PERGAMON

Expert Systems with Applications 23 (2002) 95-102

Expert Systems
with Applications

www.elsevier.com/locate/eswa

A parallelized indexing method for large-scale case-based reasoning

Wei-Chou Chen®, Shian-Shyong Tseng®™, Lu-Ping Chang®, Tzung-Pei Hong", Mon-Fong Jiang®

*Department of Computer and Information Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
®Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC

Abstract

Case-based reasoning (CBR) is a problem-solving methodology commonly seen in artificial intelligence. It can correctly take advantage of
the situations and methods in former cases to find out suitable solutions for new problems. CBR must accurately retrieve similar prior cases
for getting a good performance. In the past, many researchers proposed useful technologies to handle this problem. However, the perform-
ance of retrieving similar cases may be greatly influenced by the number of cases. In this paper, the performance issue of large-scale CBR is
discussed and a parallelized indexing architecture is then proposed for efficiently retrieving similar cases in large-scale CBR. Several
algorithms for implementing the proposed architecture are also described. Some experiments are made and the results show the efficiency
of the proposed method. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Case-based reasoning; Parallelized indexing; Bitwise indexing; Case retrieval; Performance

1. Introduction

Case-based reasoning (CBR) is a problem-solving
methodology commonly seen in Al (Waston, 1999). Just
like human reasoning, CBR uses prior cases to find out
suitable solutions for new problems. It can take advantage
of the situations and methods in former cases to handle
unexpected new situations. Additionally, CBR can achieve
human learning behaviors by constantly adding cases, thus
raising the accuracy of problem solutions.

CBR has been successfully applied to the areas of plan-
ning (Gardingen & Watson, 1999; Suh, Jhee, Ko, & Lee,
1998), diagnosis (Li, 1999), law (Cercone, An, & Chan,
1999; Daengdej, Lukpse, Tsui, Beinat, & Prophet, 1997)
and decision making (Dutta, Wierenga, & Dalebout,
1997), among others. The major tasks of CBR can be
divided into five phases, including Case Representation,
Indexing, Matching, Adaptation and Storage. CBR must
accurately retrieve similar prior cases for getting a good
performance. Many researchers have proposed useful tech-
nologies to handle this problem (Cercone et al., 1999; Gupta
& Montazemi, 1997; Shin & Han, 1999). However, the
performance of retrieving similar cases in large-scale CBR
has seldom been discussed. When the number of cases in a
case base becomes large, the processing time for retrieving
similar cases rapidly increases. The process of retrieving

* Corresponding author. Tel.: +886-3-5731966; fax: +886-3-5721490.
E-mail addresses: sstseng@cis.nctu.edu.tw (S.-S. Tseng),
tphong @nuk.edu.tw (T.-P. Hong).

similar cases thus becomes a critical task in CBR. We
proposed an indexing method to improve the performance
of indexing and retrieving in data warehousing (Chan,
Tseng, Chang, & Jiang, 2000). In this paper, we propose
a novel parallelized indexing method with a suitable
similarity-measuring function for CBR. Several correspond-
ing algorithms have also been described to accelerate the
performance of case indexing and retrieving. Finally,
experiments on CBR with two and four processors have
been made, with the results showing the scalability and
efficiency of the proposed method.

2. Review of case-based reasoning

As mentioned earlier, the major tasks of CBR can be
divided into five phases. When a new problem arrives, the
situation of this problem is identified in the Case Represen-
tation phase. After that, the important features of the new
case are extracted as its indexes in the Indexing phase.
These indexes are then passed to the Matching phase for
retrieving similar cases in the case base. The Adaptation
phase then adapts the solutions of similar cases by adapta-
tion rules to fit the new problem. After the final solution of
the new case is confirmed by users, it is stored in the case
base via the Storage phase.

The success of a CBR system mainly depends on effec-
tive and efficient retrieval of similar cases for a new
problem. Indexing and matching are thus very important
to CBR (Shin & Han, 1999). Indexing usually uses some

0957-4174/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.

