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Abstract

We prove that every regular graph with ( n+1
2 ) + t edges, 06 t ¡ n + 1, can be decomposed

into n subgraphs G1; G2; : : : ; Gn such that |E(Gi)| = i and Gi6Gi+1 for i = 1; 2; : : : ; n − 1 and
|E(Gn)|= n+ t. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The following conjecture about decomposing a graph G with ( n+1
2 )6|E(G)|¡( n+2

2 )
into n ascending subgraphs has been one of the most fascinating problems regularly
mentioned by P. Erdős in his talks on “Unsolved Problems” over the years before
his decease. One of the reasons that this decomposition problem is interesting can be
seen from the decomposition of a star forest into stars. This special occasion, in fact,
corresponds to partition the set {1; 2; : : : ; n} into subsets with prescribed sums, see [7,8]
for details.
Ascending Subgraph Decomposition Conjecture (ASD Conjecture (Alavi et al. [1]).

Let G be a graph of size ( n+1
2 )6|E(G)|¡( n+2

2 ). Then E(G) can be partitioned into n
sets E1; E2; : : : ; En which induce subgraphs G1; G2; : : : ; Gn such that |E(Gi)|¡|E(Gi+1)|
and Gi is isomorphic to a subgraph of Gi+1 (denoted by Gi6Gi+1) for i=1; 2; : : : ; n−1.
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A graph G is said to have an ascending subgraph decomposition G1; G2; G3; : : : ; Gn
provided that the ASD conjecture holds for G. G1; G2; : : : ; Gn are the members of the
decomposition. In order to verify this conjecture, the following idea was utilized to
obtain almost all the known results.
Let G be a graph with ( n+1

2 )+ t edges, where 06t6n. Then we decompose G into
ascending subgraphs G1; G2; : : : ; Gn−1; Gn ∪T such that |E(Gi)|= i for i=1; 2; : : : ; n;
|E(T )|= t, and Gi6Gi+1 for i=1; 2; 3; : : : ; n − 1. Most of the known results were
obtained by induction, using edge deletion. For instance, forests and graphs with suf-
Jciently small degree (with respect to the number of edges) all have ASDs, as shown
in [1,3,6]. But, as we propose to prove that every regular graph has an ASD, the situ-
ation is quite diLerent since the deletion of edges do not preserve regular graphs. This
is the reason why we do not consider |E(G)|=( n+1

2 ) in this paper.
There are quite a few results in verifying the ASD Conjecture. In what follows, we

mention several results which are important in the proof of our main result.

Theorem 1.1 (Fu-Long Chen et al. [2]). Let 〈m1; m2; : : : ; mk〉 be a decreasing sequence
of positive integers such that

∑k
i=1 mi=( n+1

2 ) and mk−1¿n. Then the set {1; 2; : : : ; n}
can be partitioned into k sets S1; S2; : : : ; Sk such that for each i=1; 2; : : : ; k;∑

x∈Si x=mi.

Theorem 1.2 (Ma et al. [8]). Let G be a star forest with ( n+1
2 ) edges and each com-

ponent has at least n edges. Then G has an ASD with each member a star.

Note that if we have one component with the number of edges less than n in
Theorem 1.2, then we still have an ASD with each member a star (by Theorem 1.1).

Corollary 1.3. Let G be a graph with ( n+1
2 ) edges and E(G) be a disjoint union of

matchings M1; M2; : : : ; Mk such that all the matchings except possibly one of them
have at least n edges. Then G has an ASD with each member a matching.

Other than the above results, the following theorems are worthy of mention.

Theorem 1.4 (Fu [7]). Let G be a graph with ( n+1
2 ) edges. Then if �(G)6(n−1)=2,

then G has an ASD with each member a matching.

Theorem 1.5 (Chen and Ma [3]). Let G be an r-regular graph with ( n+1
2 ) edges. If

r62n=3, then G has an ASD.

In this paper, we complete this result and show that every regular graph has
an ASD.

2. The main result

Let G be a regular graph with valency r and |E(G)|=( n+1
2 )+ t for some n¿1 and

06t6n. In what follows, we shall decompose G into ascending subgraphs
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G1; G2; : : : ; Gn such that each member is a linear forest, this is, a forest with each com-
ponent a path.
As mentioned in [6], if the maximum degree �(G) of a graph G is not too big, then

G can be decomposed into ascending subgraphs such that each member is a matching.
Clearly, if �(G) gets bigger compared to n, then we may not be able to do so. Thus,
in [4], Faudree et al. started to use linear forests for their decompositions. Their linear
forests consist of paths of length at most 2. Not before long, Chen and Ma used paths
of length one and three to tackle a special class of regular graphs, see [2]. Now, we
go a step further to prove that ASD Conjecture holds for all regular graphs.
The idea of the decomposition comes from rearranging matchings obtained by an

equalized edge-coloring. First, we use Vizing’s Theorem and then the work of de Werra
to decompose G into r + 1 matchings M1; M2; M3; : : : ; Mr+1 such that their sizes diLer
by at most 1.

Lemma 2.1. Let Mi be a matching of size mi in G for i=1; 2; : : : ; k where
〈m1; m2; : : : ; mk−1; mk〉 is a decreasing sequence of positive integers such that∑k

i=1mi=(m+1
2 )+ t′; t′¿0 and mk−1¿m. Then the edge induced subgraph 〈⋃k

i=1Mi〉
of G can be decomposed into ascending subgraphs G1; G2; : : : ; Gm and T such that
Gi is a matching of size i for i=1; 2; : : : ; m, and T is a subgraph of 〈⋃k

i=1Mi〉 with
t′ edges.

