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The numerical range of a nonnegative matrix

Chi-Kwong Li a,1, Bit-Shun Tam b,∗,2, Pei Yuan Wu c, 2

aDepartment of Mathematics, College of William and Mary, Williamsburg, VA 23187, USA
bDepartment of Mathematics, Tamkang University, Tamsui, 25137 Taiwan, ROC

cDepartment of Applied Mathematics, National Chiao Tung University, Hsinchu, 30050 Taiwan, ROC

Received 30 March 2001; accepted 10 November 2001

Submitted by H. Schneider

Abstract

We offer an almost self-contained development of Perron–Frobenius type results for the
numerical range of an (irreducible) nonnegative matrix, rederiving and completing the pre-
vious work of Issos, Nylen and Tam, and Tam and Yang on this topic. We solve the open
problem of characterizing nonnegative matrices whose numerical ranges are regular convex
polygons with center at the origin. Some related results are obtained and some open problems
are also posed. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

By the classical Perron–Frobenius theory, if A is a (square, entrywise) nonnegative
matrix, then its spectral radius ρ(A) is an eigenvalue of A and there is a correspond-
ing nonnegative eigenvector. If, in addition, A is irreducible, then ρ(A) is a simple
eigenvalue and the corresponding eigenvector can be chosen to be positive. More-
over, for an irreducible nonnegative matrix with index of imprimitivity m > 1 (i.e.,
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one having exactly m eigenvalues with modulus ρ(A)), Frobenius has also obtained
a deeper structure theorem: The set of eigenvalues of A with modulus ρ(A) consists
precisely of ρ(A) times all the mth roots of unity, the spectrum σ(A) of A is invariant
under a rotation about the origin of the complex plane through an angle of 2�/m,
and A is an m-cyclic matrix, i.e., there is a permutation matrix P such that P tAP is
a matrix of the form



0 A12
0 A23

. . .
. . .
0 Am−1,m

Am1 0



, (1.1)

where the zero blocks along the diagonal are all square. To establish the above struc-
ture theorem, the most popular proof is to use Wielandt’s lemma. (Some relevant
definitions and a full statement of Wielandt’s lemma will be given later on. For the
logical relations between the various conditions that appear in the above-mentioned
Frobenius’s result, in the setting of a complex matrix, see the recent paper [15] by
the second author.)

By now, the Perron–Frobenius theory of a nonnegative matrix is very well known.
Almost every textbook of matrix theory contains a chapter on the subject, and there
are also monographs specially devoted to nonnegative matrices and their applica-
tions. On the other hand, there is not much literature on the numerical range of a
nonnegative matrix, although it is well known that the numerical range of a matrix
and its spectral properties are related. As a matter of fact, as early as 1966, Issos [10]
in his unpublished Ph.D. thesis has obtained some Perron–Frobenius type results
on the numerical range of an irreducible nonnegative matrix. However, for many
years, except for a reference by Fiedler [5], it appears that Issos’s work was almost
unnoticed. Recall that the numerical range of an n-by-n complex matrix A is denoted
and defined by

W(A) = {
x∗Ax : x ∈ Cn, x∗x = 1

}
.

Here is the main result obtained by Issos [10, Theorem 7]:

Theorem 1.1. Let A be an irreducible nonnegative matrix with index of imprimitiv-
ity m. Denote the numerical radius of A by w(A). Then{

λ ∈ W(A) : |λ| = w(A)
} = {

w(A)e2�t i/m : t = 0, 1, . . . , m− 1
}
.

Issos’s proof depends on a number of auxiliary results and is rather tedious. Re-
cently, the second author and Yang [16] also obtained Issos’s main result as a side-
product of their treatment. The proof given in [16, Corollary 2] for Issos’s result
may not be easily accessible to the general readers. This is because the proof is
indirect, graph-theoretic, and depends on results from the previous paper [15] of
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the second author, on the less well-known concepts of the signed length of a cycle
(which is different from that of a circuit) and matrix cycle products, and also on
a characterization of diagonal similarity between matrices in terms of matrix cycle
products due to Saunders and Schneider. (Indeed, it is a purpose of the papers [15,16]
to demonstrate the usefulness of these less well-known concepts and the character-
ization of Saunders and Schneider.) This research was initiated by our attempt to find
a direct, self-contained proof of Issos’s main result. In a graph-free manner, we are
able to do this and also obtain an extension of the result in the setting of a nonnegative
matrix with irreducible real part. Then, in terms of certain graph-theoretic concepts,
we put the latter result in a more concrete usable form, depending our proof on some
results of [14,15].

Since the literature on numerical range analogs of the Perron–Frobenius theory
is scanty, we also think it is worthwhile to offer a complete and, as far as possible,
self-contained development here.

The results we obtain also enable us to solve the open problem of characterizing
nonnegative matrices whose numerical ranges are regular polygons with center at the
origin. We treat this problem and related problems in the second half of the paper.

2. Preliminaries

We assume knowledge of the Perron–Frobenius theory of nonnegative matrices,
which is available in many standard textbooks such as [1,8], or [11], as well as fa-
miliarity with numerical ranges (see, for instance, [6] or [9]).

Below we give a list of notations which we will follow. We always use A to denote
an n-by-n complex matrix for some fixed positive integer n.

Mn the set of all n-by-n complex matrices
Rn+ the nonnegative orthant of Rn

W(A) the (classical) numerical range of A
w(A) the numerical radius of A
σ(A) the spectrum of A
ρ(A) the spectral radius of A
At the transpose of A
A∗ the conjugate transpose of A
ReA the real part of A, i.e., (A+ A∗)/2
|A| the matrix (|ars |) (where A = (ars))
Re z the real part of z (where z is a complex number)
|x| the vector (|ξ1|, . . . , |ξn|)t (where x = (ξ1, . . . , ξn)

t)
λmax(H) the largest eigenvalue of H (where H is hermitian)
i the imaginary unit

√−1
〈n〉 the set {1, 2, . . . , n}.

For a vector x ∈ Cn, we use ‖x‖ to denote the Euclidean norm of x, i.e., ‖x‖ =
(x∗x)1/2. For a matrix A, we use ‖A‖ to denote the operator norm of A, i.e., ‖A‖ =
max‖x‖=1 ‖Ax‖.



4 C.-K. Li et al. / Linear Algebra and its Applications 350 (2002) 1–23

For real matrices A, B of the same size, we use A � B (respectively, A > B) to
mean ars � brs (respectively, ars > brs) for all indices r, s. The notation will also
apply to vectors.

We call a matrix A ∈ Mn irreducible if n = 1 or n � 2 and there does not exist a
permutation matrix P such that

P tAP =
[
B C

O D

]
,

where B,D are nonempty square matrices.
Given A,B ∈ Mn, A is said to be diagonally similar to B if there exists a non-

singular diagonal matrix D such that A = D−1BD; if, in addition, D can be chosen
to be unitary, then we say A is unitarily diagonally similar to B.

It is known [16, Remarks 2 and 5] and not difficult to show the following:

Remark 2.1. For any A ∈ Mn and any unit complex number ξ , we have:
(i) A is unitarily diagonally similar to ξA if and only if A is diagonally similar to

ξA;
(ii) ReA is unitarily diagonally similar to Re(ξA) if and only if ReA is diagonally

similar to Re(ξA).

For graph-theoretic definitions, we follow those of [15,16]. We need, in particular,
the concepts of cyclic index of a matrix, a cycle in a digraph, and the signed length
of a cycle, which we are going to explain.

