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Index Rendering: Hardware-Efficient Architecture
for 3-D Graphics in Multimedia System
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Abstract—Real-time three-dimensional (3-D) graphics emerges
rapidly in multimedia applications, but it suffers from require-
ments for huge computation, high bandwidth, and large buffer. In
order to achieve hardware efficiency for 3-D graphics rendering,
we propose a novel approach named index rendering. The basic
concept of index rendering is to realize 3-D rendering pipeline by
using asynchronous multi-dataflows. Because triangle information
can be divided into several parts with each part capable of being
transferred independently and asynchronously. At last, all data are
converged by the index to generate the final image.

Index rendering approach can eliminate unnecessary oper-
ations in traditional 3-D graphics pipeline. The unnecessary
operations are caused by the invisible pixels and triangles in
the 3-D scene. Previous work, deferred shading, eliminates the
operations relating to invisible pixels, but it requires huge trade-
offs in bandwidth and buffer size. With index rendering, we can
eliminate operations on both invisible pixels and triangles with
less tradeoffs as compared with deferred shading approach.

The simulation and analysis results show that the index ren-
dering approach can reduce 10%–70% of lighting operations when
using flat and Gouraud shading process and decrease 30%–95%
when using Phong shading. Furthermore, it saves 70% of buffer
size and 50%–70% of bandwidth compared with deferred shading
approach. The result also indicates that this approach of index ren-
dering is especially suitable for low-cost portable rendering device.
Hence, index rendering is a hardware-efficient architecture for 3-D
graphics, and it makes rendering hardware easier to be integrated
into multimedia system, especially in system-on-a-chip (SOC) de-
sign.

Index Terms—Rendering, rendering architecture, 3-D graphics.

I. INTRODUCTION

T HREE-DIMENSIONAL (3-D) graphics has emerged
rapidly from technical areas to nontechnical areas, and

it has also become a key module in multimedia systems. In
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fact, real-time 3-D graphics is expanding in high gear as a
core technology in the areas of user interface, virtual reality,
visualization, and entertainment. However, real-time 3-D
graphics rendering is computation-intensive, which requires
high bandwidth and large buffer memory. Recently, many
systems [1]–[6] have proposed for various applications of
real-time 3-D graphics, and most of them are performance-ori-
ented architectures that require high hardware cost.

In order to realize real-time 3-D graphics in commodity hard-
ware, one way to proceed is to make an attenuated version of tra-
ditional architecture, but it degrades the performance and image
quality. An alternative method is to design a new rendering ar-
chitecture, such as Talisman [7], [8]. This architecture employs
techniques from two-dimensional (2-D) image processing and
changes into 3-D image synthesis, but it is not compatible with
traditional rendering architecture. Therefore, all air position in-
dicators (APIs) and programs should be rewritten to fit into this
architecture. A better approach is to design a new hardware-effi-
cient architecture compatible with a traditional architecture. De-
ferred shading is one of the kinds of architecture. It rearranges
the operations in traditional rendering pipeline to eliminate re-
dundant operations on invisible pixels. However, it suffers from
large internal bandwidth and buffers, which is hard to be imple-
mented in commodity system.

Furthermore, hardware efficiency is another important issue.
Generally speaking, 3-D applications on PCs are performance-
oriented, and the advancement of rendering hardware is driven
by brute-forced VLSI technology. However, it limits the 3-D ap-
plications on low-cost portable devices. In low-cost portable de-
vices, most functions are application-oriented. Hence, the high
performance is not the only issue, and the importance of hard-
ware efficiency emerges. This is because low hardware effi-
ciency not only wastes hardware resource but it also leads to
power problems.

Hence, in this paper we propose a new approach, index
rendering, for hardware-effective 3-D graphics rendering. It
can further eliminate unnecessary operations on both invisible
pixels and hidden triangles and avoid huge tradeoffs of de-
ferred shading. The organization of this paper is described as
following: In Section II, we first review 3-D graphics rendering
pipeline. By observing the traditional rendering pipeline, we
can find that data rate dominates the behavior of rendering
pipeline. We also introduce the approach of deferred lighting
here. Then, we introduce our new approach and its referential
architecture in Section III. In Section IV, we present the analysis
and simulation results from different architectures. Finally, we
conclude this paper in Section V.

1520-9210/02$17.00 © 2002 IEEE
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Fig. 1. Traditional 3-D graphics rendering pipeline.

II. BACKGROUND

A. 3-D Graphics Rendering Pipeline

Polygon-based rendering is one of the mainstream methods
to generate 3-D graphics. Its rendering job can generally be
divided into two parts: 1) geometric subsystem and 2) raster
subsystem. The geometry subsystem transforms the polygons
in 3-D coordinates vertices, and then maps them into 2-D co-
ordinates. Raster subsystem receives output of geometry sub-
system, and renders the transformed polygons to generate final
images for display. These two subsystems are pipelined for high
throughput in general. Fig. 1 is an example of traditional 3-D
Graphics rendering pipeline.

1) Transformations:As shown in Fig. 1, transformations are
major operations in geometric subsystem. It can be handled by
4 4 matrix operations. In 3-D graphics rendering, the essen-
tial transformations are viewing and perspective. The viewing
transformation transforms objects from the world space to the
view space; while the perspective transformations transforms
the view space to the projection space and then maps it into 2-D
screen coordinates.

2) Culling and Clipping: Culling operation culls away
some invisible polygons to eliminate unnecessary operations,
and back-faced culling is the most popular one. Back-faced
culling utilizes the order of vertices to denote the polygon as
front-faced or back-faced, and then filters out the back-faced
polygons. Furthermore, it can cull away those polygons that
are too small to display. On the other hand, clipping operation
can discard the out-of-sight polygons. Because only polygons
existed in view volume can be displayed on screen, the polygon
located outside the boundaries are discarded.

Although back-faced culling and clipping can eliminate some
invisible polygons; however, there are other invisible polygons
that can be hidden somewhere because they may be fully cov-
ered by each other. Hence, a lot of invisible polygons still reside
in pipeline, and the visibility of these polygons can only be de-
cided after visibility comparison.