PII: S0957-4174(02)00029-5



96 W.-C. Chen et al. / Expert Systems with Applications 23 (2002) 95-102

features of cases for identification and matching uses a
pre-defined matching function for case retrieval. Each
feature is given a weight to represent its importance.
Based on weighted sums of features matched, similar
cases in a case base can then be retrieved (Cercone et
al., 1999; Gupta & Montazemi, 1997; Shin & Han, 1999).

Several useful approaches have been proposed to retrieve
similar cases. Two methods for assigning the weights of
features were proposed by Cercone et al. (1999) and Shin
and Han (1999). Gupta discussed that the weights of features
were different between a new case and prior cases (Gupta &
Montazemi, 1997). The performance of retrieving similar
cases has, however, seldom been discussed. Retrieving
similar cases needs much computation time when a match-
ing function becomes complex or when the number of
cases in a case base grows large. Retrieving similar cases
efficiently thus becomes an important issue in large-scale
CBR.

3. Architecture of bitwise indexing CBR

An indexing method, called bitwise indexing, is proposed
here to speed up retrieving similar cases in CBR. The archi-
tecture of the bitwise indexing CBR (BWI-CBR) is shown
in Fig. 1. It is the same as general CBR except for the
following aspects:

1. The proposed bitwise indexing method serves as a new

New
problem

Case
representation

y

Bit-wise
indexing

< T YT T Matching phase
r———" 1 Retrieving !
v relevant |
Case Base :____ga_s_e§____:
v Mask
R Vectors
+ Similarity .
! measurement !
Storage imilarity
Adaptation Matching
List

Acceptable
solution

Fig. 1. The architecture of BWI-CBR.

indexing method in CBR. It can speed up retrieving simi-
lar cases in the Matching phase.

2. The matching phase is divided into two sub-phases to
reduce the matching time. In the first sub-phase, all
irrelevant cases are filtered out to avoid calculation of
their similarities by Mask Vectors. In the second sub-
phase, the similarities between a new case and relevant
cases are calculated.

3. The cost of computing similarities between a new
case and all relevant prior cases is usually high
since the amount of cases is large in a large-scale
case base. We can then pre-compute all possible
similarities and construct the Similarity Mapping
List to speed up the calculation of similarities.
Accordingly, the similarity of a new case and each
prior case can be quickly found out by seeking the
Similarity Mapping List. The computational overhead
can thus be largely reduced.

In our approach, the bitwise indexing method is first
used to replace the traditional indexing method in CBR.
The bitwise operations are then used to select relevant
prior cases in the matching phase. In this way, irrele-
vant cases can be filtered out quickly. The number of
prior cases needing similarity calculation can thus be
reduced. Therefore, the similarities between a new
case and relevant prior cases can be quickly measured
in the similarity measurement phase.

4. Notation and definitions

Assume a set of cases C is stored in a CBR system for
a specific domain, denoted DOM. The ith case in C is
represented by C;. Also assume all the cases in C can be
abstracted by a set of attributes A, denoted A=
(A}, A,,...,A,), where r is the number of attributes. The
value of an attribute A; for a case C; is denoted Vi(j),
which cannot be null. The attribute values of a case C;
can then be represented as V(j) = (V,(j), V2(j), ..., V.())).
The set of possible values for attribute A;, called attribute
value domain, is denoted V; = (V;;, Va, ..., Vigu)), Where
«a(i) is the number of values for A;, and Vj; is the jth possible
attribute value of A;.

In a CBR system, a set of prior cases is stored in a case
base for solving a new problem. A matching function is used
to evaluate cases based on a weighted sum of matched attri-
butes with a new case. Attribute value can thus be used for
indexing a case. An index of a case can be formally defined
as follows:

Definition 1 (Case Index). The index IND; of a case C; in
a CBR system for domain DOM is defined as

IND; = {A, = V,(k),Ay = Va(k), ..., A, = V.(k)}.



