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Abstract

The rapid growth in Internet usages brings new challenges on designing a scalable information retrieval system. To reduce the
response time of a query to a large database, we parallelize both CPU computation and disk access of Boolean query processing on a
cluster of workstations. The key issue is to partition the inverted file such that, during parallel query processing, each workstation
consults only its own locally resident data to complete its task. To achieve this goal, we treat the set of all postings referring to a
document ID as an object to be allocated in the develop data placement problem. Following the partitioning by document ID
principle, we develop posting file partitioning algorithms to transform a sequential information retrieval system to a parallel in-
formation retrieval system. The advantage is that a better speed-up can be achieved by deriving from the fast sequential approach —
the compressed posting file. The partitioning schemes are designed to balance work-load of workstations in parallel query processing
without increasing the average disk access time per posting. The experiment shows that almost linear speed-up can be achieved and
the performance bottleneck in previous work, which parallelize only disk access, can be removed. This work shows that, by using

parallel processing technique, it is feasible to build a scalable information retrieval system.

© 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

The rapid growth in Internet usage brings wide va-
riety of applications as well as new system design chal-
lenges on information retrieval systems. Information
retrieval systems can be found in various Web applica-
tions for searching homepages, research papers, news
articles, and product information. However, the prob-
lem of information explosion overwhelms the load of
CPU and disk on an information retrieval server. The
response time to serve a user query scales as the size of
the document collection grows. Reducing the query re-
sponse time is a key issue in designing a scalable infor-
mation retrieval system.

We intend to reduce the query response time by
means of parallel Boolean query processing on a net-
work of workstations. Queries are processed on a cluster
of workstations — each has its own CPU, memory, and
disks — interconnected by a local area network. A user
query consists of keyword terms and Boolean operators.

* Corresponding author. Tel.: +886-3-5712121; fax: +886-3-5724176.
E-mail address: ycma@csie.nctu.edu.tw (Y.-C. Ma).

A document either matches or mismatches a Boolean
query in a binary fashion. A retrieval data structure
stored on disks is consulted to search for those docu-
ments matched with the given query. The key research
issue here is to partition and distribute the large retrieval
data structure onto disks of multiple workstations such
that the query processing time can be reduced.

Two well-known retrieval data structures are the sig-
nature file (Faloutsos, 1985) and the inverted file (Frakes
and Baeza-Yates, 1992; Witten et al., 1999). We use the
inverted file, which consists of an index file and a posting
file, as the retrieval data structure. The posting file is
compressed and stored on disks. The compression re-
duces not only the storage space required but also the
disk access time to retrieve posting lists. To the best of
our knowledge, the d-gap scheme (Witten et al., 1999)
has the best compression efficiency. The effectiveness of
the d-gap compression relies on the clustering of docu-
ments to reduce the gaps between document IDs (Moffat
and Stuiver, 1996a). We will see that document cluster-
ing also plays an important role on posting file parti-
tioning.

Parallel query processing has been an active re-
search area. Some researchers (Stanfill and Kahle, 1986;
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Cringean et al., 1990; Lee, 1995) have proposed parallel
signature-file-based query processing. However, Stone
(1987) and Salton and Buckley (1988) indicates that the
parallel signature-file-based method may even be slower
than sequential inverted-file-based method. On the other
hand, other researchers (Stanfill, 1990; Mansand and
Sanfill, 1993; Reddaway, 1991) parallelize inverted-file-
based query processing at the cost of synchronization
overheads in SIMD machines (Stanfill, 1990; Mansand
and Sanfill, 1993) or requiring additional complexity by
expanding a posting list to a binary bit-map (Reddaway,
1991). Recent research efforts (Jeong and Omiecinski,
1995; Riberio-Neto et al., 1998) parallelize the disk
accesses to retrieve posting lists, however the CPU
computation is still performed sequentially. The short-
coming in previous work is that processing posting list
is inherently sequential and the performance bottleneck
still exists. The goal of this work is to attack this
problem.

The key to the success of parallel query processing is
to partition the posting file such that, during parallel
query processing, each workstation has to consult only
its own local portion of the partitioned posting file.
Jeong and Omiecinski (1995) states that the posting file
can be partitioned either by term or by document ID.
The straightforward approach is by-term partitioning,
which takes a posting list as an object to be allocated.
An alternative approach, partitioning by document ID,
is to take the set of all postings referring to a document
ID as an object for the allocation. Jeong and Omiecinski
(1995) parallelizes disk accesses with these two ap-
proaches but the CPU computation is still performed
sequentially. In this paper, we show that the by-docu-
ment-ID partitioning approach parallelizes both CPU
computation and disk accesses without inducing com-
munication overhead of transfering posting lists between
workstations.

Following the partitioning by document ID principle,
we propose algorithms to transform a sequential re-
trieval system to a parallel information retrieval system.
The algorithm receives a posting file for sequential query
processing as input and produces a partitioned posting
file for parallel query processing. We assume that the
input posting file is compressed using the d-gap com-
pression scheme, and documents are clustered to reduce
gaps between document IDs. We also apply the d-gap
compression on each portion of the partitioned posting
file to reduce the disk access time in parallel query
processing. To achieve better performance, posting file
should be partitioned to balance workload of each
workstation in parallel query processing without re-
ducing the effectiveness of d-gap compression scheme.
With the document clustering assumption and repre-
senting a document as a local document ID in the
corresponding workstation, we will see that load bal-
ancing can be achieved without sacrificing the d-gap

compression effectiveness. Experiment shows that almost
linear speed-up on query processing performance can be
achieved.