3) Lighting: Lighting is an essential operation to calculate
illumination on assigned position by illumination model. In
order to simulate lighting effect in the real world, illumination
model is usually complex. Phong illumination model [19] is
the popular one, which is expressed as

(1)

where
intensity of the ambient light;
intensity of the light source;
unit vector from pixel to the light source;
normal vector of the pixel;

, where is the vector from the
pixel to the viewer;
gloss to model the highlight;
coefficients to model the characteristic of the
material.

In this equation, the third term as a specular term is related to
exponentiation. Furthermore, each vector needs to be normal-
ized before applying to this equation, and normalization requires
calculation of reciprocal square root. Several attempts have been
made to reduce lighting operations with Taylor series approxi-
mation [12], [13] and angular interpolation [14], [15] being the
two major ways. Although a lot of attempts had been made to
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TABLE I
POLYGON-LEVEL AND PIXEL-LEVEL SHADING PROCESS INTHREE SHADING METHODS

solve this problem, lighting operation still remains the bottle-
neck in 3-D graphics rendering. The lighting operation may be
performed in the locations labeled by and , as shown in
Fig. 1, while the real location depends on the shading scheme.
We shall discuss this later.

4) Setup: Setup is the operation to prepare the necessary in-
formation for further rasterization in raster subsystem. In the
setup operation, two kinds of data are generated. The first type
is the data related to shape information, while the second one is
related to color information.

Because triangles are described by vertices in geometry
subsystem, the setup stage helps rasterize stage to scan-convert
triangles into a group of pixels. Traditionally, the setup stage
decomposes triangles into two scanline-aligned parts with each
part being described by left-side edge, right-side edge, and
maximal and minimal -coordinates boundaries. Regarding the
setup for color information, the job of setup stage depends on
the shading method.

5) Raster Subsystem:In conventional rendering pipeline,
raster subsystem handles rasterization. Rasterization consists
of three subtasks: 1) scan conversion; 2) visibility comparison;
and 3) shading. At the beginning of initiating raster subsystem,
the scan conversion decouples polygon into several spans, and
then generates a group of pixels. The groups of pixels denote
the area that these triangles cover on display.

Hence, the operations before scan conversion are
polygon-level operations, and they become the pixel-level
operations after scan conversion. Shading operation colors
each pixel for display, and texture mapping is also applied here.
Visibility comparison determines the visibility of each pixel,
and -test is the most common algorithm.

6) Shading: Shading is the operation to color each pixel
on display. Since lighting calculation is compute-intensive,
it is appropriate to avoid applying lighting on all pixels.
Hence, several shading methods have been developed, and
three shading methods are generally utilized: flat shading,
Gouraud shading and Phong shading. The simplest method is
flat shading. It only applies lighting once for each polygon, and
then shades all pixels inside this polygon with the same color.
The number of lighting operations is smallest, but the image
quality is very poor. Another method, Gouraud shading [20],
can generate better image quality. It applies lighting on vertices
of each polygon, and then shades each pixel inside polygon by
interpolating color on vertices. Because it can render polygons
with smooth color gradation, its result is more acceptable and

widely utilized today. However, it cannot produce highlight
inside the polygons and suffers from Mach Band effect. Among
the three methods, Phong shading [19] can generate the best
image quality, but it needs a lot of calculations. In Phong
shading, the lighting operation is applied to each pixel inside
polygons. Several researchers have proposed to support Phong
shading by hardware [16]–[18]. However, Phong shading is
computation-intensive, and its hardware implementation costs
a lot of chip size.

7) Relationship Between Lighting and Shading:In Table I,
we list the relationship between lighting and shading operation.
As shown in Fig. 1, in both flat shading and Gouraud shading,
lighting operation is executed in the box labeled, while in
Phong shading the lighting operation is performed in box la-
beled .

Among three shading schemes, the major difference is where
the lighting operation is located in polygon-level or in pixel-
level. In flat shading and Gouraud shading, lighting operations
are in polygon-level, and therefore the number of lighting opera-
tions is in proportion to polygon number. On the other hand, the
number of lighting operations is related to the pixel number. Be-
cause each polygon can be decomposed into dozens or hundreds
of pixels, the number of lighting operations in Phong shading are
dozens or hundreds times more than those in flat and Gouraud
shading.

Hence, computation requirement is a tradeoff of image
quality, and one of major reasons is attributed to the high
computation requirement of lighting operations. Phong shading
generates higher image quality but demands huge computation
power. Real-time 3-D graphics makes this condition even
worse, because rendering system needs to render 3-D scenes
over 24 to 30 times/s. The lighting operation leads to two
problems. The first problem is in the high-end system. Since
Phong shading and high resolution are needed for high image
quality, the total number of lighting operation is very huge and
becomes a bottleneck, even though high-end system equips
high computation power. On the other hand, the complexity of
lighting calculation also leads to a problem in low-end system,
even in the flat shading scheme. Because CPU handles lighting
calculation in low-end system, the complexity of illumination
equation causes large burden for CPU. It is infeasible to
implement real-time 3-D graphics for consumer electronics,
especially for some low-cost low-power portable devices.

8) Texturing: Texturing operation provides a simple method
for adding realistic detail to 3-D graphics. It maps the digital im-
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ages stored in texture buffer onto the surface of specific poly-
gons. In different modes for texturing, texture operation unit
may fetch texture buffer 1, 2, 4, 8, or more times for each pixel.
Therefore, huge bandwidth requirement is the major problem of
texturing operation.

B. Observations on Traditional Rendering Pipeline

1) Invisible Polygons and Pixels:3-D graphics rendering is
a process to render 3-D models into 2-D images. Because of
reduction in dimension, a lot of information loses during this
process. Hence, in 3-D graphics rendering, dimension reduction
causes a lot of polygons and pixels to be invisible.

The polygon is a shape defined by vertices, and its size is
very flexible. The reasons to make a polygon invisible may
be attributed to the following: back-faced, outside the view
volume, covered by other polygon or too small to display.
Among these four reasons, back-faced and too small of
polygons can be eliminated in culling operation, whereas the
polygons outside the view volume are removed in clipping op-
eration. However, the polygon fully covered by other polygon
can only be decided after visibility comparison. Therefore,
in traditional rendering pipeline, the operations in connection
with fully covered polygon are unavoidable.