W.-C. Chen et al. / Expert Systems with Applications 23 (2002) 95-102 97

Table 1
Five cases in Example 1

oS PL DB
Case 1 WinNT C SQL-Server
Case 2 0S2 Basic ORACLE
Case 3 Linux Java SYBASE
Case 4 Mac Java ORACLE
Case 5 Solaris Pascal SQL-Server

A case in CBR can be formally defined as follows:

Definition 2 (Case). A case C; in a CBR system for
domain DOM is a pair (INDy, cv;), where cv;, is the actual
contents of case C and C;, € C.

A bitwise indexing vector used in the proposed indexing
method is defined as follows:

Definition 3 (Bitwise indexing vector of an attri-
bute). The bitwise indexing vector B; of the ith attribute
for case Cy is a bit string B; = b;1bp, ..., by, where by = 1
if Vi(k) = V;; and b; = 0 otherwise.

Definition 4 (Bitwise indexing vector of a case). The
bitwise indexing vector BWI, of a case C is the concatena-
tion of the bitwise indexing vectors of all the attributes for
case Cy. That is, BWI; = B|B,...B,, where r is the number
of attributes.

Definition 5 (Matrix of bitwise indexes for case-based
reasoning). A matrix Tgw; of bitwise indexes for CBR is
represented as

BWI,
BWIL,

BWI|(q

where |C| is the number of cases.

Example 1. Assume that a CBR system containing five
cases is shown in Table 1.

The bitwise indexes for the above cases are shown in
Table 2.

Table 2
The bitwise indexes of the cases in Table 1

BWI, 10000 1000 100
BWIL, 01000 0100 010
BWI; 00100 0010 001
BWI, 00010 0010 010
BWIs 00001 0001 100

5. Indexing phase in bitwise indexing CBR

The bitwise indexes for prior cases are generated by the
following two algorithms:

Algorithm 5.1 (Bitwise index creation algorithm).

Input: A case C;.

Output: A bitwise index BWI; of C;.

Step 1: Create a bitwise vector of length r, where r is the
number of attributes.

Step 2: For each bit by in the vector, set by, = 1 if V(i) =
Vix; set by = 0 otherwise.

Step 3: Return the vector BWI,.

Algorithm 5.2 matrix creation

algorithm).

(Bitwise index

Input: A set of cases.
Output: A bitwise index matrix Tgw; of the cases.
Step 1: Create an empty matrix Tgwr.
Step 2: Repeat the following sub-steps for each case C;
until all cases are processed.
Sub-step 2.1: Use the bitwise index creation algorithm
to get the index BWI; of C;.
Sub-step 2.2: Add BWI, into Tgyr.
Step 3: Return Tgwi.

After a bitwise index matrix is built, bitwise operations
can easily be used to retrieve similar cases in CBR.

6. Matching phase in bitwise indexing CBR

Calculating the similarities between a new case and prior
cases is a time-consuming task. A two-phase matching
approach, called the Similar-cases-seeking algorithm, is
thus proposed here to reduce the matching time. It includes
the relevant-cases-retrieving phase and the similarity-
computing phase. In the first phase, all irrelevant cases are
filtered out to avoid calculation of their similarities. The
time of calculating the similarities of useful prior cases
can then be decreased. The similarities of the new case
with remaining prior cases are then computed efficiently
in the similarity-computing phase. The algorithm is
described as follows:

Algorithm 6.1 (Similar-cases-seeking algorithm).

Input: A bitwise index matrix Tgw; and a new case Cy.
Output: A set of similar cases Rc with their similarity
degrees with Cy.

Step 1: Use the bitwise index creation algorithm to get the
index BWIy of the new case Cy.

Step 2: Initialize the counter j to 1 and Rc to an empty set.