For any A ∈ Mn, as usual, by the digraph of A, denoted by G(A), we mean the
directed graph with vertex set 〈n〉 such that (r, s) is an arc if and only if ars /= 0.
By the undirected graph of A we mean the undirected graph obtained from G(A) by
removing the direction of its arcs. We call an undirected graph connected if either
it has exactly one vertex or it has more than one vertex and every pair of distinct
vertices are joined by a path.

It is well known (see, for instance, [8, Theorem 6.2.24]) that a matrix A ∈ Mn is
irreducible if and only if its digraph G(A) is strongly connected (in the sense that
given any two vertices r, s of G(A), there is a directed path in G(A) from r to s and
vice versa). It is not difficult to show the following:

Remark 2.2. For any A ∈ Mn, if ReA is irreducible, then the undirected graph of
A is connected. The converse also holds if A is nonnegative.

We call a matrix A ∈ Mn m-cyclic if there exists a permutation matrix P such
that P tAP is of the form (1.1) where the zero blocks along the diagonal are all
square. The largest positive integer m for which a matrix A is m-cyclic is called
the cyclic index of A. We call A a block-shift matrix if for some integer m � 2, A
is of the form (1.1) and with Am1 = 0. An m-cyclic matrix (respectively, a matrix
which is permutationally similar to a block-shift matrix) can be characterized as
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one whose digraph is cyclically m-partite (respectively, linearly partite) (see [15] for
definitions).

We reserve the term “circuit” (in a digraph) for its usual meaning, i.e., a simple
closed directed path. For instance, a sequence of arcs, like (1,2), (2,3), (3,4), and
(4,1), forms a circuit of length 4. The term “cycle” in our usage means something
different. For example, a sequence of arcs, like

1 −→ 2 −→ 3←− 4 −→ 5←− 1,

forms a cycle of length 5 and signed length 1. Here we use r −→ s to denote the
arc (r, s) traversed from r to s and referred to it as a positive link, and use s ←− r

to denote the arc (r, s) traversed from s to r and referred to it as a negative link.
The number of positive links minus the number of negative links in a cycle gives the
signed length of the cycle. (For formal definitions, see [15, Section 2].)

3. Numerical range analogs of the Perron–Frobenius theory

Let A be an n-by-n nonnegative matrix. In parallel to the Perron–Frobenius theory,
it is natural to assert that w(A) ∈ W(A) and there is a unit nonnegative vector x such
that x∗Ax = w(A). The assertion is, indeed, true and is also pretty obvious. The
reason is, for any unit vector z ∈ Cn, we have |z∗Az| � |z|∗A|z|; hence

w(A) = sup
{|z∗Az| : ‖z‖ = 1

} = sup
{
ytAy : ‖y‖ = 1, y ∈ Rn+

}
.

Clearly, the continuous real-valued map y �→ ytAy attains its maximum on the in-
tersection of the unit sphere with the nonnegative orthant Rn+, which is a compact
set. Hence our assertion follows. (The foregoing discussion has essentially appeared
in [10, Theorem 1 and its proof], where it is assumed that the matrix A is irreducible
nonnegative.)

The next thing one may try to prove is that, if A is irreducible nonnegative, then
there is a positive unit vector x such that x∗Ax = w(A), and furthermore x is unique.
It is desirable that we can somehow apply the Perron–Frobenius theory. The follow-
ing general result enables us to do this.

Lemma 3.1. Let A ∈ Mn and let ξ be a unit complex number such that ξw(A) ∈
W(A). Then:
(i) λmax(Re(ξ̄A)) = ρ(Re(ξ̄A)) = w(A);

(ii) the set V ={x ∈ Cn : x∗Ax=ξw(A)‖x‖2} is equal to the eigenspace of Re(ξ̄A)
corresponding to λmax(Re(ξ̄A)).

Proof. (i) Since ξw(A) ∈ W(A), we can find a nonzero vector u that satisfies u∗Au
= ξw(A)‖u‖2. Then u∗(ξ̄A)u = w(A)‖u‖2, and so u∗(ξA∗)u = w(A)‖u‖2. Add-
ing the two equations, we obtain u∗Re(ξ̄A)u = w(A)‖u‖2 or u∗(w(A)In − Re(ξ̄A))
u = 0. Note that the matrix w(A)In − Re(ξ̄A) is positive semidefinite, as we have
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w(A) = w(ξ̄A) � w(Re(ξ̄A)) = ρ(Re(ξ̄A)) � λmax(Re(ξ̄A)).

Hence, u is an eigenvector of Re(ξ̄A) corresponding tow(A), and also it follows that
we have w(A) = ρ(Re(ξ̄A)) = λmax(Re(ξ̄A)).

(ii) If x is any nonzero vector in V, then by what we have done in the proof of part
(i) (with x in place of u), we see that x is an eigenvector of Re(ξ̄A) corresponding to
λmax(Re(ξ̄A)).

Conversely, if x is an eigenvector of Re(ξ̄A) corresponding to λmax(Re(ξ̄A)) (=
w(A)), then we have

w(A)‖x‖2 = x∗Re(ξ̄A)x = Re(x∗(ξ̄A)x) � |x∗(ξ̄A)x| � w(A)‖x‖2,
and hence x∗(ξ̄A)x = w(A)‖x‖2, i.e., x ∈ V . �

Lemma 3.1(ii) is well known to researchers of numerical range. For example, it
is essentially contained in [3, Corollary 1.4], and is also partly a consequence of the
following result in [4] (see also [6, Theorems 1.5–1 and 1.5–2]:

A point α ∈ W(A) is an extreme point if and only if the associated subset {x ∈
Cn : x∗Ax = α‖x‖2} is a linear subspace.

We take a digression here. By examining the above proof of Lemma 3.1 (or the
proof of [3, Corollary 1.4]) carefully, one can see that our argument also shows the
following:

Remark 3.2. Let A ∈ Mn. For any unit complex number ξ , the set {x ∈ Cn : x∗Ax
= ξw(A)‖x‖2} is equal to the nullspace ofw(A)In − Re(ξ̄A). Consequently, ξw(A)
∈ W(A) if and only if det(w(A)In − Re(ξ̄A)) = 0.

The last part of the above remark (the “only if” part of which is implicit in the
proof of [16, Lemma 6]) enables us to check whether a given nonnegative matrix A
with irreducible real part has a circular disk centered at origin as its numerical range,
or whether it satisfies e2�i/mW(A) = W(A) for a given positive integer m. This is
because, by [16, Theorems 1 and 2], for such a matrix A, W(A) is a circular disk
centered at the origin if and only if for some real number θ which is an irrational
multiple of � or is a rational multiple of the form 2�p/q, where p, q are relatively
prime integers with q > n, we have eiθw(A) ∈ W(A); e2�i/mW(A) = W(A) if and
only if e2�i/mw(A) ∈ W(A).

Now back to numerical range analogs of the Perron–Frobenius theory. If A is a
nonnegative matrix, we already know that w(A) ∈ W(A). So in this case we can
apply Lemma 3.1 to A by taking ξ = 1. Then we see that we have

λmax(ReA) = ρ(ReA) = w(A),

and the set {x ∈ Cn : x∗Ax = w(A)‖x‖2} is equal to the eigenspace of the nonneg-
ative matrix ReA corresponding to its spectral radius ρ(ReA). If, in addition, ReA
is irreducible (which is the case if A is irreducible), then by the Perron–Frobenius
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theory, ρ(ReA) is a simple eigenvalue of ReA and the said subspace is of dimension
1, spanned by a positive vector.