On the other hand, if a pixel is invisible, it is covered by an-
other pixel with the same coordinates. Because of dimension re-
duction, a lot of distinguished pixels in 3-D are projected into the
same coordinates on 2-D screen; therefore, the ratio of invisible
pixels is very high. However, in traditional rendering pipeline,
the data flow for pixel operations are regular and straightfor-
ward. Although invisible pixels can be discarded after visibility
comparison, they still cause “bubbles” in pipeline, thus lowering
the memory and hardware utilization.

2) Heterogeneous Data Flows in Pipeline:In traditional
rendering pipeline, another problem is generated due to het-
erogeneous data flows. Polygon and pixel are major data types
in rendering pipeline. However, there are dozens to hundreds
times difference in terms of the numbers of data. Moreover,
the sizes of polygon are various. The massive and irregular
expansion on data amount causes problems in data flows.

Besides data amount, the operations on these two data flows
have different attributions. In geometry subsystem, the data flow
related to polygon requires a lot of computation power. The data
flow in geometry subsystem is relatively regular, and generally
needs no external memory access. On the other hand, the com-
putation in raster subsystem is relatively simple. However, huge
bandwidth is required, especially on depth buffer and texture
buffer access.

Hence, in traditional rendering pipeline, some areas are com-
putation-bound, and some areas are memory-access-bound.
However, traditional method handles them in a long syn-
chronous pipeline. Even you design to speed up the capability
somewhere, but this speed-up may be cancelled in pipeline stall
elsewhere.

3) Different Types in Polygon Information:There are two
major parts in polygon information, as listed in Table II. The first
part is related to geometry, which keeps the geometrical charac-
teristics of a polygon in 3-D space. Hence the shape and depth
of this polygon can be described. The second part of polygon

TABLE II
DIFFERENTPARTS IN POLYGON INFORMATION

information is related to color, and it describes how a polygon
should be shaded, colored or textured. The lighting calculation
needs to use the second part of polygon information.

Although two parts of polygon information have little rela-
tionship, they are transferred together in traditional 3-D graphics
rendering pipeline. This method cannot explore parallelism in
data operations, and causes limitations when arranging opera-
tions in pipeline.

C. Data Rate Changing in Pipeline

1) Types of Data Rate:Data rate dominates the behavior of
data flows in 3-D rendering pipeline. In order to discuses the
characteristics between different designs, we can roughly clas-
sify data rate in rendering pipeline into five major types: 1) tri-
angle rate; 2) reduced triangle rate; 3) pixel rate; 4) reduced pixel
rate; and 5) scan-out rate.

“Triangle rate” is the data rate before scan conversion in
rasterization. We call this data rate “triangle rate” instead of
“polygon rate” because triangle is the major type of polygon in
rendering pipeline. This rate is also a common benchmark to
indicate how many triangles the hardware can handle within a
period of time. “Reduced triangle rate” is a modified triangle
rate after deleting invisible triangles. This rate seldom appears
in previous architectures because it is hard to eliminate invisible
triangles in the traditional rendering pipeline.

“Pixel rate” is the data rate rendered after scan conversion and
before visible comparison. In scan conversion, each polygon is
converted into dozens to hundreds of pixels. Hence, the data rate
increases dozens to hundreds times more as compared with tri-
angle rate. On the other hand, “reduced pixel rate” is the data
rate after visible comparison. In the area of reduced pixel rate,
pixels that fail in visibility comparison are discarded, and there-
fore the data rate is reduced.

“Scan-out rate” is related to the scan-out mechanism. In order
to illustrate image data, the pixel values in frame buffer must
be scan-out for display. Generally speaking, scan-out proceeds
after the entire rendering task is finished, and hence the visible
pixels on display are fixed. This rate is relatively steady.

This classification can be utilized for the analysis on band-
width and calculation. Besides scan-out rate, other four data
rate is related to complexity of 3-D scene. On the other hand,
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Fig. 2. Illustration of data flow in different rendering pipelines: (a) traditional;
(b) deferred shading; (c) index rendering, depth value stored in and
I-buffer; (d) index rendering, depth value stored inZ-buffer.

scan-out rate is much different. It is related to screen coordi-
nates and is not affected by scene complexity.

2) Data Rates in Traditional Rendering Pipeline:Fig. 2(a)
shows the data flow and data rate in traditional rendering
pipeline. Different gray levels are used to shade different areas
of data rates. The shaded area can show how the data rate
affects the operations. If an operation falls in one data rate
area, it means that the total operation number is related to the
data rate. Because the position for lighting operation depends
on shading scheme, two lighting blocks are shown in this
illustration and labeled with different marks. In flat shading
and Gouraud shading, lighting operation is in the box labeled

, while in Phong shading the lighting operation is performed
in box labeled .

The entire geometry subsystem runs in triangle rate. The
scan conversion is the bridge between triangle rate and pixel
rate. The visibility comparison works in pixel rate. Generally
speaking, the shading and texture operations can be placed
before or after visibility comparison in rendering pipeline,
which may be running in either pixel rate or reduced pixel rate.
This option depends on the hardware architecture designer.
Because the number of operation is smaller when running in
reduced pixel rate, we place the shading and texture operations
in reduced pixel rate in Fig. 2(a).

Generally speaking, the relationships of different data rates
are

Pixel Rate Reduced Pixel Rate Triangle Rate

Reduced Triangle Rate.

On the other hand, scan-out rate is directly proportional to
the resolution of display and refresh rate. The lower the display
resolution, the smaller is the scan-out rate. In general case, the
scan-out rate is much smaller than both pixel rate and reduced
pixel rate, because most pixels on display cover a lot of invisible
pixels. On the other hand, there is no significant relationship
between scan-out rate and triangle rate. The relationships among
scan-out rate, pixel rate, and reduced pixel rate are

Pixel Rate Reduced Pixel Rate Scan-out Rate.