98 W.-C. Chen et al. / Expert Systems with Applications 23 (2002) 95-102

Step 3: For each BWI, in Tgy;, do the following sub-steps
(1 <j=|ch:
Sub-step 3.1: Call the search-relevant-cases algorithm
(described later) to compute the relevance degree rdi;
between BWIy and BWI,.
Sub-step 3.2: If rdi; = 0, ignore the case C; and go to
Sub-step 3.5.
Sub-step 3.3: Call the similarity-computing algorithm
(described later) to compute the similarity sim; between
Cy and C;.
Sub-step 3.4: Add case C; with its similarity sim; to Rc.
Sub-step 3.5: Add 1 to .
Step 4: Sort the cases in Rc in descending order of their
similarities.
Step 5: Output Rc.

6.1. Retrieving relevant cases

A prior case is relevant to a new case if they have at least
one same attribute value. These two cases are then similar in
a certain degree. The bits in the corresponding positions of
the matched attributes should be set as ‘1’ in their bit
vectors. This can easily be found by using the ‘AND’
bitwise operation to compare the two bit vectors. The
following Search-relevant-cases algorithm is thus proposed
to achieve this purpose.

Algorithm 6.2 (Search-relevant-cases algorithm).

Input: The bitwise indexing vector BWIy of a new case
Cy and the index BWI, of a prior case C; in C.

Output: The relevant degree rdi; between Cy and C;.
Step 1: Use the AND bitwise operation on BWIy and
BWTI; and store the result as rdi;, which is also a bit string.
Step 2: Return rdi;.

Since the AND bitwise operation is fast, the Search-
relevant-cases algorithm selects relevant prior cases
quickly. If rdi is zero, then the prior case is thought of as
irrelevant and will be filtered out.

6.2. Computing similarities

After all relevant prior cases have been retrieved, the
similarities between the new case and them are computed.
As mentioned earlier, a matching function based on a
weighted sum of matched attributes is defined to calculate
the similarity degrees. Each attribute has its own weight.
Since a case has only one value for an attribute, at most
one bit in the bit string rdi is set for each attribute after
the Search-relevant-cases algorithm is executed. Accord-
ingly, a special bitwise vector, called the Mask Vector, is
proposed to help compute similarities. Let (1) be the string
of length o with all bits being 1 and (0) be the string of

length « with all bits being 0. The definition of the Mask
Vector is shown later.

Definition 6 (Mask Vector). A bitwise indexing mask
vector Mask is a set of Mask;, where 0 <k =r and r is
the number of attributes. Each Mask,, denoting the mask
vector of attribute A, is a concatenation of r bit strings as
Mask;, = §,S,...S,, where S; = (1) fori = k and S; = (0) for
i # k.

By applying the AND operation on Mask; and the bitwise
vectors rdis generated from the search-relevant-cases
algorithm, the similarities between a new case and prior
cases for attribute A; can easily be found by the following
similarity-measuring function:

> (PCyW)
SIM(Case;) ==

W
j=1

where SIM(Case;) is the similarity between the ith prior case
and the new case, w; is the weight of the jth attribute, PC; =
0 if the result of performing the AND bitwise operation on
rdi; and Mask; is 0, and PC,-J- = 1 otherwise.

Several prior cases may have the same similarity with a
new case as long as they have the same attributes matched.
This is especially common when the numbers of possible
values for attributes are large. For this situation, the cost for
calculating similarities of prior relevant cases can be
reduced if all possible similarities are pre-computed and
stored into the Similarity Mapping List. Each element in
the Similarity Mapping List is a similarity value for some
attributes matched. Thus, the similarity of a prior case with a
new case for known attributes matched can easily be found
from the list, instead of calculating by the earlier formula.
The Similarity Mapping List is formally defined as follows:

Definition 7 (Similarity Mapping List). Let L be a Simi-
larity Mapping List and L; be an element in L with an index
value i, which is determined from the attributes matched,
1=i=2"—1. Let i be represented as a binary code
bibp...b;., with b; =1 if the jth attribute is matched and
b; = 0 otherwise, 1 = j =< r. Thus the value of L; is thus

> bW,

=1 .
W
=1

Algorithm 6.3 (Similarity mapping list creation
algorithm).