Summarizing, we have obtained the following:

Proposition 3.3. Let A ∈ Mn be nonnegative. Then w(A) ∈ W(A) and each of the
following numbers is equal to w(A):

max{ytAy : y ∈ Rn+, ‖y‖ = 1}, λmax(ReA), and ρ(ReA).

Moreover, there is a unit nonnegative vector x such that x∗Ax = w(A). If, in addi-
tion, Re A is irreducible, then the vector x is unique and is positive.

The relation w(A) = ρ(ReA) for a nonnegative matrix A was shown in [7]. It
also appeared implicitly in the proof of [10, Theorem 1].

We make another digression and take note of the following interesting conse-
quence of the fact that w(A) ∈ W(A) for a nonnegative matrix A:

Corollary 3.4. Let A = (aij ) be an n-by-n nonnegative matrix. If W(A) is a (pos-
sibly degenerate) elliptic disk or a regular polygon, then the center p of W(A) must
be a nonnegative real number such that p � min1�j�n ajj .

Proof. Since A is a real matrix,W(A)must be symmetric about the real axis (see, for
instance, [12, Lemma 3.1]). So p must lie on the real axis. Let α denote min1�j�n ajj ,
and assume to the contrary that p < α. Then A− αIn is still a nonnegative matrix
and its numerical range is W(A)− α, with center at p − α, which is a negative
number. If W(A) is an elliptic disk, then, clearly, the left vertical supporting line for
W(A− αIn) is farther away from the origin than the right vertical supporting line.
Hence, w(A− αIn) /∈ W(A− αIn), which contradicts the result of Proposition 3.3.
On the other hand, if W(A) is a regular polygon, then the distance from the origin to
the vertices of W(A− αIn) other than w(A)− α is greater than w(A)− α, which
again contradicts Proposition 3.3. �

The above corollary may suggest that, in general, if A = (aij ) is an n-by-n non-
negative matrix, then the centroid p of W(A) satisfies p � min1�j�n ajj . Our next
example will show that this is not true.

Example 3.5. Consider the nonnegative matrix

A =

0 1 0

0 0 1
1 0 0


⊕

[
0 1
1 0

]
.

Here W(A) is the convex hull of the equilateral triangle with vertices 1, e2�i/3 and
e4�i/3 and the line segment with endpoints 1 and −1. So we have min1�j�n ajj =
0 > p, where p denotes the centroid of W(A). By perturbing the above A a little bit,
one can also give an irreducible nonnegative matrix as an example.
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Next, we turn to a comparison of w(A) and w(B) for nonnegative matrices A
and B with A � B. For spectral radius, the following is well known (see [11, p. 38,
Corollary 2.2]):

Let A,B ∈ Mn be nonnegative, and suppose that B � A. Then ρ(B) � ρ(A). If,
in addition, A is irreducible and A /= B, then ρ(B) < ρ(A).

Using the relation w(A) = ρ(ReA) for a nonnegative matrix A, we immediately
obtain the following corresponding result for numerical radius. Below we also give
an alternative short proof of the result.

Corollary 3.6. LetA,B ∈ Mn be nonnegative, and suppose thatB � A. Thenw(B)
� w(A). If, in addition, ReA is irreducible and A /= B, then w(B) < w(A).

Proof. Since 0 � B � A, we have

w(B) =max
{
xtBx : x ∈ Rn+, ‖x‖ = 1

}
� max

{
xtAx : x ∈ Rn+, ‖x‖ = 1

}
=w(A).

Now assume that ReA is irreducible, and suppose that w(B) = w(A). Choose a
nonnegative unit vector x such that x∗Bx = w(B). Then we have

w(A) = w(B) = x∗Bx � x∗Ax � w(A).

Thus, the two inequalities become equalities. Since ReA is irreducible, by the last
part of Proposition 3.3, the vector x is positive. So we have x∗(A− B)x = 0, and
together with the assumptionA � B, it follows thatA = B, which is a contradiction.

�

We want to emphasize that in the last part of Corollary 3.6 (also Proposition 3.3)
we are assuming that ReA is irreducible instead of A being irreducible. And this
is the right setting for results on numerical radius. For the corresponding results on
spectral radius, we do need the irreducibility assumption. As an example, consider

A =
[

0 1
0 0

]
and B =

[
0 0
0 0

]
.

Then ReA is irreducible, but not A, and we have ρ(A) = ρ(B) = 0, and w(A) >

w(B).
In the above we have treated the rudimentary part of the numerical range an-

alogs of the Perron–Frobenius theory. To proceed further, we need the following
Wielandt’s lemma [17]:

Wielandt’s lemma. Let A,B ∈ Mn, and assume that A is nonnegative. If |B| � A,

then ρ(B) � ρ(A). Assume, in addition, that A is irreducible. If ρ(A) = ρ(B) and
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ξ is a unit complex number such that ξρ(B) ∈ σ(B), then B = ξDAD−1 for some
(unitary) diagonal matrix D.

In the above formulation of Wielandt’s lemma, in order to emphasize its nontrivial
part, we have deliberately omitted the obvious converse part for its second half (cf.
[11, p. 36, Theorem 2.1]).

Now consider an irreducible nonnegative matrix A with index of imprimitivity m.
By the Perron–Frobenius theory, we have e2�i/mρ(A) ∈ σ(A), and so by the sec-
ond half of Wielandt’s lemma (with B = A and ξ = e2�i/m), e2�i/mA is (unitarily)
diagonally similar to A. But the numerical range of a matrix is unchanged if we ap-
ply a unitary similarity to the matrix, hence we have e2�i/mW(A) = W(e2�i/mA) =
W(A), i.e., W(A) is invariant under a rotation about the origin of the complex plane
through an angle of 2�/m. But we also have w(A) ∈ W(A), hence w(A)e2�t i/m ∈
W(A) for t = 0, 1, . . . , m− 1. This proves the easy half of Theorem A. (An argu-
ment almost the same as the preceding one can be found in [10, Theorems 6 and
7], except that Issos used the m-cyclicity of A to deduce the diagonal similarity be-
tween A and e2�i/mA instead of applying Wielandt’s lemma.) To prove the reverse
inclusion, we need the following:

Proposition 3.7. Let A ∈ Mn be nonnegative, and suppose ReA is irreducible. If ξ
is a unit complex number such that ξw(A) ∈ W(A), then DAD−1 = ξA for some
unitary diagonal matrix D.

To see how Proposition 3.7 can be used to establish the remaining inclusion for
Theorem A, consider any unit complex number ξ for which ξw(A) ∈ W(A). By the
proposition, ξA is similar to A. But ρ(A) is an eigenvalue of A, hence so is ξρ(A). By
the Frobenius theorem for an irreducible nonnegative matrix, it follows that ξ must
be an mth root of unity, where m is the index of imprimitivity of A. This completes
the proof of Theorem A.

Note that when A is an irreducible nonnegative matrix with index of imprimitivity
1 (or, equivalently, when it is a primitive matrix, i.e., a nonnegative matrix, one of
whose powers is positive), Theorem A tells us that the numerical range of A contains
exactly one point with modulus w(A), namely, w(A) itself. Our above proof also
covers this special case.

Theorem A first appeared in [10, Theorem 7] and then in [16, Corollary 2]; where-
as Proposition 3.7 is contained in [16, Lemma 1], but not in [10]. The proof given in
[16] for Theorem A is longer than necessary; it makes use of [16, Lemma 1], but not
in the best way. Graph-theoretic arguments as well as results from [15] are needed
in [16] to establish its Lemma 1. We shall give two proofs for Proposition 3.7, which
are self-contained and graph-free.