Fig. 2(a) we can also see the effect of data rate on bandwidth.
The arrow labeled means one data bus related to triangle rate.
In the same way, denotes the pixel rate, denotes the re-
duced pixel rate, and means scan-out rate. Becauseand

are the areas of high data rate in general case, we fill up the
arrows with black and gray colors. Furthermore, the arrow that
points to texture buffer is labeled “ ,” because data
of texture buffer is loaded before rendering.

D. Deferred Shading

In traditional rendering pipeline, shading and texture opera-
tions fall in pixel or reduced pixel rates. This can be extravagant
since a lot of shaded and textured pixels are covered in final
image. Moreover, a lot of texture bandwidth is wasted on hidden
pixels. In order to avoid this redundancy, a method of deferred
shading was proposed. This architecture was first proposed in
Deering’s Triangle Processor and Normal Vector Shader [9],
and implemented in PROOF [10], Pixel-Planes 5 [1], and Pix-
elFlow [2], [11]. This approach defers the shading and texture
operations until the entire image has been rendered. Because
the visibilities of all pixels are determined, only visible pixels
on the final image can be shaded and textured. Therefore, this
approach can eliminate unnecessary operations on hidden pixel,
and makes the pixel-level operations computation-effective. The
data flow in deferred shading approach is illustrated in Fig. 2(b).
The shading and texturing operations are moved into the area of
scan-out rate, and hence the number of total operations reduced.

However, in order to support the deferred shading, the func-
tion of frame buffer changes, which leads to buffer size and
bandwidth problems. In traditional pipeline, the frame buffer
keeps the results, the RGB color values of each pixel, after the
shade and texture operations. Typically, 16–32 bits are required
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to store a pixel in frame buffer. On the other hand, in deferred
shading approach, because all pixels are not shaded and tex-
tured before final scan-out, a screen-size pixel buffer is needed
to store all information for further shading and texturing opera-
tions. Since shading and texture parameters often over 100–200
for one pixel, the approach of deferred shading requires large
screen-size pixel buffer and high bandwidth.

Why does the approach of deferred shading cause huge
buffer and bandwidth requirement? The problems are caused
by the parameters associated with shading and texturing.
These parameters are related to original triangle such as

and . In traditional rendering pipeline,
all pixels belong to a triangle are shaded and textured one by
one. Within a period of time, the shading and texture units
handle a group of pixels from the same triangle. There is a
temporal locality on pixel information. Hence, the parameters
can be kept in shading and texture hardware for reuse.
However, in deferred shading approach, shading and texture
operations are in the area of scan-out. This temporal locality is
broken. Each pixel needs to carry a copy of parameters of
original triangle up to shading and texture operations.
Therefore, although deferred shading approach can reduce
shading and texture operations, it pays tradeoffs for occupying
large-sized screen pixel buffer, and huge bandwidth.

Furthermore, the advantage on shading operation is limited.
The advantage of deferred shading benefits mostly only to
Phong shading, but little to flat and Gouraud shading. This
condition is caused by the location of lighting. Because of
complex illumination equation, lighting is the most com-
putation-intensive task in shading operation. Lighting in
Phong shading appears at pixel-level, whereas it appears at
polygon-level in flat and Gouraud shading, as shown in Table I.
Because deferred shading approach reduces pixel-level shading
operations, lighting can be eliminated only in Phong shading,
but it cannot be eliminated in flat and Gouraud shading.
Therefore, the advantage of deferred shading cannot reduce
lighting calculations for flat and Gouraud shading.

III. I NDEX RENDERING

To retain the advantages of deferred shading without its
drawbacks being attached, we propose a novel approach named
index rendering. This approach requires less buffer size and
bandwidth than that in deferred shading. Moreover, we utilize
our deferred lighting technique for the architecture design,
and hence we can eliminate unnecessary lighting operations
for all kinds of shading methods. Hence, index rendering is
a hardware-efficient architecture, and it can be utilized in
real-time 3-D graphics rendering in both high-performance and
low-end systems.

A. Concepts of Index Rendering

The first concept of index rendering is fetching and gen-
erating pixel information on demand. Instead of transferring
pixel information in graphics pipeline, we fetch and generate
them when needed. Therefore, each pixel does not need to
carry huge information through both the area of pixel rate

and the screen-size pixel buffer. This avoids high bandwidth
and large screen-size pixel buffer in the graphics pipeline. To
fetch pixel information from buffer, we useindex as a key.
Index is a serial number of triangles in current 3-D scene,
and each pixel from the same triangle carries the same index
number. Therefore, only the index is saved in the screen-size
buffer, and only 10–20 bits are required for each pixel. In index
rendering approach the screen-size buffer is named-buffer
(index buffer). The triangle information for shading and texture
operations are stored in another buffer to be named
(triangle data base for shading). When shading and texture
mapping are performed, each pixel can fetch parameters from
its parent triangle via the index obtained from . Hence,
with , the approach of index rendering only needs to store
just one copy of triangle parameter for each triangle. Unlike
deferred shading approach, the parameter of one triangle may
be duplicated into a lot of copies for all visible pixels. Hence
the buffer size becomes greatly reduced in index rendering than
in deferred shading.

Index rendering not only defers shading, but also defers
lighting. We propose deferred lighting in [22], and it is the
second concept of index rendering approach. Table I shows
that the lighting is polygon-level operation in flat and Gouraud
shading. As discussed in deferred shading, we know deferred
shading approach cannot reduce polygon-level operations, and
therefore the lighting operations cannot be eliminated in flat
and Gouraud shading. However, in index rendering approach,
it is possible to defer polygon-level operations. The shading
and texture parameters are stored in , which can only be
fetched when scanned out. Because the parameters in
are ineffective before all pixels in a 3-D scene are processed,
the operations to generate parameters for can be asyn-
chronous. Hence, for each triangle, the lighting operation can
be deferred until the visibility of this polygon is decided.
Therefore lighting operation on invisible polygon can be saved.

In order to support these concepts, index rendering divides
triangle information into several parts and handles them asyn-
chronous. In general, there are two major parts in pixel informa-
tion: The first one is related to geometry, which keeps the geo-
metrical characteristics of a polygon in the 3-D space. This part
can be further divided into -related and -related. -re-
lated geometric information describes the shape of a polygon on
display, whereas-related geometric information denotes depth.
The second part of pixel information is related to color, which
describes how a polygon should be shaded, colored or textured.
Index rendering can handle each part of pixel information sep-
arately and asynchronously, and index is the key to reunite all
information to generate final result in shading operation.

