, R. Gadekarla, Object-

oriented architectural support for a Java processor, in:

Proceedings of the ECOOP’98, Lecture Notes in Computer

Science, Springer Verlag, Berlin, 1998.

[13] R. Radhakrishnan, J. Rubio, L.K. John, Characterization

of Java applications at bytecode and ultra-SPARC ma-

chine code levels, in: Proceedings of IEEE International

Conference on Computer Design (ICCD), 1999, pp. 281–

284.

[14] L.-R. Ton, L.-C. Chang, C.-P. Chung, Exploiting Java

bytecode parallelism by dynamic folding model, in: Pro-

ceedings of the 6th International Euro-Par Parallel Pro-

cessing Conference Lecture Notes in Computer Science,

vol. 1900, August 2000, pp. 994–997.

[15] M. Johnson, Superscalar Microprocessor Design, Prentice

Hall, Englewood Cliffs, NJ, 1991.

[16] Sun Microsystems Inc., Java Development Kit 1.x. Avail-

able from <http://www.javasoft.com/products/

jdk/>.

[17] Standard Performance Evaluation Corporation, SPEC-

jvm98 Benchmark. Available from <http://www.spec.

org/osg/jvm98/>.

Lee-Ren Ton received the B.S. and
M.S. degrees in Information Engi-
neering and Computer Science from
the Feng Chia University, Taiwan, in
1993 and 1995, respectively. He was a
lecturer of the Department of Com-
puter Science and Information Engi-
neering at the National Chiao Tung
University, Taiwan, while working to-
wards the Ph.D. degree. Currently, he
is a Ph.D. candidate of Computer
Science and Information Engineering,
National Chiao Tung University, Tai-
wan. His research interests include
computer architecture, microprocessor
system design, and VLSI/IP design.

Lung-Chung Chang received the B.S.
degree in Electrical Engineering from
the Chung Yuan Christian College,
Taiwan, in 1977, and the M.S. degree
from the University of Southern Cali-
fornia in 1987. Currently, he is a Ph.D.
candidate of Computer Science and
Information Engineering, National
Chiao TungUniversity, Taiwan.More-
over, he is with the Computer & Com-
munications Research Laboratories
(CCL) of Industrial Technology Re-
search Institute (ITRI) as a Manager.
His research interests include computer
architecture and parallel processing.

Chung-Ping Chung received the B.S.
degree from the National Cheng
Kung University, Taiwan, in 1976,
and the M.S. and Ph.D. degrees
from the Texas A&M University in
1981 and 1986, respectively, all in
electrical engineering. He was a lec-
turer in electrical engineering at the
Texas A&M University while
working towards the Ph.D. degree.
Since 1986 he has been with the
Department of Computer Science
and Information Engineering at the

National Chiao Tung University, Taiwan, where he is a pro-
fessor. From 1991 to 1992, he was a visiting associate professor
of computer science at the Michigan State University. From
1998, he joins the Computer and Communications Laboratories
(CCL), Industrial Technology Research Institute (ITRI), Tai-
wan, as the Director of the Advanced Technology Center
(ATC), and then the Consultant to the General Director. He is
expected to return to his teaching position after this three-year
assignment. His research interests include computer architec-
ture, parallel processing, and parallelizing compiler.

16 L.-R. Ton et al. / Journal of Systems Architecture 48 (2002) 1–16

http://www.javasoft.com/products/jdk/
http://www.javasoft.com/products/jdk/
http://www.spec.org/osg/jvm98/

	An analytical POC stack operations folding for continuous and discontinuous Java bytecodes
	Introduction
	Background
	Continuous-folding with patterns
	Continuous-folding without patterns
	Discontinuous-folding with patterns
	Discontinuous-folding without patterns

	The EPOC folding model
	EPOC folding model: folding by observing stack access behavior
	A folding example for comparison
	Achieving 100% EPOC folding efficiency

	Performance comparison of various folding models
	Simulation environment
	Simulation results for various folding models

	Conclusion
	Summary and discussion
	Sample application: An EPOC Java processor

	References