First proof of Proposition 3.7. Since A is nonnegative, we have ρ(ReA) = w(A).
By Lemma 3.1(i), we also have w(A) = ρ(Re(ξ̄A)) = λmax(Re(ξ̄A)), and hence
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ρ(Re(ξ̄A)) = ρ(ReA). From the above, it is also clear that ρ(Re(ξ̄A)) is an ei-
genvalue of Re(ξ̄A). In view of |Re(ξ̄A)| � ReA and the irreducibility of ReA,
by the second half of Wielandt’s lemma, it follows that there is a unitary diagonal
matrix D, say D = diag(d1, . . . , dn), such that D(Re(ξ̄A))D−1 = ReA, i.e.,
D(ξ̄A+ ξAt)D−1 = A+ At. By equating the corresponding entries of both
sides, we obtain dr(ξ̄ars + ξasr )d−1

s = ars + asr for all r, s ∈ 〈n〉. Since
|dr ξ̄arsd−1

s | = ars and |drξasrd−1
s | = asr (as |dr | = |ds | = |ξ | = 1), it follows that

we have dr ξ̄arsd−1
s = ars (and drξasrd−1

s = asr ) for all r, s ∈ 〈n〉. Hence, we have
D(ξ̄A)D−1 = A, or DAD−1 = ξA. �

Our second proof of Proposition 3.7 will depend on the following numerical radi-
us analog of Wielandt’s lemma, which is of independent interest.

Lemma 3.8. Let A,B ∈ Mn, and assume that A is nonnegative. If |B| � A, then
w(B) � w(A). Suppose, in addition, that ReA is irreducible. If w(A) = w(B) and
ξ is a unit complex number such that ξw(A) ∈ W(B), then B = ξDAD−1 for some
unitary diagonal matrix D.

Proof. The first half of this lemma can be readily proved by modifying the argument
given in the proof for the first half of Corollary 3.6. Alternatively, apply the first part
of Wielandt’s lemma to the pair of matrices Re(eiθB), ReA (where θ ∈ R), and use
the fact that for any matrix A, we have

w(A) = max
{
λmax(Re(eiθA)) : θ ∈ R

} = max
{
ρ(Re(eiθA)) : θ ∈ R

}
.

The proof for the second half of this lemma runs parallel to a known proof for the
corresponding part of Wielandt’s lemma (cf. [11, pp. 37–38]). Let y be a unit vector
such that y∗By = ξw(A). Then

w(A) = y∗(ξ̄B)y � |y|t|B||y| � |y|tA|y| � w(A).

Hence, the above inequalities all become equalities. Since |y|tA|y| = w(A) and
ReA is irreducible, by the last part of Proposition 3.3, we have |y| > 0. Now, in
view of

|y|t(A− |B|)|y| = w(A)− w(A) = 0, A− |B| � 0 and |y| > 0,

we have |B| = A. Let D denote the unitary diagonal matrix diag(η1/|
η1|, . . . , ηn/|ηn|), where y = (η1, . . . , ηn)

t. Then we have

|y|tD∗(ξ̄B)D|y| = y∗(ξ̄B)y = w(A),

where the second equality has already been established above. But we also already
have |y|tA|y| = w(A), so

|y|tD∗(ξ̄B)D|y| = |y|tA|y|.
And since |D∗(ξ̄B)D| = |B| = A and |y| > 0, it follows that ξ̄D−1BD = A, or
B = ξDAD−1. �
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Second proof of Proposition 3.7. Apply Lemma 3.8 with B = A. �

It is easy to show that for any A ∈ Mn and any unit complex number ξ , if A is
(unitarily) diagonally similar to ξA, then ReA is also (unitarily) diagonally simi-
lar to Re(ξA) (see [16, Remarks 2, 4 and 5]). The converse is not true in general.
In [16, Lemma 2] it is shown that the converse is true if we assume, in addition,
that the entries of A satisfy arsasr = 0 for all r, s ∈ 〈n〉. In view of the argument
given in the last part of the first proof of Proposition 3.7, we now have another
situation when the converse is true:

Remark 3.9. Let A be a nonnegative matrix. For any unit complex number ξ, ξA
is diagonally similar to A if and only if Re(ξA) is diagonally similar to ReA.

The above remark is actually implicit in the work of [16]. This is because, by [16,
Lemma 3], we readily obtain our remark under the additional assumption that ReA
is irreducible (as λmax(Re(ξA)) = λmax(ReA)whenever Re(ξA) is similar to ReA),
and then after a simple calculation we can drop the additional assumption. Certainly,
our present proof is more direct and easier.

For more equivalent conditions for ξw(A) ∈ W(A) (when A is nonnegative and
|ξ | = 1), see [16, Lemma 3].

We would like to make another observation.

Corollary 3.10. Let A be a nonnegative matrix with irreducible real part. Let ξ
be a unit complex number such that ξw(A) ∈ W(A). Then the subspace {x ∈ Cn :
x∗Ax = ξw(A)‖x‖2} is of dimension 1.

Proof. By Lemma 3.1, the set {x ∈ Cn : x∗Ax = ξw(A)‖x2‖} is equal to the ei-
genspace of Re(ξ̄A) corresponding to λmax(Re(ξ̄A)) (= w(A)). By the first proof of
Proposition 3.7 or by the proposition itself (and Remark 3.9), Re(ξ̄A) is diagonal-
ly similar to ReA. Since ReA is irreducible nonnegative, by the Perron–Frobenius
theory, ρ(ReA) (= w(A)) is a simple eigenvalue of ReA. Hence, λmax(Re(ξ̄A)) is
also a simple eigenvalue of Re(ξ̄A), and the said subspace is of dimension 1. �

We are going to extend Theorem A to the case when A is a nonnegative matrix
with irreducible real part.

For any A ∈ Mn, it is easy to verify that the set

H = {
ξ ∈ C : |ξ | = 1, ξA is (unitarily) diagonally similar to A

}
forms a subgroup of the group of all unit complex numbers, and moreover it is
included in the set {ξ ∈ C : |ξ | = 1, ξW(A) = W(A)}. If A is nonnegative, then
since w(A) ∈ W(A), the latter set, in turn, is included in {ξ ∈ C : |ξ | = 1, ξw(A) ∈
W(A)}. Now assume, in addition, that ReA is irreducible. Then, in view of Propo-
sition 3.7, the three sets are all equal. The group H may be infinite or finite. If H is
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infinite or has more than n elements, then the numerical range of A contains more
than n points with modulus equal to w(A). In this case, by a known result due to
Anderson (see, for instance, [16, Lemma 6]), W(A) is equal to the circular disk with
center at the origin and radius w(A). Hence, H is precisely the group of all unit
complex numbers. On the other hand, if H is a finite group, say, with order m (� n),
then by Lagrange’s theorem in group theory, for any ξ ∈ H , we have ξm = 1, i.e.,
each element of H is an mth root of unity. But the cardinality of H is m, so it follows
that H is precisely the group of all mth roots of unity. Summarizing, we have, in fact,
established the following:

Proposition 3.11. Let A be a nonnegative matrix with irreducible real part.
(i) For any unit complex number ξ, the following conditions are equivalent:

(a) ξA is diagonally similar to A;
(b) ξW(A) = W(A);
(c) ξw(A) ∈ W(A).

(ii) The set {ξ ∈ C : |ξ | = 1, ξw(A) ∈ W(A)} is a group under multiplication, and
is either the group of all unit complex numbers or is a finite (necessarily cyclic)
subgroup of it.