B. Architecture of Index Rendering

In this section, a new architecture for index rendering is pro-
posed as shown in Fig. 3. (An earlier architecture of index ren-
dering without deferred lighting was proposed in a previous
paper [23].) This new architecture we propose is to realize raster
subsystem in multimedia system. It receives and renders trian-
gles to generate 3-D scenes, and then it outputs result to the
integrated multimedia system. Its external interface is very sim-
ilar to traditional rendering pipeline, and hence this approach
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Fig. 3. Architecture of index rendering.

is compatible to the conventional 3-D graphics module in inte-
grated multimedia system.

Fig. 3 shows the major blocks of index rendering. The
block labeled by dotted line is optional when using different
methods of visibility comparison. In order to render 3-D
graphics image, each triangle is assigned to a unique index
number. After passing the operations in geometry subsystem,
the triangle information is separated into several parts and sent
to different modules. The part related to color is sent to
(triangle database for shading), and the part related to geometry
is sent to scan conversion block. In scan conversion block,
the polygon is decomposed into a group of pixels with index
number and depth values. Then, visibility comparison tests the
depth of pixels, and records the index number of visible pixels
in -buffer. After whole polygon is scan-converted, visibility
signal of the polygon is sent to lighting block. If the polygon
is visible, lighting block carries on polygon-level shading
operations for this polygon. Operations of lighting block can
be asynchronous with that of scan conversion block to optimize
data flow. The shading and texturing block will not fetch data
in -buffer and to generate the final image until all
polygons in a 3-D scene are scan-converted into-buffer and
all triangle information in are ready.

1) -Buffer: The -buffer (index buffer) plays an important
role in index rendering. It is a screen-size buffer to store index
number. For each pixel on screen,-buffer records the index of
triangle nearest to view port. That is, for each position on screen
coordinates, the-buffer records which triangle to intersect with
its tracing ray. Hence this buffer stores the index pattern of first-
order ray tracing, as shown in Fig. 4.

2) Triangle Databases:Triangle databases are buffers to
store triangle information of which it is addressed by index
number. Because index number dominates address space, the
size of triangle database is related to maximal index number.

Therefore, maximal index number is an important term in
design specification, and it limits the maximal visible triangle
number in a 3-D scene. Because the triangle information is
separated for asynchronous operations, there are different types
of triangle database to store each part of triangle information:
one is related to geometry, whereas the other is related to
color. The color information is stored in . The geometric
information can be further divided into -related and

-related. -related geometric information is utilized in
scan-conversion block to generate the shape of polygons, not
necessarily to be stored.-related geometric information is
sent to scan-conversion block to generate pixel depth, but it
also needs to be stored in (triangle database for visibility
comparison) if visibility comparison without -buffer is
required. We shall discuss this in next subsection.

For example, if we synthesize 3-D scene by Gouraud shading
with texture mapping, the typical information in each database
is listed in Table III.

3) Visibility Comparison: Visibility comparison is a process
to remove hidden pixels by using their depth values.-buffer
algorithm is the most common method for visibility compar-
ison. In -buffer algorithm, visibility comparison unit receives a
pixel containing both depth value and current coordinates,
and then it fetches the related depth value from-buffer. After
comparing the depth value, nearest depth value will be kept in

-buffer. In index rendering, we can employ the-buffer al-
gorithm for depth comparison, and the design of-buffer en-
tries is coexistent with -buffer, as shown in Fig. 5. Therefore
both -buffer and -buffer can be fetched and stored at the
same time. Whenever a new pixel passes the visibility compar-
ison, both -buffer and -buffer are updated at the same time.
If -buffer exists in index rendering architecture, is not
needed, and therefore the dotted box and dotted lines in Fig. 3
are unnecessary.
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Fig. 4. Illustration for index buffer (I-buffer): (a) first-order ray-tracing and (b) data stored inI-buffer.

TABLE III
TYPICAL INFORMATION IN TRIANGLE DATABASE FOR GOURAUD SHADING

Fig. 5. Buffer entry ofZ-buffer andI-buffer.

On the other hand, index rendering can also realize visibility
comparison without -buffer. The depth value, , can be gen-
erated by linear expression as follows:

(2)

The parameters and are stored in .
Because the-buffer keeps the index number of visible pixel,
-buffer can replace the functions of-buffer. The operation of

depth comparison by different methods is illustrated in Fig. 6.
Depth value is fetched directly from-buffer by conventional
method, but it is real-time generated from linear expression by
second method.

4) Lighting: Lighting operation calculates illumination in
a 3-D scene by illumination model. In conventional rendering
pipeline for flat or Gouraud shading, lighting operation locates
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Fig. 6. Temporal storage for visibility comparison: (a) depth value stored inZ-buffer and (b) depth value stored in andI-buffer.

in geometry subsystem, and it does not appear in raster sub-
system. Nevertheless, since our index rendering can eliminate
the redundant lighting operations by deferred lighting, we place
this unit in our architecture in order to demonstrate the feasi-
bility of this lighting operation. The data path from visibility
comparison block to lighting block is the key in terms of de-
ferred lighting design, as shown in Fig. 3. It transmits a signal to
indicate whether current polygon is visible or not. If all pixels of
one polygon fail in visibility comparison, this polygon is invis-
ible. Hence lighting calculation on this invisible triangle is un-
necessary, and the information of this triangle can be discarded.

This architecture is applicable for three shading methods. For
flat and Gouraud shading, lighting is applied for polygon-level.
If a new polygon is received and its index number is, its color
information is temporarily stored in-th entry of , and
lighting is deferred until the signal is identified for its visibility.
If this signal shows that polygon is visible, the data in-th entry
of will be read into lighting block for lighting calcula-
tion, and the result is written back into the original entry. On
the other hand, if this signal indicates that polygon is invisible,
this polygon information will be discarded. The index number

can be reassigned and the space of-th entry in can be
freed for another polygon. Hence, triangle database only keeps
the visible triangles in a 3-D scene.