This paper is organized as follows. Section 2 describes
the inverted file and the d-gap compression scheme.
Section 3 derives a model for parallelizing query pro-
cessing. Section 4 describes two partitioning schemes
that can produce the partitioned posting file after
reading the original posting file once. In Section 5, we
propose the third partitioning scheme which achieves
a higher query processing performance at the cost of
reading the input posting file twice for producing the
partitioned posting file. Section 6 presents the experi-
mental results, and a conclusion is given in Section 7.

2. Inverted file

The data structure of an inverted file (Frakes and
Baeza-Yates, 1992; Witten et al., 1999) is depicted in
Fig. 1. An inverted file consists of an index file and a
posting file. The index file is a set of records, each
containing a keyword term ¢ and a pointer to the posting
list of term ¢. The posting file is a set of posting lists,
each being a set of document IDs to indicate the pres-
ence of a term in a document. A Boolean query consists
of keyword terms and Boolean operators. To process a
query, the system searches the index file for the queried
terms to retrieve posting lists of corresponding terms on
disks. Set operations, such as intersection (N) and union
(U), are then performed on the posting lists to obtain the
answer list. In a large document collection, posting lists
are usually compressed on disks and CPU computation
to uncompress posting lists are hence required.

Psycho-linguist Zipf (1949) observed that the set of
frequently used terms is small. According to Zipf’s law
(Zipf, 1949; Salton, 1989), 95% of words in documents
fall in a vocabulary with no more than 8000 distinct
terms. This suggests that it is advisable to store the index
records of frequently used terms in random access
memory and the average time for index searching will
not scale with the size of the document collection.

We focus our attention to the posting file side instead.
The time complexity of posting lists processing, includ-
ing disk accesses, uncompression, and document ID
comparison, is O(fi +f>+---+ fi), where f; is the
length of the posting list of the ith queried term (Salton,
1989). Moreover, adding a document into the collection
is to add one document ID to each posting list of the
terms appearing in the document, and hence the length
of a posting list increases with the size of the document
collection. This implies that the time to process posting
lists increases as the size of document collection grows.
Efficient approaches to reduce space and time to store
and operate on the posting file are the key issues in the
study of a scalable information retrieval system.
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document collections

index file posting file T doc.1 T !
processor 1,2,5,10,12, 14, ... ! ... processor ... | |
! .. text ... :
E doc. 2 )
text 1,3,7,10, 11, 12, 15, ... ! '
' ... processor ... | !
E doc. 3 E
answer list of "processor <and> text": 1, 10, 12, ... | S
E ... text ... I
Fig. 1. Inverted file.
original document ID: 2, 3, 5, 8, 11, 17, 21, 24, ...
(/A N U D L R
1 2 3 3 6 4 3

d-gap representation: 2, 1, 2, 3, 3, 6, 4, 3, ...

Fig. 2. D-gap compression scheme.

Witten et al. (1999) proposes d-gap compression
scheme to reduce both space for storing posting lists and
time for retrieving posting lists from disks. The key idea
of d-gap compression scheme is depicted in Fig. 2. As-
sume that document IDs in a posting list are sorted in
an increasing order. In the d-gap represented list, each
document ID (expect for the first one) is represented as
the difference of its ID to its predecessor’s. The d-gap is
then encoded using encoding schemes that can encodes a
small number with fewer bits (Elias, 1975; Bently and
Yao, 1976; Golumb, 1966). The effectiveness of d-gap
compression scheme relies on the ordering of document
IDs. Documents should be clustered according to the
number of common terms shared, and clustered docu-
ment IDs are assigned close to each other to reduce the
gaps between document IDs in a posting list. Based on
the d-gap scheme, document clustering to improve the
effectiveness, is used to compress the posting file (Moffat
and Stuiver, 1996a).

posting list of term 1: 0 1 2 5 8 .
posting list of term 2: 2 3 i

answers of 9 8
term 1 <AND> term 2:

WS,

3. Parallelizing Boolean query processing

The key idea of parallelizing posting list processing is
depicted in Fig. 3. We use the notation WS to denote
workstation k. Each posting list is partitioned and each
workstation stores a segment of the partitioned posting
list. In this example, the segment of a posting list con-
taining document IDs 0-9 is stored in WS. Similarly, the
segment containing document IDs 11-19 is stored in
WS, and the segment containing document ID 21-29 is
stored in WS,. During parallel query processing, each
workstation performs set operations (U, N, etc). on its
own portion of partitioned posting lists independently.
For instance, workstation WS, has to consult only its
locally resident data to check whether document 15
matches a given query. This parallelizes the set opera-
tions without inducing communication overhead. In this
section, we formalize the idea and show how a query is
processed in a network of workstations.

15 16 19 | 2124 27 28
1215 161719 0 21 25 27 28 29
15 16 19 | 21 27 28
WSy | WS,

Fig. 3. Partitioning the posting file for parallel query processing.
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3.1. Formalization of parallel posting list processing

The principle of parallel processing is, for any docu-
ment d, all postings referring to document ID d should
be placed in the same workstation. A partitioning
scheme uses a mapping 4 to map each document ID d
to a workstation WS;. We use the notation 4(d) = k to
denote that all postings referring to document ID 4 must
be mapped to WS;. Each workstation WS} stores a locally
posting list for each term. Let L; be the posting list of the
term i. The local posting list of the term i in workstation
WSy, denoted L; (WSy), is the list of document IDs and L;
which are mapped to workstation WSj. That is,

L; (WS;) = {document ID d|d € L; and 4(d) = k}
= Li ka, (1)

where D, is the set of document IDs covered by work-
station WS;.

D, = {document ID d|A4(d) = k}. (2)

The local posting file of a workstation WS}, is the set of all
local posting lists stored in WS;.