Input: Weights of attributes Wy, W,, ..., W, of CBR.



W.-C. Chen et al. / Expert Systems with Applications 23 (2002) 95-102 99

Output: A similarity mapping list L.
Step 1: Initialize the counter i to 1 and the list L to be
empty.
Step 2: Foreachi, 1l =i = ol — 1, do the following sub-
steps:
Sub-step 2.1: Encode i into a binary string {b;, b;,...b;,).
Sub-step 2.2: Calculate the similarity degree L; by the
formula in Definition 7.
Sub-step 2.3: Put L; into the list L with index i.
Step 3: Return L.

After the Similarity Mapping List has been built, the
similarity of each prior case and a new case can be quickly
found by the following algorithm:

Algorithm 6.4 (Similarity-computing algorithm).

Input: The relevant degree rdi; of case C; with a new case,
the Mask Vector, and the Similarity Mapping List L.
Output: The similarity of C; with a new case.

Step 1: Initialize a zero binary string of length r.

Step 2: For each i, 1 =i =r, set the ith position in the
string to 1 if the result of using the AND bitwise operation
on Mask; and rdi; is not all 0.

Step 3: Transform the binary string into an integer j.
Step 4: Get L; from the Similarity Mapping List.

Step 5: Return ;.

Since the Similarity Mapping List and the Mask Vector
are constructed in the pre-processing step, and since only
the AND bitwise operations are executed on Mask Vectors
and bitwise vectors of relevant cases in the Similarity-
computing algorithm, the computational time for finding
the similarities can thus be significantly reduced.

Example 2. Continuing from Example 1, the BWIy of a
new case Cy, which is {OS = Solaris, PL = Java, DB =
ORACLE}, is {00001 0010 010}. Each BWI; in Tgw; in
Table 2 is processed as follows:

e For BWI;: The relevant degree rdi; between BWI; and
BWIy is found as {00000 0000 000} by the Search-
relevant-cases algorithm. Since all the bits in rdi; are
‘0’, Case 1 is filtered out.

e For BWI,: rdi, = {00000 0000 010}. Since one of the
bits in rdi, is ‘1°, the similarity-computing algorithm is
invoked to find the similarly sim, of Case 2 with the new
case as 0.333. Case 2 is then a relevant case.

e For BWI;: rdi; = {00000 0010 000}. Since one of the
bits in rdiz is ‘1°, Case 3 is a relevant case. Its similarity
is found as 0.333.

e For BWI,: rdiy = {00000 0010 010}. Since more than
one bit in rdi, are ‘1’, Case 4 is a relevant case. Its
similarity is found as 0.667.

Table 3
Four relevant cases and their similarities

Relevant case Case 4 Case 2 Case 3 Case 5
Similarity 0.667 0.333 0.333 0.333

e For BWI;: rdis = {00001 0000 000}. Since one of the
bits in rdis is ‘1°, Case 5 is a relevant case. Its similarity
is found as 0.333.

After the relevant cases are sorted in decreasing order of
similarities, the results are shown is Table 3.