Furthermore, in Phong shading, lighting calculation is ap-
plied at pixel-level. Therefore, lighting is deferred until final
scan-out. In this case, the parameter for shading is still stored
in . If one pixel needs to be shaded, and its index number
is , the data of-th entry of is sent to lighting block. After
lighting calculation, the result is sent to shading block to gen-
erate final result.

5) Shading and Texturing:Shading and texturing block
generates color for each pixel. As for shading, in flat shading,
the shading block can directly fill the pixel with the uniform
color of its parent triangle, and the color value is stored
in . In Gouraud shading, color interpolation is nec-
essary. The linear expression is applied to calculate each
value, and all necessary parameters are fetched from
. For example, in order to shade pixel by Gouraud
shading, we check index number stored in coordinates
in -buffer. If this index number is , we can find out the
polygon information of -th triangle in , such as

and .
Than, the color of this pixel can be calculated from the fol-
lowing linear expressions:

(3)

On the other hand, Phong shading interpolates normal vectors
and applies lighting on each pixel. In this case, the linear expres-
sion is also capable of interpolating vectors, and can store
the parameters for vector interpolations. If Taylor series approx-
imation is utilized, becomes the storage of parameters for
Taylor series.

On the other hand, the texture coordinates can also be gen-
erated by linear expressions. With coordinates, we can
fetch texture buffer for texture mapping. Because the texturing
operation is in scan-out rate now, it can avoid a lot of redundant
fetching on texture buffer resulted from the absence of invisible
pixels. The linear expressions for texture coordinates generation
are as follows:

(4)

6) Scan Conversion:In index rendering, since shading op-
eration is deferred, the scan conversion becomes light-weighted.
The major task of scan conversion is to issue pixels inside
the shape of triangle. Because we use-buffer algorithm
for visibility comparison, the calculation of depth value is
needed in scan conversion. In general case, depth value can be
generated by simple calculation of addition. Each pixel issued
from scan conversion carries index number, depth value, and
its coordinates only. Hence, high-speed scan conversion
can be achieved and parallel algorithms can be employed, such
as Pineda’s parallel polygon rasterization algorithm [24].

C. Data Flow in Index Rendering

The data flow and data rate of index rendering are illustrated
in Fig. 2(c) and (d). Both architectures of Fig. 2(c) and (d) are ap-
proaches of index rendering, and their difference is the method
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TABLE IV
HARDWARE LEVELS FORANALYSIS AND SIMULATION

TABLE V
TRIANGLE NUMBERS OF3-D OBJECTS

to store depth value. In Fig. 2(c), both-buffer and are
used to store the depth value. In Fig. 2(d), the depth value is
stored in -buffer.

Besides the advantage of placing shading and texturing op-
erations in scan-out rate, there are two key points in the data
flow of index rendering: The first one is the design of-buffer
and . Because of this design, we can replace the huge
and high-bandwidth pixel buffer with small and low-bandwidth
buffers, -buffer, and . Therefore, the approach of index
rendering can employ the advantage of deferred shading without
suffering from its drawbacks.

Moreover, we can reduce the number of lighting operations,
even in Gouraud and flat shading methods. The reason is that the
approach of index rendering moves the lighting operation from
geometry subsystem into the area of “reduced triangle rate,” and
this is the second key point.

IV. A NALYSIS AND SIMULATION

For further analysis and simulation, reasonable assumptions
are needed to demonstrate the outcome generated from the is-
sues discussed in this paper. We discuss three architectures: tra-
ditional, deferred shading and index rendering. When realizing
3-D graphics on hardware, cost is an important issue. Therefore
we roughly classify the capability of 3-D graphics hardware into
three levels: 1) high-performance; 2) middle-performance; and
3) low-end. Furthermore, to show the reduction of lighting cal-
culation, we simulate several 3-D objects with different resolu-
tions and shading methods to show the capability of three archi-
tectures.

A. Analysis Parameters

1) Hardware Levels:For simulation, we roughly classify
the capability of 3-D graphics into three levels: 1) high-perfor-
mance; 2) middle-performance; and 3) low-end. Assumptions

Fig. 7. Three-dimensional objects for simulation.

of three hardware levels are listed in Table IV. The major
difference of three levels is the complexity of 3-D scene. The
high-performance approach renders about 2M triangles/s. The
middle-performance approach focuses on game and entertain-
ment areas and targets on 480 K triangles/s. In the low-end
approach, such as portable devices or PDA, 3-D graphics can
be utilized as user interface, and its performance targets on 96
K triangle/s.

The second difference is the resolution. For each hardware
level, we discuss two kinds of screen resolution; therefore, we
can find how differently the resolutions can affect the result.
Resolution 800 600 appears both on high-performance and
middle-performance levels to find how the complexity of 3-D
scene affects results under the same resolution. The third dif-
ference is frame rate. Because of persistence of human vision,
higher frame rate is not necessary in general case. We assume
that the frame rate is 30 in high- and middle-performance levels
and it is 24 in low-end.
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Fig. 8. Four types of architecture: (a) Type(traditional pipeline); (b) Type (deferred shading); (c) Type(index rendering, depth value stored in and
I-buffer); and (d) Type (index rendering, depth value stored inZ-buffer).
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TABLE VI
SUMMARY OF VARIABLES FOR ANALYSIS AND SIMULATION

2) Simulation Patterns:In order to simulate the behavior of
index rendering, we have utilized the Java [26] and Mesa [27] to
develop our simulation environment. Mesa helps to handle the
operations in geometry subsystem. It is capable of converting
3-D models into a lot of scanline-aligned triangles. Then, we
write java programs to render the final images and to count the
data rate. Hence we can get the information for analysis. In
order to reflect the real case, we simulate the 3-D models to un-
derstand their requirements in data rate. Then, we utilize them
to analyze the computation, buffer size and bandwidth require-
ments in hardware. Fig. 7 shows the 3-D objects for simulation
patterns, and their triangle numbers are listed in Table V. The
original resolution of 3-D objects is 640480. For different res-
olutions, we scale these object models in order to control vari-
ables. For example, if we need to simulate 3-D scene in resolu-
tion 320 200, all object models are scaled into 0.5. In order to
show the real reduction on triangle, we enable GLCULL FACE
when generating intermediate simulation patterns except Poly-
hedron. Hence, the 3-D objects (b)-(d) are back-face culled be-
fore simulation, so the simulation can present more to reflect the
real result caused by architecture designs.