(iii) If W(A) is not a circular disk with center at the origin, then

{
z ∈ W(A) : |z| = w(A)

} = {
w(A)e2�t i/m : t = 0, 1, . . . , m− 1

}
,

where m is the largest positive integer such that A is diagonally similar to
e2�i/mA.

So far we are graph-free. Next, in terms of certain graph-theoretic concepts, we
are going to rewrite part (iii) of Proposition 3.11 in a readily usable form.

In [14, Theorem 1], the second author gave equivalent conditions on a complex
matrix A with the property that the numerical range of any matrix with the same
digraph as A is a circular disk centered at the origin. One equivalent condition is that
A is permutationally similar to a block-shift matrix. Another equivalent condition is
that all cycles of G(A) have zero signed length. In [16, Theorem 1], a long list of fur-
ther new equivalent conditions were added. In particular, rather unexpectedly, it was
found that in the case when A is nonnegative and has a connected undirected graph
(or equivalently, with irreducible real part), the condition thatW(A) is a circular disk
centered at the origin is also an equivalent condition.

On the other hand, by [15, Theorem 4.1], for any A ∈ Mn and any positive in-
teger k, if A is k-cyclic, then A is diagonally similar to e2�i/kA; if, in addition, the
digraph G(A) has at least one cycle with nonzero signed length, then the converse
also holds.

In view of the above (and Remark 2.2), we can now rewrite Proposition 3.11(iii)
as follows:
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Theorem 3.12. Let A be a nonnegative matrix with connected undirected graph.
Suppose that the digraph G(A) has at least one cycle with nonzero signed length.
Then {

z ∈ W(A) : |z| = w(A)
} = {

w(A)e2�t i/m : m = 0, 1, . . . , m− 1
}
,

where m is the cyclic index of A.

By [15, Corollary 4.2(i)], when the digraph G(A) has at least one cycle with
nonzero signed length (A not necessarily nonnegative), the cyclic index of A is equal
to the greatest common divisor of the signed lengths of the cycles in G(A). So, the
cyclic index m considered in Theorem 3.12 can be determined.

We have already offered a self-contained proof (via Proposition 3.7) for Theorem
A. Now let us show that Theorem A can be recovered also from Theorem 3.12: If A
is irreducible, then, by part (iii) of the above-mentioned corollary of [15], the cyclic
index of A is also equal to the greatest common divisor of the circuit lengths ofG(A).
But it is well known (see, for instance, [1, p. 35, Theorem 2.30]) that the index of
imprimitivity of an irreducible nonnegative matrix is equal to the greatest common
divisor of the circuit lengths of its associated digraph. And, of course, the digraph of
an irreducible matrix, being strongly connected, has at least one cycle with nonzero
signed length (as every circuit can be regarded as a cycle with signed length equal to
its length). Hence, we can recover Theorem A from Theorem 3.12.

More generally, we have the following:

Remark 3.13. Let A be a nonnegative matrix whose digraph has at least one cycle
with nonzero signed length. Suppose A is permutationally similar to A1 ⊕ · · · ⊕ Ak ,
where A1, . . . , Ak are nonnegative matrices each with connected undirected graph.
Then:
(i) The cyclic index of A equals the greatest common divisor of the cyclic indices

of those Aj whose digraphs have cycles with nonzero signed lengths.
(ii) The set {ξ ∈ C : |ξ | = 1, ξw(A) ∈ W(A)} is equal to

⋃
j {ξ ∈ C : |ξ | = 1, ξw

(Aj ) ∈ W(Aj )}, where the union is taken over all j for which w(Aj ) = w(A).
If there is at least one j for which w(Aj ) = w(A) and the digraph G(Aj ) has no
cycles with nonzero signed length, thenW(A) is a circular disk and, consequent-
ly, the above set is precisely the group of all unit complex numbers. Otherwise,
the set is a union of certain Zp’s, where Zp denotes the group of all complex
pth roots of unity, and moreover it always includes the set {w(A)e2�t i/m : t =
0, 1, . . . , m− 1}, where m is the cyclic index of A.

4. Nonnegative matrices whose numerical ranges are regular polygons

In his thesis [10, p. 24], Issos asked the question of when the numerical range
of an irreducible nonnegative matrix is a regular (convex) polygon (with center not
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necessarily at the origin). In [16, Problem 2], Tam and Yang also posed the problem
of characterizing nonnegative matrices whose numerical ranges are regular polygons
with center at the origin. In this section, we are going to treat these problems.

A point α lying on the boundary ofW(A) is called a sharp point ofW(A) ifW(A)

is included in an angular sector with apex at α and angle less than �. For a nonnegat-
ive matrix A, ifW(A) is a polygon, thenw(A) (being an extreme point) is necessarily
one of the vertices and hence is a sharp point ofW(A). The problem of characterizing
when w(A) is a sharp point of W(A) for a nonnegative matrix A has been solved by
Tam and Yang [16, Theorem 4]. But we are going to rederive the result in a different
way, relying ourselves on a general result about radial matrices. As the reader will
see, our present approach has the merit that it gives us a better understanding, throws
light on a known result in [12] and in addition yields more new results.

A matrix A ∈ Mn is called spectral if ρ(A) = w(A); A is radial if ‖A‖ = ρ(A)

or, equivalently, w(A) = ‖A‖. (For equivalent conditions on a radial matrix or a
spectral matrix, see [9, p. 45, Problem 27; pp. 61–62, Problem 37].)

Proposition 4.1. Let A ∈ Mn be a radial matrix. Then:
(i) There exists a unitary matrix U ∈ Mn such that U∗AU = D ⊕ B, where D is

a diagonal matrix each of whose diagonal entries is of modulus w(A) and B is
a (possibly empty) matrix that satisfies w(B) < w(A).

(ii) W(A) is the convex hull of the polygon whose vertices are all the points in
W(A)with modulusw(A) and a (possible empty) compact convex set, included
in the open circular disk centered at the origin with radius w(A).

(iii) Every point z in W(A) with modulus w(A) is a sharp point.

Proof. Part (i) was proved in [13]. Part (ii) follows from the fact that W(A) =
conv(W(D) ∪W(B)), where W(B) is in the open disk centered at the origin with
radius w(A). Part (ii) follows readily from (iii). �

Concerning the problem of characterizing when w(A) is a sharp point, we treat
the case of a nonnegative matrix with irreducible real part first. The following result
is a strengthening of [16, Remark 16]. We give an independent proof.

Theorem 4.2. Consider the following conditions for a nonnegative matrix A:
(a) A is radial;
(b) w(A) is a sharp point of W(A);
(c) A is spectral;
(d) ρ(A) = ρ(ReA);
(e) A and At have a common nonnegative eigenvector corresponding to ρ(A).
(i) We always have the implications (a)⇒ (b)⇒ (c)⇔ (d)⇒ (e).

(ii) When ReA is irreducible, conditions (a)–(e) are all equivalent.
(iii) If ReA is irreducible and conditions (a)–(e) are all satisfied, then A is neces-

sarily irreducible.
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Proof. (i) (a)⇒ (b). This follows from Proposition 4.1(ii), as we always have
w(A) ∈ W(A) for a nonnegative matrix.
(b)⇒ (c). This follows from a result of Kippenhahn [9, Theorem 1.6.3], which

says that if α is a sharp point of W(A), where A is any complex matrix, then α must
be an eigenvalue of A.

The equivalence of (c) and (d) follows from the relation w(A) = ρ(ReA) for a
nonnegative matrix A.