To process posting lists is to perform set operations
on posting lists. For a given query ¢, the complete answer
list, denoted Ans,, is the list of all document IDs
matching the given query ¢. That is,

Ans, = {document ID d|document 4 matches query g}.

(3)
In parallel query processing, the task of workstation WS,
is to construct its own partial answer list Ans,(WSy),

which is the list of document IDs in D, matching the
given query ¢. That is,

Ans,(WS;) = {document ID d|A4(d)
= k and document d matches g}
= Ans, N Dy. (4)

And the union of all partial answer lists of all work-
stations is hence the complete answer list. That is,

Ans, = UAnsq(WSk). (5)

WSy

It is clear that each workstation WS, can compute
Ans,(WS;) by consulting only its local posting file. A
trivial method is to examine each document ID d map-
ped to WS,. However, this trivial method introduces
unnecessary complexity. We show that, to compute
Ans,(WS), workstation WS, only has to perform the
ordinary sequential set operations on its local posting
lists of queried terms, regardless of the irregularity of the
mapping 4. This means that any technique to improve
sequential query processing performance (Witten et al.,
1999; Moffat and Zobel, 1996b) can be used, and a good
speed-up of parallel processing can be achieved by using
one of the fast sequential methods.

Theorem 1 (Partial answer list construction). The local
partial answers, Ansq(WSk), can be written as set opera-
tions on local posting lists of queried terms in WSy.

Proof 1. We prove this theorem by induction on the
number of Boolean operators in the given query g.

The basis, that is when query ¢ contains only one
Boolean operator, is shown as follows. Query ¢ is either
“term i (AND) term ;” or “term i (OR) term ;. We
consider the case when query ¢ is “term i (AND) term
j7. The partial answer list to be produced by WS; is

Ans,(WS) = (LiNL;) N Dy = (L; N Dy) N (L; N Dy)
= Ly(Sk) N LS. (6)

This rewrites Ans,(WS;) with set operations on local
posting list in 5. The case when ¢ term i (OR) term j is
similar and omitted.

The induction hypothesis is: suppose the theorem
holds when the number of Boolean operators in ¢ is less
than n. We show that the theorem also holds when ¢
contains n Boolean operators. The query ¢ is either
“(q1) (AND) (g2)” or “(q1) (OR) (¢2)”, where g, and
q» are queries containing no more than » — 1 Bool-
ean operators. We first consider the case when ¢ is
(¢1) (AND) (g2). The partial answer list to be produced
by WSy is

Ans,(WS;) = (Ansy N Ans,p) N Dy
= (Ans,,l n Dk) n (Ansqz N Dk)
:Ansql(WSk) ﬂAnqu(VVSk). (7)

The induction hypothesis states that Ans, (WS;) and
Ansp(WS;) can be written as set operations on local
posting lists of queried terms in WSy, and hence so is
Ans,(WS). The case when ¢ is (¢1) (OR) (g») is similar
and omitted. This theorem is thus proved by induc-
tion. O

3.2. Guideline to load balanced partitioning

Besides communication overhead, another perfor-
mance hurdle in parallel processing is load imbalancing.
We analyze the time complexity of the query processing
and derive the guideline for load balancing.

We formulate query processing time as follows. The
time complexity of sequential query processing is
O(fy, +fn+---+f,), where f;, is the length of the
posting list of the ith queried term #; and » is the number
of queried terms (Salton, 1989). We thus proportionate
the processing time of sequential query processing to the
total length of posting lists of queried terms. That is,

Timesequential = COHStant * (ftl +j;z + e +f;n)' (8)

This modeling can be justified by the experiment data to
be shown in Section 6. According to Theorem 1, each
workstation performs ordinary sequential query pro-
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cessing on its local posting file independently as part of
the parallel query processing. Processing time of a
workstation WS, is thus

Time(WS;) = Constant (flfk) —s—fé“ o 9, 9)

where ﬁfk) is the length of the local posting list of the ith
queried term ¢; in workstation WS;. The processing time
of parallel query processing is the time the last work-
station finishes its job:

Timepm”e, = mW?x{ Tlme( VVSk) }
k

_ (k) (k) 4 ... (k)
= Constant = max { <ftl + T ) }
(10)

Ideally, processing time of parallel processing can be as
little as the sequential processing time divided by the
hardware parallelism. That is,

Timesequential

Timeideal = M

+2

M M M (11)

where M is the number of workstations. The ideal case
occurs when each posting list is equally split onto mul-
tiple workstations, that is, when f,-(k) = f;/M for each
term i and each workstation WS;.

The worst parallel query processing time is also de-
termined by uneven partitioning of posting file. For each
term i, let o; be the maximum skew with respect to the
uniform partitioning for the posting list of term 7. That
is,

o = maXps, {fi<k)}
(/M)

Let o be the global maximum skew among all posting
lists. That is,

= Constant * (Ji Lo f—[>,

(12)

o; = maxa;. (13)
termi

The worst case parallel query processing time is no more

than the ideal processing time multiplied by the skew.

This is stated in the following theorem.

Theorem 2 (Worst case parallel query processing time).
For any given query, the time Timepsqner to process the
query in parallel is bounded by

Bmepamllel < o * nmeideal~ (14)

Proof 2. Eq. (14) is derived from estimating the bound
on the processing time of all workstations. Egs. (12) and
(13) give the upper bound on the number of postings to
be processed by any workstation. For any term i and
any workstation W5y, the length of the local posting list
of term 7 in workstation WS, is bounded by

S <opx (fi/ M) < ax (fi/ M). (15)

The processing time of all workstations WS is thus
bounded by

, Ju | Jo Ji
Ti < Constant ! ERNTN "
ime(WS)) < Constant * a <M+M+ +M

= o * Timejjeq. (16)

We thus obtain the upper bound on the parallel query
processing time

Time poratier = rrnl/éle{Time(WS‘k)} <o x Time;geqr . |
k
(17)

Above analysis indicates that, to improve parallel query
processing performance, postings in a posting list should
be distributed to multiple workstations as uniformly as
possible. In later sections, we show how this guideline is
applied to derive partitioning schemes.