6.3. Discussion of filtering and storage

As mentioned earlier, the proposed matching algorithms
include two-phases to reduce the computational time. At the
retrieving-relevant-cases phase, irrelevant prior cases are
filtered out. Thus, only the similarities between relevant
prior cases and the new case are computed at the similarity-
computing phase. Assume that the number of cases in the
case base is N and the average filtering percentage is M.
The time needed to retrieve relevant prior cases and to
calculate their similarities in STEP 3 of Algorithm 6.1 is
analyzed as

Timewith filtering (Ntyna + NM(rt,,4) + NMt,)

1
= N(Mﬁtand + M(rtand) + Mt(:)

1
(TR )]
M

where 7,4 is the time needed for an AND bitwise operation
and . is the seek time in the Similarity Mapping List. If no
filtering is performed, the time needed to calculate their
similarities in STEP 3 of Algorithm 6.1 is analyzed as

Timewithout filtering = (Ntand + N(rtand) + Ntc)
= N((1 + Pityng + 1)
The performance due to the filtering is then

1
w((37 e+ 1)

N((l + r)tand + tc)

Timeyin filtering

Tlmewithout filtering

The proposed method can indeed improve the performance
of CBR although some extra storage spaces are required.
These storage spaces are used for storing the bitwise indexes
and the Similarity Mapping List. The sizes of extra storage
spaces required in our method are analyzed as follows:

e The storage space required for the bitwise indexes
Tewi = |C|Yi—| a(i), where a(i) is the number of bits
used for attribute A, r is the number of attributes, and
|C| is the number of cases in CBR. For example, assume



100 W.-C. Chen et al. / Expert Systems with Applications 23 (2002) 95-102

that there are 100 000 cases in a case base and 16 attri-
butes to describe each case. Also assume each attribute
has four possible values. The storage space required for
Tgwr = ((100000) 312, 4) bits = (6400 000/8) bytes =
800 000 bytes = 0.8MB.

e The storage space of the Mask Vector = r > i_; a(i). For
the earlier example, the storage space required for
the Mask Vector = (16 X 3%, 4) bits = (1024/8) bytes
= 128 bytes.

e The storage space required for the Similarity Mapping
List L = f(2" — 1), where fis the storage space required
for storing a similarity value. Assume that f'is a four-byte
real number. For the earlier example, the storage space
required for the Similarity Mapping List List L =
4% (2'° — 1) bytes = 262 140 bytes = 256KB.

Note that the size of the extra storage space required for
the Similarity Mapping List is exponential to r. Therefore,
the Similarity Mapping List is not suitable for domains with
large numbers of attributes.

7. Parallelized bitwise indexing CBR

As described earlier, similarity calculations between all
prior cases and a new case are independent. They can thus
be executed in parallel to speed up the performance of CBR.
A parallel bitwise indexing method is proposed to achieve
this purpose.

7.1. The architecture of parallel bitwise indexing CBR

The bitwise indexing method of CBR treats each case as a
bit vector and calculates the similarity between each prior
case and a new case independently. Therefore, our parallel
BWI-CBR indexing method can directly use a subset of
cases as a vector matrix for a processor. The architecture
of the parallel BWI-CBR Indexing method is shown in
Fig. 2.

Index Matching phase Similarity

Case 1 /[(imilarity\

Case 2 Similarity 2
m/k cases —_— "

case m/j Processor Similarity m/k,
m/k cases o

Case m-1 > — Similarity m-1
Case m Processor k Similarity m

C

Fig. 2. The architecture of parallel BWI-CBR.

There are m cases in a case base and k processors to be used
for matching. Each processor thus handles about m/k cases.

7.2. Indexing phase in parallel bitwise indexing CBR

The indexes (BWIs) for the cases are equally distributed
in the processors given. Each processor thus has sub-matrix
of indexes to process. The Bitwise-index-sub-matrix crea-
tion algorithm is described later:
creation

Algorithm 7.1 (Bitwise-index-sub-matrix

algorithm).

Input: The bitwise indexing matrix Ty of the case base

and the number k of processors.

Output: The bitwise indexing sub-matrix SThyw; for each

processor i.

Step 1: Set [ =[|C/k] and h is the remainder of |Cl/k,

where |C| is the number of cases.