Among five 3-D objects, the first one is Polyhedron with two
colored triangles to simulate the 3-D objects at user interface
for low-end system. The 3-D objects (b)-(d) are taken from
the sample files of OpenGL developer tools of SGI [25].
Those models show the general objects in 3-D applications.
“Dolphins” and “Policeman” illustrate the shape of animal
and human. The bodies of “Dolphins” are simple and smooth,
whereas the model of “Policeman” is complex and it consists
of many parts. “Castle” is another model of different type with
many walls cover each other, causing a lot of pixels in this
model to become invisible. In order to simulate the condition
in today’s 3-D applications, these three models are back-face
culled. “Teapot” is generated by functionglutSolidTeapot( ) in
Mesa, and modeled by a lot of small triangles. In high-perfor-
mance system, most 3-D objects are modeled by a lot of small
triangles to present curvy surface smoothly, and hence “Teapot”
can simulate this condition in high-performance system.

3) Architecture Types:In the following analysis and sim-
ulation, we compare four architectures (Types– ). Type
is the traditional rendering pipeline, and it equips the frame
buffer and -buffer. Type is deferred shading. For fair com-
parison, we use the direct method to model deferred shading
in order to show its essential characteristics. This architecture
needs -buffer for visibility comparison and pixel buffer to
keep information for each pixel on screen. Typeand are

approaches of index rendering with different methods of visi-
bility comparison. Type utilizes -buffer and to gen-
erate depth value in real-time, while Typeuses conventional

-buffer to store depth value temporally. Four architectures are
illustrated in Fig. 8. There are additional notations in Fig. 8(a),
(b) to show where the lighting operation is executed. In flat
shading and Gouraud shading, lighting operation is in the box
labeled , while in Phong shading the lighting operation is per-
formed in box labeled .

We summarize all four variables for analysis and simulation
in Table VI. These four variables are: 1) architecture type; 2)
hardware level; 3) shading method; and 4) simulation patterns.

B. Numbers of Lighting and Texture Operations

1) Numbers of Lighting Operation:The major advantage of
index rendering and deferred shading is the reduction of lighting
operation. Fig. 9 shows the simulation result for numbers of
lighting operation, which is compared with traditional rendering
method (Type ). We set the number of lighting operations in
Type as 100% in Fig. 9. In this figure, both types of index
rendering (Type ) have the same results, because the method
of visibility comparison is not related to the number of lighting
operation. Therefore, we only illustrate two data on each trial:
deferred shading (Type) and index rendering (Type ).

2) Lighting in Phong Shading:As shown in Fig. 9(a), we
can find that deferred shading and index rendering reduce the
same number of lighting operations, about 30% to 95%. This re-
duction becomes larger for complex 3-D objects and lower reso-
lution. The reasons are that complex 3-D objects have more cov-
ered pixels in their model, and lower resolution leads to fewer
visible pixels. Fig. 9(a) shows that deferred shading has sig-
nificant improvement in Phong shading, and therefore we can
know why some high-end 3-D hardware uses deferred shading
to solve computation bottleneck, though it costs a lot on buffer
size and bandwidth. With the same reduction in lighting opera-
tions, index rendering can provide better solution to solve this
bottleneck with less cost.

3) Lighting in Gouraud and Flat Shading:However,
deferred shading approach can not reduce lighting operations
in flat shading and Gouraud shading, and hence the proportion
of lighting number remains in 100% compared with traditional
rendering pipeline (Type ), as shown in Fig. 9(b) and (c). On
the other hand, because of the technique of deferred lighting,
index rendering can reduce 10%–70% of lighting operation
in flat and Gouraud shading. Complex models and lower
resolutions also lead to better reduction, but the model of
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Fig. 9. Percentage of lighting operation number compared to traditional rendering pipeline (a) Phong shading, (b) Gouraud shading, (c) Flat shading.
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TABLE VII
RELATIONSHIP OFARCHITECTURES, BUFFERS ANDPARAMETERS

Polyhedron is an exception. Polyhedron is constructed by quite
large polygons, and the visibility of each triangle remains the
same at different resolutions. Therefore, its lighting number
does not change in low resolution because the reduction
caused by deferred lighting is related to invisible polygons.
Furthermore, although the proportions of lighting numbers of
flat and Gouraud shading are the same in the figure, the original
lighting number in Gouraud shading is three times more than
that in flat shading. Therefore, the reduction is more significant
in Gouraud shading.

4) Lighting Operation Number and Data Rate:In fact, the
reduction on lighting operation number is related to the data rate.
Referring to Fig. 2, we can find that: as for Phong shading, the
lighting operation is located in the area of reduced pixel rate in
traditional pipeline. On the other hand, the lighting operation is
in the area of scan-out rate area in both deferred shading and
index rendering approach. Hence, the Fig. 9(a) can be treated as
comparison between “reduce pixel rate” and “scan-out rate.”

On the part of Gouraud and flat shading, the lighting
operation is located in the area of triangle in previous ar-
chitectures, including both traditional pipeline and deferred
shading approach. Hence deferred shading approach cannot
reduce number of lighting operation. However, because of the
technique of deferred lighting, index rendering approach can
move the lighting operation into the area of reduced triangle
rate. Therefore, Fig. 9(b) and (c) is also the result of comparing
“triangle rate” and “reduced triangle rate.” Moreover, because
most models are back-face culled before simulation, the result
can reflect the real reduction of lighting operation.

5) Number of Texture Operation:Referring to Fig. 2, in tra-
ditional rendering pipeline, the texture operation is in the area
of reduced pixel rate. However, in deferred shading approach, it
is moved to the area of scan-out rate. Hence, the reductions on
texture operation and texture buffer bandwidth are also the ad-
vantages of defer shading approach. Index rendering approach
retains the advantages. Therefore, for comparisons of both oper-

ation and of bandwidth, the results are also the comparison be-
tween “reduce pixel rate” and “scan-out rate.” Their percentage
figures are the same as Fig. 9(a).