The implication (c)⇒ (e). can be deduced from known results about normal ei-
genvalues; see [9, Theorem 1.6.6 and Section 1.6, Problem 11]. To make this proof
self-contained, we offer an argument: Let x be a unit nonnegative eigenvector of A
corresponding to ρ(A). Then

xt(ReA)x = xtAx = ρ(A) = w(A).

Since A is nonnegative, w(A) is also equal to λmax(ReA). This, together with our
choice of x, implies that x is the desired common nonnegative eigenvector of A and
At corresponding to ρ(A) (= λmax(ReA)).

(ii) In view of part (i), it suffices to show that when ReA is irreducible, we have
the implication (e)⇒ (a).. Let x be a common nonnegative eigenvector of A and
At corresponding to ρ(A). Then clearly x is also a nonnegative eigenvector of the
irreducible nonnegative matrix ReA (corresponding to ρ(A)). As such, x must be a
positive vector (see, for instance, [11, p. 7, Theorem 2.2]). But we also have AtAx =
ρ(A)2x, and it is well known that a positive eigenvector of a nonnegative matrix
must correspond to its spectral radius (see, for instance, [8, Corollary 8.1.30]), so
ρ(AtA) = ρ(A)2. Hence we have ‖A‖2 = ρ(AtA) = ρ(A)2, or ‖A‖ = ρ(A), i.e.,
A is radial.

(iii) It suffices to show that if A is a nonnegative matrix with irreducible real
part, and if A is spectral, then A is irreducible. We assume to the contrary that A is
reducible. By applying a permutation similarity, we may assume that A is already
in the Frobenius normal form, i.e., a (lower) triangular block form with, say, p irre-
ducible blocks A11, . . . , App along the diagonal (see, for instance, [1, p. 39]). Let
B denote the matrix A11 ⊕ · · · ⊕ App. Then we have ρ(A) = max1�j�p ρ(Aj ) =
ρ(B). Since A is reducible and the undirected graph of A is connected, clearly we
have p � 2, A � B and A /= B. By Corollary 3.6, it follows that we have w(A) >
w(B) � ρ(B) = ρ(A), which is a contradiction. �

Our next example will show that, for a general nonnegative matrix A, the missing
implications in Theorem 4.2(i) do not hold in general.

Example 4.3. Consider the nonnegative matrix A = A1 ⊕ A2, with

A1 = [1] and A2 =
[

0 α

0 0

]
,
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where α is a positive number to be chosen. Note that we have ρ(A) = 1, w(A) =
max{1, α/2} and ‖A‖ = max{1, α}. Moreover, W(A1) = {1}, W(A2) is the circular
disk centered at the origin with radius α/2, and W(A) = conv(W(A1) ∪W(A2)). It
is clear that A and At always have a common nonnegative eigenvector corresponding
to ρ(A) (= 1), namely, the vector (1, 0, 0)t. If α > 2, then w(A) = α/2 > ρ(A),
and so A is not spectral. This shows that for the conditions (a)–(e) of Theorem 4.2,
(e)� (c). If α = 2, then ρ(A) = w(A) = 1 and so A is spectral. However, in this
case, W(A) is the circular disk centered at the origin with radius w(A), and w(A)
is not a sharp point of W(A). This shows that (c)� (b). Finally, if 1 < α < 2, then
clearly w(A) is a sharp point of W(A). Since ‖A‖ = α > 1 = ρ(A), A is not radial.
This shows that (b)� (a).

It is clear that we can use Theorem 4.2 (and an argument given in the first pa-
ragraph of the proof of [16, Lemma 5]) to recover [16, Lemma 5]. Now we use
Theorem 4.2 to derive [16, Theorem 4]:

Corollary 4.4. Let A be a nonnegative matrix, and suppose A is permutationally
similar to A1 ⊕ · · · ⊕ Ak, where A1, . . . , Ak are nonnegative matrices each with
connected undirected graph. A necessary and sufficient condition for w(A) to be a
sharp point of W(A) is that, for any j, 1 � j � k, we have
(a) If ρ(Aj ) = ρ(A), then Aj is itself an irreducible matrix and ρ(Aj ) = w(Aj ).
(b) If ρ(Aj ) < ρ(A), then w(Aj ) < ρ(A).

Proof. “Necessity” Consider any j ∈ 〈k〉 for which ρ(Aj ) = ρ(A). Since w(A) is
a sharp point of W(A), we have ρ(A) = w(A) � w(Aj ) � ρ(Aj ) = ρ(A), hence
w(Aj ) = ρ(Aj ), i.e., Aj is spectral. Since ReAj is irreducible, by Theorem 4.2(ii)
and (iii), it follows that Aj is irreducible.

Now consider any j ∈ 〈k〉 for which ρ(Aj ) < ρ(A). If w(Aj ) = ρ(A), then we
have ρ(Aj ) < w(Aj ), and so w(A) (= w(Aj )) is not a sharp point of W(Aj ), and
hence also not a sharp point of W(A), which is a contradiction.

“Sufficiency” When conditions (a) and (b) are satisfied, clearly we have w(A) =
max1�j�k w(Aj ) = ρ(A). For any j for which ρ(Aj ) = ρ(A), by condition (a) and
Theorem 4.2,w(Aj ) is a sharp point ofW(Aj ) and the matrixAj is radial. Moreover,
by Proposition 4.1(ii), for any such j, W(Aj ) is the convex hull of w(A) (= w(Aj ))
and some compact convex set Cj not containing w(A). On the other hand, if j is
such that ρ(Aj ) < ρ(A), then, by condition (b), W(Aj ) is a compact convex set not
containing w(A) (= ρ(A) > w(Aj )). It is clear that the convex hull of all Cj for
which ρ(Aj ) = ρ(A) and all W(Aj ) for which ρ(Aj ) < ρ(A) is a compact convex
set C that does not contain w(A). But W(A) is the convex hull of w(A) and C, hence
w(A) is a sharp point of W(A). �

In [12, Theorem 1.2], Nylen and Tam proved that if A is a primitive doubly sto-
chastic matrix, then W(A) is symmetric about the real axis and is the convex hull of



C.-K. Li et al. / Linear Algebra and its Applications 350 (2002) 1–23 17

the point 1 and a compact convex set included in the open unit disk. Motivated by
their result, we have the following for a nonnegative matrix:

Proposition 4.5. Let A be a nonnegative matrix, and suppose A is permutationally
similar to A1 ⊕ · · · ⊕ Ak, where A1, . . . , Ak are nonnegative matrices each with
irreducible real part. If w(A) is a sharp point of W(A), then we have W(A) =
conv(P ∪ C), where P is the polygon with vertices consisting of all points in W(A)

with modulus w(A), and C is some compact convex set included in the open circular
disk centered at the origin with radius w(A).

Proof. Since w(A) is a sharp point of W(A), conditions (a) and (b) of Corollary
4.4 are fulfilled. Consider any j ∈ 〈k〉. If ρ(Aj ) < ρ(A), then W(Aj ) is a com-
pact convex set included in the open circular disk centered at the origin with radius
w(A). If ρ(Aj ) = ρ(A), then w(Aj ) is a sharp point of W(Aj ) (see the “neces-
sity part” of the proof of Corollary 4.4), and by Theorem 4.2(ii), the matrix Aj is
radial. In this case, by Proposition 4.1(ii), W(Aj ) is the convex hull of a polygon
with vertices all of modulus w(Aj ) (= w(A)) and some compact convex set in-
cluded in the open circular disk centered at the origin with radius w(A). In view of
W(A) = conv(W(A1) ∪ · · · ∪W(Ak)), it is ready to see that our assertion follows.