3.3. Query processing on cluster of workstations

We describe the flow of processing a query on a
network of workstations, starting from receiving a user
query to the reply of the answer list. A specific work-
station, called the gateway, is responsible for receiving
user queries and performing the index file search. The
gateway searches the index file for queried terms as
shown in Fig. 4(a), and substitutes a term ID for each
term in the query. Records of frequently used terms are

(keyword) (term ID)

branch 0
index 1
processo 2
retrieval 3
text 4

(@)

local posting file

_________________

(term ID) pointer array

w—:ﬁ—2 4,9, 13, ...
——1, 3,7, 10,...

——H 5,9, 12, 21,...
—+—+—2 8,11, 15, ...

=W N = O

_________________

(b)

Fig. 4. Partitioned inverted file: (a) index file in the gateway worksta-
tion; (b) pointer array and local posting file in a back-end workstation.
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often stored in the random access memory such that the
average index search time will not scale with the size of
the document collection. The query is then broadcast
to all back-end workstations for parallel posting list
processing. Each workstation stores an index array of
pointers to local posting lists on local disks, as shown in
Fig. 4(b). While receiving a broadcast query, a work-
station looks up the index array by term IDs to retrieve
local posting lists and generates its own partial answer
list. The partial answer list is buffered locally, and the
number of matches found is sent back to the gateway.

After all the workstations are done, the remaining
work is to reply answers to the user page by page. A
page contains the number of matches to the query, and a
few titles of matched documents that can be presented in
one page. The number of matches is useful for a user to
determine whether to browse further matches. When the
number of matches is large, a user may decide to discard
the query results and give a more specific query to re-
duce the number of matches. The gateway accumulates
number of matches found by each back-end workstation
to obtain total number of matches. The first page is then
generated and delivered to the user. Parallelization of
query processing reduces the response time to deliver the
first page, in which the total number of matches must be
contained. Remaining pages are generated and delivered
upon user demands. To generate a page, the gateway
polls some back-end workstation(s) to get matches just
enough to fill a page. Since a user may not request all of
the results to a query, the answers distributed on mul-
tiple workstations need not be collected at once.

Recent progress on parallel technology provides ef-
ficient ways to obtain ranking on matches distributed
across multiple workstations. Let r be the number of
matches to be presented in a page. Following the par-
tition-by-document ID principle, each workstation can
score and select the top » matches within its partial an-
swers independently. The top r matches in the complete
answer list can be obtained by parallel sort (Kumar,
1994) of all workstations’ top r matches. With architec-
tural support, Patterson’s group shows that more than 1
G integers can be sorted in 2.41 s using 64 workstations
(Arpaci-Dusseau et al., 1997, Arpaci-Dusseau et al.,
1998). Since the number of answers r to be presented in a
page is small and will not scale with the collection size, it
is obvious that ranking does not create a performance
bottleneck on query response time. The only challenge
is to reduce the posting list processing time which we
attack in this paper.

4. One-pass posting file partitioning algorithms
We now apply different partition policies to generate

the partitioned posting file. The major concern in de-
riving partitioning schemes is load balancing in parallel

query processing. Document ID assignment plays an
important role on load balancing. We assume that the
input posting file is d-gap compressed and documents
are clustered to reduce gap between document IDs in a
posting list. The straightforward scheme to be proposed
first is the consecutive scheme. However, under the doc-
ument clustering assumption, the consecutive scheme
fails to follow the load balancing guideline described in
Section 3.2. To overcome this drawback, we derive the
second scheme — the interleaving scheme. These two
schemes can result in the partitioned posting file by
reading the input posting file only once. In the following
section, we derive the third scheme — differential scheme —
which achieves better query processing performance at
the cost of reading the input posting file twice.

4.1. Consecutive partitioning scheme

A straightforward approach is to let each local
posting list be a segment of the input posting list, as
shown in Fig. 3. Each workstation contains a fixed range
of consecutive documents IDs. Let D be the number of
documents in the entire document collection and M be
the number of workstations. The mapping A.,usec 18 to
map each document ID d to a workstation by

d
Aconsec(d) \‘ |—D/M~| J . (18)
In each workstation, a document can be represented by
a local document ID, a d-gap compression scheme is
applied on the local document IDs. We let the local
document IDs in a workstation starts from zero for
simplicity. The rule LID,,..(d) to assign local document
ID for each document d is

L]Dconsec(d) =d-— A(d) * {D/M] . (19)

For the example in Fig. 3, the local posting list
{11,15,16,19} of term 1 in workstation WS; is repre-
sented as {1,5,6,9} using the local document ID rep-
resentations (where D = 30 and M = 3). Use of local
document IDs results in a small starting ID for each
local posting list, and the size of the d-gap compressed
local posting file is slightly smaller.

Fig. 5 shows the consecutive posting file partitioning
scheme. The algorithm examines each posting in the
input file, maps each document ID d to a workstation
WS, and obtains a local document ID d’ according to
Egs. (18) and (19) (cf. Steps (1) and (2) in Fig. 5). It then
updates the local posting list in workstation by ap-
pending the local document ID (cf. Step (3) in Fig. 5).
This algorithm reads the input posting file once, and the
time complexity is O(f’), where f'is the total number of
postings in the input posting file.