Step 2: For each processor i, do the following sub-steps:
Sub-step 2.1: Create an empty sub-matrix SThy;.
Sub-step 2.2: Copy the indexes from BWI,_;;_) to
BWI,; in Tgw; to STgwy if i < h; copy the indexes
from BWI 44— 1yi-1-n) ©© BWIypg—1yi—ny In Tpwr

Step 3: Return the set of ST{gWI, 0<i=k

Example 3. Assume there are two processors to handle
the task in Example 2. The bitwise indexing sub-matrix
STgw; for each processor i is shown in Table 4.

7.3. Matching phase in parallel bitwise indexing CBR

In this section, the proposed parallel similar-cases-
seeking algorithm is stated later.

Algorithm 7.2 (Parallel similar-cases-seeking algo-
rithm).

Input: The set of STgw;s for k processors and a new case
Cy.

Output: A set of similar cases Rc with their similarity
degrees.

Step 1: Execute the similar-cases-seeking algorithm for
each processor i on ST{;WI to get the similar case set Rc;
with similarities.

Step 2: Merge all Rc;s into Rc in decreasing order of
similarities.

Step 3: Output Rc with their similarities.

Example 4. Continuing from Example 3, the relevant
cases in both processors are shown in Table 5.

These relevant cases are then merged and sorted in decreas-
ing order of similarities, with results shown in Table 6.



W.-C. Chen et al. / Expert Systems with Applications 23 (2002) 95-102 101

Table 4 multithreaded OS, is used for the parallel BWI-CBR. The

The bitwise indexing sub-matrix in each processor

system includes 512K L2 cache and 128MB shared-memory.
The experimental results along with different numbers of cases

SThwr Case 1 10000 1000 100 men .
Case 2 01000 0100 010 are show in Fig. 3. It can easily be seen that the speed-up
Case 3 00100 0010 001 increases along with the increase of cases, finally converting
STawi Case 4 00010 0010 010 to 1.6.
Case 5 00001 0001 100 Next, the performance of the BWI-CBR and the four--
processor parallel BWI-CBR is compared. A Pentium-Pro
Table 5 200 quadruple-processor system, running the Microsoft
The relevant cases and their similarities in both processors Windows NT multithreaded OS, is used for the parallel
BWI-CBR. The system includes 1M L2 cache and 512MB
Rc, Case 2 0.333 hared Th . 1 Its al ith diff
Case 3 0333 shared-memory. lhe experlmenta' I'GS.u ts along wit .1 er-
Rc, Case 4 0.667 ent numbers of cases are shown in Fig. 4. It can easily be
Case 5 0.333 seen that the speed-up increases along with the increase of
cases, finally converting to 3.5.
Table 6 It is obvious that BWI-CBR is quite suitable for parallel-
aple . . . . . . . .
The merged relevant cases and their similarities 1zat.10n since the p'roposed blt\fwse indexing matrix can
easily be separated into several independent, nearly equal-
Relevant case Case 4 Case 2 Case 3 Case 5 sized sub-matrixes. When the BWI-CBR is implemented in
Similarity 0.667 0.333 0.333 0.333 a multiple CPU machine, the workloads can be easily shared

8. Experiments and discussions

In this section, the performance of the BWI-CBR and the
two-processor parallel BWI-CBR is compared. A Pentium-166
dual-processor system, running the Microsoft Windows NT

on the processors. The workloads of all processors are thus
almost balanced.