�

Corollary 4.6. Let A be a primitive matrix. If A satisfies one of the conditions (a)–
(e) in Theorem 4.2, then W(A) is symmetric about the real axis and is the convex
hull of the point ρ(A) and a compact convex set included in the open circular disk
centered at the origin with radius ρ(A).

In view of Theorem 4.2(iii) and the following result, in solving the problem of ch-
aracterizing nonnegative matrices whose numerical ranges are regular polygons with
center at the origin, we may focus our attention to irreducible nonnegative matrices.

Theorem 4.7. Let A be a nonnegative matrix. Suppose A is permutationally similar
toA1 ⊕ · · · ⊕ Ak, whereA1, . . . , Ak are nonnegative matrices each with irreducible
real part. ThenW(A) is a regular polygon with center at the origin if and only if there
exists s ∈ 〈k〉 such that W(As) is a regular polygon with center at the origin, and
for every j ∈ 〈k〉, j /= s, we have W(Aj ) ⊆ W(As).

Proof. The ‘if’ part is obvious. Since w(A) is always an extreme point of W(A)

(as A is nonnegative), to prove the “only if” part, we may suppose that W(A) is the
regular polygon with center at the origin given by

W(A) = conv
{
w(A)e2�t i/m : t = 0, 1, . . . , m− 1

}
for some m � 2.

By our assumption on A, clearly, W(A) = conv(W(A1) ∪ · · · ∪W(Ak)). But w(A)
e2�i/m is an extreme point of W(A), so it must belong to one of the sets W(A1), . . . ,
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W(Ak), say, W(As). Then w(As) = w(A) and, by Proposition 3.11(ii), W(As) con-
tains each of the points w(A)e2�t i/m, t = 0, 1, . . . , m− 1. Hence, by the convexity
of the numerical range of a matrix, we have

W(As) ⊇ conv
{
w(A)e2�t i/m : t = 0, 1, . . . , m− 1

} = W(A).

Certainly, we also have W(As) ⊆ W(A). So our assertion follows. �

We would like to mention that a similar result also holds for the question of when
a general complex matrix has a circular disk with center at the origin as its numerical
range (see [16, Theorem 3]). We also want to emphasize that in Theorem 4.7 the
nonnegativity assumption on A cannot be dropped. Counterexamples can be easily
constructed.

An application of Theorem 3.12 yields the following related result:

Proposition 4.8. Let A be a nonnegative matrix with connected undirected graph.
Suppose that the digraph G(A) has at least one cycle with nonzero signed length.
Assume that the cyclic index of A is greater than 1. Then W(A) cannot be a circu-
lar disk, and moreover if W(A) is a regular polygon then its center must be at the
origin.

Proof. Let m (>1) be the cyclic index of A. Assume first that W(A) is a circular
disk. In view of Theorem 3.12, each of the m points w(A)e2�t i/m, t = 0, 1, . . . ,
m− 1, is an extreme point of W(A). Certainly, all of them lie on the circumference
of the circular disk W(A), and the center of the disk must be equidistant from all
of them. It follows that the center of the disk is the origin of the complex plane. In
other words, W(A) is the circular disk with center at the origin and radius w(A), in
contradiction with the result of Theorem 3.12.

The same argument also shows that if W(A) is a regular polygon, then its center
must be at the origin. �

Corollary 4.9. If A is an irreducible nonnegative matrix with index of imprimitivity
greater than 1, then W(A) cannot be a circular disk.

It seems plausible that this is the case for any irreducible nonnegative matrix A.
Here we verify it for 2-by-2 matrices.

Proposition 4.10. No irreducible nonnegative 2-by-2 matrix can have a circular
disk as its numerical range.

Proof. Let

A =
[
a b

c d

]
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be a 2-by-2 irreducible nonnegative matrix whose numerical range is a circular disk
with center λ and radius r. It is known that in this case both eigenvalues of A are
equal to λ and A is unitarily similar to[

λ 2r
0 λ

]
.

We have a + d = 2λ and ad − bc = λ2. It follows that ad − bc = (a + d)2/4, and
thus 0 � (a − d)2 = −4bc � 0. This shows that b = 0 or c = 0. In either case, A is
reducible contradicting our assumption. �

An alternative way to complete the proof of Proposition 4.10 is to apply the Per-
ron–Frobenius theory: since A is unitarily similar to[

λ 2r
0 λ

]
,

we have, λ equals ρ(A) and is not a simple eigenvalue, contradiction.
The preceding argument can also be used to show that if A is a 3-by-3 or 4-by-4

primitive matrix with zero trace, then W(A) cannot be a circular disk. For if W(A)

is a circular disk with center λ, then by [2, Remark 2] λ is a (real) eigenvalue of A
with multiplicity at least two, hence λ < ρ(A). On the other hand, by Corollary 3.4
and also the fact that ρ(A) is the only eigenvalue of A with modulus ρ(A), λ must
be a positive number. If A is 3-by-3, then trA = ρ(A)+ 2λ > 0, contradiction. If A
is 4-by-4, then the eigenvalues of A are ρ(A), λ, λ, and −(ρ(A)+ 2λ), which is
again a contradiction, as | − (ρ(A)+ 2λ)| > ρ(A).

In [12, Example 4.5], Nylen and Tam gave an example of an irreducible dou-
bly stochastic matrix with index of imprimitivity two for which W(A) is not a line
segment (2-polygon). In related to that, we make the following simple observation:

Remark 4.11. Let A be a real matrix. Then W(A) is a line segment if and only if
either A is symmetric or A is the sum of a real scalar matrix and a skew-symmetric
matrix. If A is nonnegative, then W(A) is a line segment if only if A is symmetric.

Indeed, first note that W(A) is symmetric with respect to the real axis for the real
A. Hence if W(A) is a line segment, it will either be lying in R or be perpendic-
ular to R. In the former case, A is symmetric. For the latter, assuming that W(A)

lies in the vertical line x = a, we have W(i(A− aI)) ⊆ R. Thus A = aI + B with
B = −i(i(A− aI)) skew-symmetric. The converse is trivial. If A is nonnegative and
W(A) is a line segment, then W(A) cannot be perpendicular to the real axis for
otherwise w(A) would not be in W(A). In this case, W(A) ⊆ R and hence A is
symmetric.

The more general question of when the numerical range of an irreducible nonneg-
ative matrix is a regular polygon with center at the origin is actually already answered
by Tam and Yang [16, Remark 15]:
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Remark 4.12. For any irreducible nonnegative matrix A with index of imprimitivity
m � 2, W(A) is a regular polygon (necessarily with center at the origin) if and only
if W(A) = conv{ρ(A)e2�t i/m : t = 0, 1, . . . , m− 1}.

Remark 4.12 also settles Issos’s question, mentioned at the beginning of this sec-
tion, for almost all cases except for the primitive matrix case. Our argument can also
be used to show that, if A is a primitive matrix, then W(A) can never be a regular
polygon with center at the origin. Certainly, there are primitive matrices whose nu-
merical ranges are regular polygons. For instance, take an irreducible nonnegative
matrix A with index of imprimitivity m > 1 such that W(A) is a regular polygon
with center at the origin. Then for any α > 0, A+ αI is a primitive matrix whose
numerical range is a regular polygon (with center at α). The problem of charac-
terizing primitive matrices with regular polygons as their numerical ranges remains
open.