A serious drawback of the consecutive scheme is that
it fails to take the load balancing into account (Docu-
ments are clustered to reduce gaps between document
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Algorithm Partition_Consecutive(PF, LPF)

Input:

e PF: the posting file for sequential query processing. PF consists of a set of posting

lists L; for each term 1.

Output:

e LPF = {LPF,,LPF;,...,LPF)_1}: the set of local posting files LPFy, for each
workstation W Sy. Each LPF}, consists of a set of local posting lists L;(WSy) for

each term 4.
Method:

for each term i do

for each document ID d € L; do

D k|
2) & < d—k*[D/M]
3) append d' to L;(WS).

Fig. 5. Consecutive posting file partitioning algorithm.

IDs.) For the effectiveness of d-gap compression, doc-
uments are usually clustered such that most of the
document IDs in a posting list are within a small range.
When the posting list is partitioned by the consecutive
scheme, most of the document IDs will be mapped to
a small number of workstations, as depicted in Fig. 6,
resulting in load imbalancing in parallel query process-
ing. To overcome this drawback, we derive the second
partitioning scheme, the interleaving scheme, to balance
workload without sacrificing the effectiveness of d-gap
compression.

4.2. Interleaving partitioning scheme

Fig. 7 shows how the interleaving partitioning scheme
works. As shown in Fig. 7(a), each workstation is
mapped with a set of interleaved document 1Ds. Let M
be the number of workstations. The rule A4;,,,(d) is to
map each document ID d to a workstation by

Ay (d) = dmod M. (20)

The workstation to which d is mapped to is (d mod M).
With the interleaving scheme, postings in a posting list
are supposed to be evenly distributed regardless of the
document ID clustering.

However, the mapping rule 4;,,,(d) increases the gap
between document IDs after partitioning. The gap doc-
ument IDs in a local posting list is at least M. And d-gap
compression does not work well on the local posting file

1
I

11, 12, 15, 17, 18, 195 922, 25

|

WSy WS, WS,

posting list: 2, 9,i

Fig. 6. Imbalance due to consecutive partitioning.

document IDs: 0 1 § i 1 é ? 7 8 ..

@ WS WS, WS,
posting list: 1, 2, 4, 6, 7, 10, 11, 12, 14, 15

represented using

orignal document ID: 6, 12, 15 E 1,4,7, 10 E 2,11, 14,

represented using E E

local document ID: 2,4,5 ' 0,1,2,3 ! 0, 3,4
(b) WS, 1 WS, WS,

Fig. 7. Interleaving partitioning scheme: (a) mapping document I1Ds
to workstation IDs; (b) partitioning a posting list.

if documents are presented with the original document
IDs. We notice that, for a workstation WS, a document
ID d mapped to k can be written as

d=Mx|d/M) +Fk. (21)

To represent a document in a workstation, only the
quotient of d/M is required. We thus use the quotient as
the local document ID LID;,;,(d) in a workstation,

LIDyo(d) = |d/M]. (22)

Fig. 8 shows the interleaving partitioning algorithm.
The procedure reads in the whole posting file to exam-
ine each posting in the file. Each document ID in the
input posting file is mapped to a workstation, and its
local document ID within the workstation is calculated
using Egs. (20) and (22) (cf. Steps (1) and (2) in Fig. 8).
The local document ID is then appended to the corre-
sponding local posting list in the corresponding work-
station (cf. Step (3) in Fig. 8). The time complexity is
O(f), where fis the total number of postings in the input
posting file.
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Algorithm Partition_Interleaving(PF, LPF)

Input:

e PF': the posting file for sequential query processing. PF consists of a set of posting

lists L; for each term .

Output:

e LPF = {LPF,,LPF,,...,.LPF)_,}: the set of local posting files LPF} for each
workstation W S,. LPF} consists of a set of local posting lists L;(WW.Sy) for each

term 1.
Method:

for each term 7 do

for each document ID d € L; do

1) k< dmod M
2) d « |d/M]
3) append d' to L;(WSy).

Fig. 8. Interleaving partitioning algorithm.

5. Differential partitioning model and heuristic

In this section, we propose the differential partitioning
scheme to further improve the parallel query processing
performance. In previous sections, we did not consider
the difference in the popularity of a term to be queried.
However, according to Zipf’s law (Zipf, 1949; Salton,
1989), the distribution of term popularities is not uni-
form and thus has a significant influence on the system
performance. The key idea of the differential partition-
ing scheme is to estimate the average query processing
time according to term popularity, and derive parti-
tioning to reduce the average query processing time. In
contrast to the consecutive and interleaving scheme,
the differential partitioning heuristic reads the original
posting file twice to generate the partitioned posting file.
Since the posting file partitioning is performed off-line, it
is worthwhile to use a more complex partitioning for
better query processing performance.

5.1. Optimization problem of differential partitioning

We use a probability model to formulate posting file
partitioning as an optimization problem. Assuming that
the probability of a term i appearing in a query is known
to be p;. A partitioning scheme is specified by a docu-
ment ID-to-workstation mapping 4. We derive an ob-
jective function cost(4) to reflect the average parallel
query processing time according to term popularity p;.
The optimization problem is to find a mapping A4 that
minimizes cost(4).