C. Buffer Analysis
1) Buffer Size:The characteristic of each kind of buffer

is listed in Table VII, and relationships between different
architectures and buffers are marked. Among six kinds of
buffers, resolution affects the size of-buffer, frame buffer,
pixel buffer and -buffer. Scene complexity affects the size
of two triangle databases and because triangle
databases must keep information of all visible polygons on
screen. Furthermore, scene complexity also affects-buffer,
because the length of index equals to (maximal visible
polygon number in a scene). Within both approaches of
deferred shading and index rendering, color information should
be stored for shading operations, and hence it affects the size
of pixel buffer and . We do not discuss the size of texture
buffer here because its size is user-defined, and there is no
direct relation with other simulation parameters, such as screen
resolution and scene complexity.

Fig. 10 shows the buffer size of four architectures, and con-
tribution of each type of buffer is labeled. Generally speaking,
buffer size is larger in Phong shading than in Gouraud shading.
The lower the resolution, the smaller is the buffer size. Among
all kinds of buffers, the size of pixel buffer is the largest re-
gardless of architecture type. Therefore, it makes overall buffer
size huge in deferred shading (Type), especially in Phong
shading. The overall buffer size in deferred shading grows up
quickly with increasing resolution, and it becomes several times
more than that in traditional rendering pipeline (Type). On the
other hand, because index rendering (Type ) uses the con-
cept of fetching and generating pixel information on demand,
the overall buffer size is as small as Type. Therefore, index
rendering is more cost effective and feasible in the architectures
of low-cost systems.
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Fig. 10. Buffer sizes in four types of architecture: (a) Phong shading and (b) Gouraud shading.

Fig. 11. Analysis of maximum bandwidth: (a) Phong shading and (b) Gouraud shading.

2) Maximum Bandwidth Analysis:Fig. 11 shows the result
of bandwidth analysis for worst case. In the worst case scenario,
we assume an animated 3-D scene that has maximal allowed
polygon number of current architecture where all polygons are

visible in each frame by rendering it in real-time to see its ani-
mation. This analysis can show the maximal bandwidth require-
ment. Among all types of architectures, the bandwidth of tradi-
tional rendering pipeline (Type) is relatively small, but pixel
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Fig. 12. Buffer bandwidth by simulation (a) Phong Shading, (b) Gouraud shading.

buffer in deferred shading has the largest bandwidth. Due to high
bandwidth on large-sized buffer, pixel buffer becomes the bot-
tleneck of deferred shading.

To solve this problem, index rendering uses two different
strategies. The first one is to map high bandwidth access in a
very small buffer, and makes this buffer small enough to be em-
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bedded on-chip to reduce cost effectively. Since on-chip buffer
can support high bandwidth, using this architectural design can
solve the limitation on bandwidth. This strategy is used in our
Type architecture. Although the bandwidth of is huge,
and makes total bandwidth larger than deferred shading in some
case, the size of is small enough to be embedded on-chip,
as shown in Fig. 10. The size of is about 720 kB in
high-performance, 168 kB in middle-performance, or 30 kB
in low-end system. Hence, this buffer is small enough to be
implemented cost-effectively by high-speed buffer, such as an
embedded memory. Without the bandwidth of , the re-
mained bandwidth is much smaller than deferred shading. The
second strategy is to reduce the bandwidth directly by archi-
tectural design, and Type uses this strategy. Type employs
index rendering, but utilizes traditional-buffer for visibility
comparison. This method cannot optimize bandwidth with small
high-speed buffer, but it has the capability to avoid high band-
width caused by . This approach can also reduce the high
bandwidth existed in deferred shading.

3) Bandwidth Simulation:In order to show bandwidth in
real cases, we simulate 3-D models to see how it changes. Only
the overall bandwidth is illustrated in Fig. 12 to simplify the
figures. Among different types of architectures, traditional ren-
dering pipeline (Type ) requires smallest bandwidth, while
deferred shading (Type) requires the largest. In this figure,
we find index rendering approaches (Type ) greatly reduce
bandwidth in simple 3-D objects, such as Polyhedron and Dol-
phins. In complex 3-D objects, the bandwidth in index rendering
is still smaller than that in deferred shading. Although Type
also requires high bandwidth in some cases, small high-speed
buffer can solve this problem. Type is similar in low band-
width to Type , and hence this architecture is a more cost-ef-
fective method to realize index rendering.

V. CONCLUSION

In this paper, we propose a novel approach, index rendering,
and its referential architecture for 3-D graphics rendering. This
approach retains the advantage of deferred shading and elim-
inates its drawbacks. The basic concepts of index rendering
are “fetching and generating pixel information on demand” and
“deferred lighting.” To support these concepts, index rendering
separates pixel information into several parts and handles them
asynchronously. The result shows index rendering can elimi-
nate 10%–70% lighting operations in flat and Gouraud shading,
and 30%–95% in Phong shading. Furthermore, it saves 70%
buffer size and 50%–70% bandwidth as compared with deferred
shading.

According to the analysis and simulation results, index
rendering is hardware-efficient, and especially suitable for
high-performance and low-end rendering systems. In the
high-performance system, index rendering can reduce the
same lighting and texture operations as deferred shading, but
it requires smaller buffer and lower bandwidth. In the low-end
system, index rendering can significantly reduce lighting op-
erations in flat shading and Gouraud shading with the costs of
buffer and bandwidth being acceptable (buffer size 130 kB–224
kB, bandwidth 15 MB/s–81 MB/s). Hence, index rendering can

make 3-D graphics feasible in low-end systems and portable
devices, such as mobile phone, PDA, etc. About antialiasing
and transparency, Mammen’s method [28] can be employed in
index rendering. Hence, index rendering is capable of making
3-D rendering hardware-efficient and it is easy to be integrated
into multimedia system of today, both in high-performance
and low-end systems, especially suitable in system-on-a-chip
(SOC) design.
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