Contrary to what is said in [16, p. 218, first paragraph], the condition given in
Remark 4.12 can be transformed to a checkable condition. First, we observe the
following:

Lemma 4.13. LetA ∈ Mn. Let ρ be a positive real number and letm � 2 be a given
positive integer. In order that

W(A) ⊆ conv
{
ρe2�t i/m : t = 0, 1, . . . , m− 1

}
,

it is necessary and sufficient that for t = 0, 1, . . . , m− 1, we have

λmax
(
Re(e−(2t−1)�i/mA)

)
� ρ cos

�

m
.

Proof. The polygon conv{ρe2�t i/m : t = 0, 1, . . . , m− 1} can be expressed as⋂m−1
t=0 Ht , where Ht is the closed half-plane given by

Ht =
{
z = x + iy ∈ C : x cos

(2t − 1)�

m
+ y sin

(2t − 1)�

m
� ρ cos

�

m

}
.

In order that W(A) be included in the said polygon, it is necessary and sufficient that
W(A) ⊆ Ht for all t. Now W(A) ⊆ Ht if and only if W(e−(2t−1)�i/mA) is included
in the half-plane {z ∈ C : Re z � ρ cos(�/m)}, and the latter condition is fulfilled if
and only if λmax(Re(e−(2t−1)�i/mA)) � ρ cos(�/m). So our assertion follows. �

Now we have the following:

Proposition 4.14. Let A be an irreducible nonnegative matrix with index of imprim-
itivity m. In order that W(A) be a regular polygon with center at the origin it is
necessary and sufficient that the following conditions are both satisfied:
(a) ρ(A) = ρ(Re(A)).
(b) For t = 0, 1, . . . , m− 1, λmax(Re(e−(2t−1)�i/mA)) = ρ(A) cos(�/m).
(In condition (b), we may replace the last equality by “�”.)
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Proof. “Necessity” Suppose that W(A) is a regular polygon with center at the ori-
gin. Then w(A) must be a sharp point of W(A) and, as noted before, condition (a)
necessarily holds. Furthermore, by Remark 4.12, in this case we have

W(A) = conv
{
ρ(A)e2�t i/m : t = 0, 1, . . . , m− 1

}
.

It follows from Lemma 4.13 that for t = 0, 1, . . . , m− 1, we have

λmax
(
Re(e−(2t−1)�i/mA)

)
� ρ(A) cos

�

m
.

Here we can replace each of the latter inequalities by an equality, because W(A) is
precisely the convex hull of the m points ρ(A)e2�t i/m, t = 0, 1, . . . , m− 1, not just
a subset of it. So we have condition (b).

“Sufficiency” Again by Lemma 4.13, condition (b) implies that W(A) is included
in the regular polygon with vertices ρ(A)e2�t i/m, t = 0, 1, . . . , m− 1. These are the
same as w(A)e2�t i/m by condition (a). But by Theorem A, W(A) also contains each
of these m points. Hence, W(A) is equal to the said regular polygon. �

In view of Corollary 4.4, Theorem 4.7 and Proposition 4.14, in theory (assuming
that all numerical quantities can be computed exactly), we can determine whether
the numerical range of a nonnegative matrix is a regular polygon with center at the
origin in the following way:

By a permutation similarity, we may rewrite the given nonnegative matrix A as
A1 ⊕ · · · ⊕ Ak , whereA1, . . . , Ak are each nonnegative matrices with connected un-
directed graph. Then we follow the steps given below. If we obtain positive answers
at each step, then W(A) is a regular polygon with center at the origin. Otherwise,
W(A) is not.

Step 1. For each j=1, . . . , k, determine the values of ρ(Aj ) and w(Aj ) (= ρ

(ReAj)). (Then ρ(A) = max1�j�k ρ(Aj ) and w(A) = max1�j�k w(Aj ).) Answer
the following question: Is there a j such that ρ(Aj ) = ρ(A) and Aj satisfies the
criterion for W(Aj ) to be a regular polygon with center at the origin, as given by
Proposition 4.14?

Step 2. Let � denote the set of all j for which ρ(Aj ) = ρ(A) and W(Aj ) is a
regular polygon with center at the origin. For each j ∈ �, determine the index of
imprimitivity mj of Aj (for instance, by finding the greatest common divisor of the
circuit lengths of G(Aj )). Answer the following question: Is there a j0 ∈ � such that
mj divides mj0 for each j ∈ �? (If such j0 exists, hopefully W(A) equals W(Aj0).)

Step 3. Answer the following question: Is it true that, for each j for which ρ(Aj ) <
ρ(A) or ρ(Aj ) = ρ(A) but j /∈ �, we have W(Aj ) ⊆ W(Aj0)? (Use Lemma 4.13
here.)

If we expect that W(A) is not a regular polygon with center at the origin, we may
also add the following step at the beginning:

Step 0. For j = 1, . . . , k, determine ρ(Aj ) andw(Aj ) (= ρ(ReAj)). Answer the
following questions:

(i) Is ρ(A) = w(A)?
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(ii) For each j for which ρ(Aj ) = ρ(A), isAj an irreducible matrix and do we have
ρ(Aj ) = w(Aj )?

(iii) For each j for which ρ(Aj ) < ρ(A), do we have w(Aj ) < ρ(A)?
(If the answers are all “yes”, then w(A) is a sharp point of W(A).)

Now we would also like to address the question of when the numerical range of
a nonnegative matrix A has weak circular symmetry, i.e., e2�i/mW(A) = W(A) for
some integer m, 2 � m � n, where n is the size of A. The question was solved for
the special case when the undirected graph of A is connected (see [16, Theorem 2]).
Clearly, the convex sets W(A) and W(e2�i/mA) are equal if and only if they have
same supporting lines in all directions. So one may give the following answer to the
above question:

e2�i/mW(A) = W(A) if and only if
λmax

(
Re(eiθA)

) = λmax
(
Re(ei(θ+2�/m)A)

) ∀θ ∈ [0, 2�).

But this is not a satisfactory answer, as there are infinitely many conditions we need
to check. One may also try to reduce the problem to the case of a nonnegative ma-
trix with connected undirected graph, and suspect that a result similar to Theorem
4.7 or [16, Theorem 3] also holds for the question of weak circular symmetry. The
following example shows that this is not the case.

Example 4.15. Choose an irreducible nonnegative matrixA1 whose numerical range
is the triangle � = conv{1, e2�i/3, e4�i/3}. Also choose a nonnegative block-shift
matrix A2 with connected undirected graph such that the numerical range of A2
is a circular disk, centered at origin, radius r, where r is greater than the radius of
the inscribed circle of � but is less than that of the circumscribed circle. Now let
A = A1 ⊕ A2. Then e2�i/3W(A) = W(A), but we have neither W(A1) ⊆ W(A2)

nor W(A2) ⊆ W(A1).

Note that in the above example W(A) is not a polygon. But by modifying the
example, we can easily construct one in which W(A) is a (nonregular) polygon. The
method of construction of our examples also suggests the following question:

Question 4.16. Let A be a nonnegative matrix which is permutationally similar to
A1 ⊕ · · · ⊕ Ak, where A1, . . . , Ak are nonnegative matrices each with a connect-
ed undirected graph. If, for some positive integer m � 2, we have e2�i/mW(A) =
W(A), does it follow that there exist distinct indices i1, . . . , ip ∈ 〈k〉, p � 1, such
that e2�i/mW(Air ) = W(Air ) for r = 1, . . . , p, and W(Aj ) ⊆ conv(W(Ai1) ∪ · · · ∪
W(Aip )) for all j /= i1, . . . , ip?

We do not know the answer to the above question even when W(A) is assumed
to be a polygon. Also, note that if we drop the nonnegativity of A, the answer to the
above question is clearly “no”.
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