We first formulate the average sequential query pro-
cessing time. Let X; be a random Boolean variable rep-
resenting whether term i appears in a query: X; = 1 if
term i appears in a query and X; =0 otherwise. The
number of postings to be to be processed for a query is

> X f, (23)

termi

where f; is the length of the posting list of term i. Ac-
cording to Eq. (8), the sequential query processing time
is

Time,equenias = Constant s ZX,- * fi. (24)

termi

The average sequential query processing time is the
expected value of Timegequential-

Aveﬁmesequential = E[Hmesequential]

= Constant * Zp,— * fi. (25)
termi
Eq. (25) is obtained by accumulating weight p;
whenever a document ID 4 is found in a posting list
of term i. Each document d contributes a weight w(d)
to Eq. (25)

w(d) = Z Di (26)

termi:d€L;

Eq. (25) can also be calculated by summing the
weight of each document

AveTimeoguenias = Constant Z w(d). (27)
document d
Average parallel query processing time can thus be
derived. The time for workstation WS; to compute its
partial answer list is

Time(WS;) = Constant Z w(d). (28)

document d:A(d)=k

We thus define the objective function cost(4) to reflect
the average parallel query processing time according to
Eq. (10)
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cost(A4) = max { Z w(d)}. (29)
(d)=k

document d:4

We ignore the constant it will not affect the selection of
mapping A.

5.2. NP-completeness of differential partitioning problem

We show that the differential partitioning problem
is NP-complete by observing that it is identical to the
multiprocessor scheduling problem defined (Garey,
1979). Given a set of independent tasks T = {¢#,,...,
ty—1} and a set of processors P = {po,pi,--.,pum—1}-
Each task #; € T is associated a weight e(#;) to represent
the execution time of the task. The multiprocessor
scheduling problem (Garey, 1979) is to find a mapping
A that maps each task #; € T to a processor p; € P to
minimize cost(4) which reflects the parallel processing
time

cost(A) —max{ > e(t,-)}. (30)

PkEP
Ati)=px

Taking a document as a task and the weight of a doc-
ument as the execution time of the task, we find that
the differential partitioning problem is theoretically the
same as the multiprocessor scheduling problem. Garey
(1979) has shown that the multiprocessor scheduling
problem is NP-complete, and hence differential parti-
tioning is also NP-complete. Optimal solution can be
found using the branch-and-bound method with domi-
nance relation to reduce the searching space (Ma and
Chung, to appear). In this paper, we propose a heuristic
for the optimization problem.

5.3. Differential partitioning heuristic

We use the bitmaps depicted in Fig. 9 to explain the
proposed heuristic. The global bitmap M represents the
input posting file, in which a row corresponds to a term
and a column corresponds to a document. The entry at
row i and column dis a 1 if term 7 appears in document
d. A posting list is to store the positions (column num-
bers) of Is in a row of the bitmap. The weight of a
column is the weight of the corresponding document
(Eq. (26)). To partition the posting file is to decompose
the bitmap M into individual columns, and each work-
station WSy is allocated a set of columns to form its own
local bitmap LMj. We take the column number in a local
bitmap LM as the local document ID of the corre-
sponding document in the workstation WS;.

Fig. 9 depicts how the heuristic partitions the bit-
map. The document clustering assumption on the input
posting file means that 1s on a row are distributed in a
small range. To prevent postings in a posting list from
being distributed only on a small number of worksta-
tions, we reorder the columns in the bitmap M to form a
reordered bitmap RM. Image partitioning the bitmap
using interleaving scheme and reassembling the parti-
tions together. We formulate the rule to map each col-
umn d in M to a column d in RM

d = [D/M] *(dmod M) + |d/M|. (31)
We then slice the reordered bitmap RM vertically such
that each workstation is allocated a set of consecutive
columns in RM, and sum of column weights in a local
bitmap is approximately the balanced weight
Total _Weight

Balanced _Weight = )
M

(32)

M: doc. 0 doc. 1 doc. 2 doc. 3 doc. 4 doc. 5 doc. 6 doc. 7 doc. 8 doc. 9

LM(] in VVSU

LM, in W5,

LM, in WS,

Fig. 9. Partitioning bitmap using differential partitioning scheme.
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Algorithm Partition_Dif ferential(PF, P, LPF)
Input:
e PF: the posting file for sequential query processing. PF consists of a set of posting
lists L; for ech term 1.
® P ={po,p1,...,pn_1}: pi is the probability that the term 3 appears in a query for
each term 1.

Output:

e LPF = {LPFy,LPF,,..., LPFy_1}: the set of local posting files LPF}, for each
workstation W.S,. LPF} consists of a set of local posting lists L;(WS) for each
term 2.

Method:

1) perform FindMapping(PF, P, Map, FirstCol)
2) perform ProduceLPF(PF, Map, FirstCol, LPF)

Fig. 10. Differential partitioning algorithm.

Algorithm FindMapping(PF, P, Map, FirstCol)
Input:

e PF': the posting file for sequential query processing. PF consists of a set of posting
lists L; for each term 1.
e P ={po,p1,...,Pn—1}: probability p; of term ¢ appearing in a query.

Output:

e Map: the mapping that maps each column d in RM to a workstation W Sj.
o FirstCol(k] for each workstation W.S: the first column in RM that is mapped to
WSy
Method:
1) /* initialize */
1.1) for d + 0 to [D/M] x M — 1 do w(d) + 0
1.2) Total_ Weight < 0
1.3) k0
1.4) FirstCol[k] + 0
1.5) Acc+ 0
2) for each posting list L; in PF do /* calculate w(d) and Total W eight */
2.1) for each document ID d € L; do
2.1.1) d + [D/M] % (d mod M) + |d/M]
2.1.2) w(d) « w(d) + p;
2.1.3) Total Weight < Total Weight + p;
3) Balanced-Weight < Total W eight/M
4) for d < 0 to [D/M]+ M —1 do
4.1) Map[d) « k
4.2) Acc + Acc+ w(d)
4.3) if Ace > Balanced_Weight then
431) ke k+1
4.3.2) Acc+ 0
4.3.3) FirstCollk] «d+1

Fig. 11. Mapping document IDs to workstations in differential partitioning scheme.

where M is the number of workstations and Fig. 10 depicts the two-pass list-based algorithm to
Total_Weight = Z w(d). (33) realize the scheme. In the first pass, algorithm Find-
document d Mapping (see Fig. 11) maps each document ID to a
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Algorithm ProduceLPF(PF, Map, FirstCol, LPF)

Input:

e PF': posting file for sequential query processing. PF consists of a set of posting

lists L; for each term 1.

e Map: the mapping that maps each col. d in RM to a workstation.
e FirstCol[k] for each workstation W.Sy: the first column in RM that is mapped to

W Sk.