9. Conclusion and future work

In addition to accuracy, performance should also be taken

1.8
16 = MW
14 — efficiency | o A A oA
: Ao/
[ 2 -.‘A'
: AV
08
06 Tf
04 A
02
O 1 1 1 1 1 1 1 L 1 1 1 1 1 1 il 1 1 il L
(= = < (= (= < < f= < < < < < (= (=] (=] < b= <o
(= (=] o (=] (=] = (= = = (=] (= (=] (= (= (=] (=] (=] (=] (= (=]
wy vy wy wy uw wy wy &l vy sl wy wy vy wy LAl uy wy wy wy wy
vy o w o v o bal = hal o w L= Al o hal (=) hal o bl
— — o~ ol [as] ey -+ -t wy wy O o e~ e~ oc oC = N
number of cases
Fig. 3. Speed-up of parallel BWI-CBR on two processors.
4
4.8 btk
: o I I A e oy ]
) s e U |
) A
2 ‘Jw'
1.5 ,V’ efficiency
[
0.5 i
O 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 i It L
(= = (=] (=] (=] (=1 (=1 o f=1 (=) (=3 (=3 (=1 o (=] (=3 (=1 (=] (=] (=1
< o = = = < [ o O (=] (= ] (=] = = = (=] =] = (=]
wy vy wy wy el wy W el wy sl v W wy wy wy sl wy W wy el
wy = vy (=] wy < vy <= wy < al (=] v = vy < vy (=] wy
— — ol o~ (98] o <t <t w v =] =] ~ ~ o0 [+=] (=) (=]
Number of cases

Fig. 4. Speed-up of parallel BWI-CBR on four processors.



102 W.-C. Chen et al. / Expert Systems with Applications 23 (2002) 95-102

into consideration in CBR, especially when the number of
prior cases is large. In this paper, the performance issue of
large-scale CBR is discussed and a new parallelized method
based on bitwise indexing has been proposed. Several corre-
sponding algorithms, including the index creation and the
case retrieval algorithms, are described. Experiments have
also been made for comparing the performance on different
numbers of processors with the results showing the
proposed parallel method is quite efficient. In the future,
we will attempt to modify and apply the indexing method
and the corresponding retrieving algorithms to CBR in the
data warehousing. Also, since the queries of OLAP/OLTP
in a data warehouse may be complex and time-consuming,
we will also attempt to design a good indexing strategy that
can reduce the query time and the computational overhead.

Acknowledgements
This research was partially supported by the National

Science Council of the Republic of China under contract
NSC90-2213-E-009-132.

References

Cercone, N., An, A., & Chan, C. (1999). Rule-induction and case-based

reasoning: hybrid architectures appear advantageous. IEEE Trans-
actions on Knowledge and Data Engineering, 11 (1), 166—174.

Chen, W. C., Tseng, S. S., Chang, L. P., & Jiang, M. F. (2000). A similarity
indexing method for the data warehousing—bitwise indexing method.
The fifth Pacific-Asia conference on knowledge discovery and data
mining (pp. 525-537).

Daengdej, J., Lukpse, D., Tsui, E., Beinat, P., & Prophet, L. (1997).
Combining case-based reasoning and statistical method for proposing
solution in RICAD. Knowledge Based Systems, 10, 153—159.

Dutta, S., Wierenga, B., & Dalebout, A. (1997). Case-based reasoning
systems: from automation to decision-aiding and stimulation. /EEE
Transactions on Knowledge and Data Engineering, 9 (6), 911-922.

Gardingen, D., & Watson, 1. (1999). A web based CBR system for heating
ventilation and air conditioning systems sales support. Knowledge-
Based Systems, 12, 207-214.

Gupta, K. M., & Montazemi, A. R. (1997). Empirical evaluation of retrieval
in case-based reasoning systems using modified cosine matching func-
tion. IEEE Transactions on Systems, Man, and Cybernetics—Part A:
Systems and Humans, 27 (5), 601-612.

Li, L. L. X. (1999). Knowledge-based problem solving: an approach to
health assessment. Expert Systems with Applications, 16, 33—42.

Shin, K. S., & Han, I. (1999). Case-based reasoning supported by genetic
algorithms for corporate bond rating. Expert Systems with Applications,
16, 85-95.

Suh, M. S, Jhee, W. C., Ko, Y. K., & Lee, A. (1998). A case-based expert
system approach for quality design. Expert Systems with Applications,
15, 181-190.

Waston, 1. (1999). Case-based reasoning is a methodology not a technol-
ogy. Knowledge Based Systems, 12, 303-308.