Output:

e LPF = {LPF,,LPF,,..LPFy _1}: a set of local posting files LPF}, for each
workstation WSy. Each LPF} consists of a set of local posting lists L;(WSy) for

each term 1.
Method:

for each posting list L; in PF do

for each document ID d in L; do

1) d « [D/M] % (d mod M) + |d/M |

2) k « Mapld]
3) d' + d — FirstCol[k]
)

4) append local document ID d' to L;(WSy).

Fig. 12. Producing partitioned posting file in differential partitioning scheme.

workstation plus the local document ID within the
workstation. Map and FirstCol are used for bookkeep-
ing of the mapping. For each column d in RM, Map|d] =
k means that column d is mapped to workstation WS,.
For each workstation WSy, we use FirstCollk] to record
the first column in RM that is mapped to the worksta-
tion WSy. The algorithm FindMapping reads each post-
ing in the posting file to create the two arrays. In the
second pass, algorithm ProducelL PF reads the input
posting file again and generates the partitioned posting
file according to Map and FirstCol created in the first
pass (see Fig. 12).

The time complexity is analyzed as follows: Let D
be the number of documents in the collection and f be
the total number of postings in the input posting file.
The time complexity of algorithm FindMapping, which
reads the whole input posting file and examines each
column d in RM, is O(f + D). Algorithm ProduceL PF
reads the whole input posting file and the time com-
plexity is O(f). Hence the time complexity of algorithm
Partial_Differential is O(f + D). The partitioning algo-
rithm reads the input posting file twice from the disk,
and hence the time to generate the partitioned posting
file is twice more than the time required by the one-pass
algorithms.

6. Experiments

We implement an experimental information retrieval
system to evaluate the proposed partitioning schemes.
We measure the sequential query processing time for
each workstation and the parallel query processing time
is calculated according to Eq. (10).

6.1. Document collection and query generation

We evaluate the three proposed partitioning schemes
using a set of 7794 documents and 486,673 randomly
generated queries. The document collection is a set of
ACM transaction/conference papers. We follow (Moffat
and Zobel, 1996b) to generate test queries and feed them
into the experimental system.

Statistics on the set of documents are depicted in
Table 1. The number of documents, terms, and postings
are obtained by scanning the inverted file. Average
length of posting list is:

Average length of a posting list

__ number of posting
~ number of terms

(34)

We generate an inverted file for the document collection
as input to the proposed partitioning algorithm. The
inverted file is compressed using the d-gap scheme and
documents are clustered to reduce gaps between docu-
ment IDs (Hsieh et al., submitted). Fig. 13 shows the
distribution of gaps in the inverted file to demonstrate
the effect of document clustering. Pr{x} is used to denote
the probability that a gap chosen from the d-gap rep-
resented posting file is x. Figs. 13(a) and (b) depicts the
distribution Pr{x} for x between 1-50 and between 5-50,

Table 1

Statistics of the test document collection
Number of documents 7794
Number of terms 13,383
Number of postings 5,877,578
Average length of a posting list 446
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Fig. 13. Probability distribution d-gaps: (a) probability distribution
for encoded symbols 1-50; (b) probability distribution for encoded
symbols 5-50.

respectively. Among all postings in the d-gap repre-
sented posting file, 79.6% of the gaps fall between 1-50,
and 59.36% fall between 1 and 10. Pr{x} is a mono-
tonically decreasing function. This shows that most of
the gaps between document IDs are small and most of
the document IDs in a posting list are within a small
range.

We follow (Moffat and Zobel, 1996b) to randomly
generate queries for performance evaluation. 100 docu-
ments are randomly selected from the document col-
lection. A query is formed by selecting words from a
word list of a specific document and inserting Boolean
operators into the query word list. To form the docu-
ment word list, words in the document are case folded
and stop words (such as “the”, “this”’) are eliminated.
The query word list is a sub-list chosen from the docu-
ment word list. We then randomly insert the Boolean
OR operator into the query word list. Remaining posi-
tions between words in query word list are then inserted
the Boolean AND operators and the query is in sum-
of-products form. For example, let “invert file document
collection built” be query word list. If an OR operator
is inserted between words ‘‘collection” and “built”, a
query “(inverted (AND) file (AND) document (AND)
collection) (OR) built” is formed. For each generated
query, there exists at least one document collection
matching the query.

6.2. Sequential query processing time

We justify the sequential query processing time Eq.
(8). We implement the sequential query processing al-
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Fig. 14. Sequential query processing time as a function of number of
postings.

gorithm proposed by Witten et al. (1999), in which an
OR operation is processed using list merging and an
AND operation is processed by searching document IDs
in a posting list using binary search. The posting file is d-
gap compressed and y-code encoded (Elias, 1975; Bently
and Yao, 1976). The processing time measured includes
(1) disk access time to load posting lists, (2) CPU time to
uncompress posting lists, and (3) CPU time to compare
document IDs in posting lists.

The result is depicted in Fig. 14. The x-axis is the
number of postings in a query and the y-axis is the time
(in ps) to process a a query. We make an (x,y) dot if y us
is spent processing a query of x postings. In this figure,
the dots spread alone a line. It indicates that the query
processing time is linearly proportional to the number of
postings to be processed.

6.3. Performance of parallel query processing
We now show the effectiveness of the proposed parti-

tioning schemes. The primary difference of our schemes
from the previous work on designing a scalable inverted
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Fig. 15. Speed-up of parallel query processing.
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file (Jeong and Omiecinski, 1995; Riberio-Neto et al.,
1998) is that, instead of parallelizing only disk accesses,
we parallelize CPU computation as well as disk accesses.
Performance upper bound of parallelizing only disk ac-
cesses can be estimated by Amdahl’s law (Hennesey and
Patterson, 1996) as follows:
Speed-up
1
< 1 — percentage of disk access time in sequential processing time

(35)

Our experiment shows that 84.02% of the sequential
query processing time is spent for disk accesses. Hence
parallelizing only disk accesses cannot achieve a speed-
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up of more than 6.25. In the following section we show
that our work can break this upper bound by paralle-
lizing CPU and I/O systems.

Fig. 15 depicts the performance of parallel query
processing using the proposed partitioning schemes. The
metric is the speed-up to sequential query processing

Tlmexequential

Speed-up = (36)

Timepamllel .
We evaluate the speed-up for 2-20 workstations. This
figure shows that almost linear speed-up can be achieved.
As expected, both differential partitioning scheme and
interleaving scheme outperform the consecutive one.
Interleaving and differential partitioning schemes have
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approximately the same performance. The dashed line
indicates the performance upper-bound of parallelizing
only disk I/O. Each of the proposed schemes distinctly
breaks the performance upper bound that is determined
by parallelizing only disk I/O.

We also study the variance on the performance for
individual queries. Fig. 16 depicts accumulated curves
on the ratio to ideal processing time for number of work
stations M =2 to 10. The x-axis is the ratio to ideal
processing time, R/, defined as follows:

Timeparallel

RI =0
(nmesequentia//M)

(37)
The y-axis is the percentage of all tested queries. We
mark an (x,y) dot if y percent of all tested queries have
a ratio to ideal processing time R/ less than x. Where
the curve reaches the top of the chart indicates the
worst case performance in all tested queries. For inter-
leaving and differential partitioning scheme, almost all
queries can be processed within two times the ideal ex-
ecution item. And the differential partitioning scheme
has a slightly better performance than the interleaving
scheme.

6.4. Compression efficiency on the partitioned posting file

We estimate the storage requirement of the parti-
tioned posting files and compare it to the input posting
file size. The metric is the average number of bits per
posting (BPP), defined as follows:

BPP = )" Pr(x)*1(x), (38)

symbolx

where Pr(x) is defined in Section 6.1 and I(x) is the
number of bits to encode the symbol x. The space to

Table 2
Space requirements for the original and partitioned posting files

store the posting file is BPP times the number of post-
ings. The time to retrieve a (local) posting list from the
disk is also proportional to BPP.

Average bits per posting of the original and parti-
tioned posting file are shown in Table 2. Various en-
coding schemes are used in the evaluation (Elias, 1975;
Bently and Yao, 1976; Golumb, 1966). The results show
that the space to store the partitioned posting file is
slightly smaller than the input posting file. The reason
are: (1) the gap between local document IDs are ap-
proximately equal to the gap between global document
IDs, and (2) the partitioning results in a smaller starting
(local) document ID in the local posting list. This shows
that partitioning the posting file does not reduce the
effectiveness of d-gap compression.

7. Conclusion

This paper demonstrates that information retrieval
for large scale textual database systems is suitable for
parallel processing by establishing the posting file par-
titioning model. We analyze the parallelism within set
operations and point out that the posting file should be
partitioned by document IDs. Posting file partitioning
algorithms are proposed to transform a sequential in-
formation retrieval system, which uses a d-gap com-
pressed inverted file, to a parallel information retrieval
system. Experiments show that almost ideal speed-up on
query processing can be obtained without sacrificing
the effectiveness of d-gap compression scheme. The per-
formance bottleneck in the previous work (Jeong and
Omiecinski, 1995; Riberio-Neto et al., 1998) is relieved.
This work shows a feasible way to build a scalable in-
formation retrieval system.

(a) Average bits per posting of the posting file for sequential processing

5-Code encoding 7.59
v-Code encoding 7.07
Golumb-code encoding  10.32

(b) Average bits per posting in the partitioned posting file

2 4 6 8 10 12 14 16 18 20

8-Code encoding

Consecutive scheme 7.47 7.39 7.31 7.26 7.23 7.19 7.13 7.12 7.09 7.04
Interleaving scheme 7.61 7.60 7.58 7.56 7.53 7.49 7.47 7.45 7.43 7.40
Differential scheme 7.61 7.60 7.58 7.56 7.53 7.50 7.48 7.46 7.44 7.38
v-Code encoding

Consecutive scheme 6.86 6.71 6.58 6.50 6.46 6.40 6.31 6.29 6.25 6.18
Interleaving scheme 7.08 7.03 6.97 6.93 6.89 6.82 6.79 6.75 6.73 6.69
Differential scheme 7.07 7.03 6.97 6.93 6.89 6.83 6.80 6.77 6.74 6.67
Golumb-code encoding

Consecutive scheme 9.29 9.27 8.23 8.22 8.21 8.21 7.21 7.19 7.19 7.19
Interleaving scheme 9.30 9.27 8.24 8.24 8.23 8.23 8.20 8.19 7.22 7.21
Differential scheme 9.29 9.26 8.24 8.23 8.21 8.20 8.21 8.19 7.21 7.17
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