Proof. Directly from Corollary 1.3.

Lemma 2.2. Let M and N be two disjoint matchings in G such that V (N )⊆V (M).
Then for any t6
 1

3 |N |�, there exists a linear forest whose paths are of length one
or three obtained by adding t edges of N to M .

Proof. We start with the matching M , then add the edges of N to M one by one to
make sure the new graph obtained contains no cycles or paths of length larger than
three. Clearly, this can be done if we add at most 
 1

3 |E(N )|� edges of N to M to
obtain M ′. By letting N ′ =N \M ′, we have the proof.

Lemma 2.3. Let M and N be two disjoint matchings in G such that V (N )⊆V (M).
Let H be a subset of N with maximum size h such that M ∪H is a disjoint union of
paths of length one or three. Then, for any integers i; j; 06i6k = 
|N |=2� − h and
06j6h− k, there exists a subset N ′ of N such that M ∪N ′ is a disjoint union of i
paths of length 7ve, j paths of length three and the others are independent edges.

Proof. First, we notice that if h¿
|N |=2�, then we discard the existence of paths of
length Jve. Observe that M ∪N is a disjoint union of even cycles and paths of odd
length. Now M ∪H is a disjoint union of paths of length one or three and the addition
of any edge from N \H will create an even cycle or a path of length Jve. (H is a set of
maximum size which has this constraint.) This implies that in M ∪H , there are exactly
|H |= h paths of length three. First, if M ∪N contains only cycles of length a multiple
of 4, then |H |= |N |=2 and thus no paths of length Jve exist and there are exactly h
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paths of length three. Clearly, N ′ can be chosen as a subset of H to obtain 06j6h
paths of length three. Now, we consider the case either M ∪N contains a cycle of length
4s + 2; s¿1, or paths of length larger than three. Let C =(v1; v2; : : : ; v4s+1; v4s+2) be
a cycle in M ∪N; s¿1. In order to obtain M ∪H , some edges of C must be deleted.
It is easy to see that there are two edges e1 and e2 on C \H which are incident to
a common edge and the addition of e1 gives a path of length Jve, i.e., M ∪H ∪{e1}
contains a path of length Jve. On the other hand, if M ∪N contains a path of length
2t + 1; t¿2, then the path contains exactly 
t=2� edges from N . This implies that we
can obtain a path of length Jve if and only if that path is of length 4x + 1; x¿1.
In this case, H contains exactly x edges in a path of length 4x + 1. Here, exactly 2x
edges of this path are in N . Therefore, when we count k, it comes from the number
of cycles of length 4s+ 2 only, since in other cases the edges in H are a half of the
edges in N . Hence, the number of paths of length Jve obtained is exactly the same as
the number of paths of length three disappear in M ∪H .
Now, we are ready to choose N ′. Let K be the set of edges in N \H such

that K ∪ (M ∪H) has k paths of length Jve and let i be the number of edges chosen
from K such that we have 06i6k paths of length Jve. Also, let K ′ be the set of
the above i edges. Then M ∪H ∪K ′ contains i paths of length Jve, h−i paths of length
three and the other paths are independent edges. Let H ′ be the set of edges which
are length Jve paths and H ′′ be a set of edges in H \H ′ such that |H ′′|= h − i − j;
06j6h − k. Then M ∪ (H \H ′′)∪K ′ contains exactly i paths of length Jve, j paths
of length three and all the others are independent edges. We conclude the proof by
letting N ′ =(H \H ′′)∪K ′.

The following result is crucial in the proof of our main result.

Lemma 2.4. Let M1; M2; : : : ; Mk and L1; L2; : : : ; Lk be matchings of size m and l, re-
spectively, such that k6
l=2� and |V (Mi)\V (Li)|62 for i=1; 2; : : : ; k. Then for each
i=1; 2; : : : ; k; Mi ∪Li can be decomposed into two subgraphs Gm+i and Gm−i such
that Gm+i is a linear forest containing a matching of size m and Gm−i is a matching
of size l− i, furthermore, Gm+i6Gm+i+1 for i=1; 2; : : : ; k − 1.

Proof. Let L′i be a subset of Li such that V (L′i)⊆V (Mi) and |L′i |= l − 2. Note that
we shall choose the two edges in Li\L′i which are either incident to one vertex of
V (Mi)\V (L′i), respectively, or contained in an even cycle of Mi ∪Li, or contained in
a path of length larger than one. Now, let Hi be a subset of L′i with maximum size
such that Mi ∪Hi is a linear forest with paths of length one or three. Without loss
of generality, let gi= |Hi| and g16g26 · · ·6gk . First, if gi¿i for each i=1; 2; : : : ; k,
then let Gm+i be the disjoint union of i paths of length three and (m− 2i) independent
edges, and Gm−i a matching of size l− i from Li\Gm+i for i=1; 2; : : : ; k. Since Gm+i+1

has one more length three path and Gm+i+1 has 3(i+1)+m− 2i− 2=m+ i+1 edges
which is one larger than the number of edges in Gm+i ; Gm+i6Gm+i+1. This concludes
the proof of this case.
On the other hand, if there exists a j; gj¡j6k, let j be the smallest one such that

gj = gj−1 = j − 1. Note that by Lemma 2.2, j¿
(l− 2)=3�+ 1. Then, by Lemma 2.3,
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we construct Gm+i and Gm−i as follows:

(i) For i=1; 2; : : : ; k−j, let Gm+i be the union of i paths of length three and (m−2i)
independent edges obtained from Mj+i ∪L′j+i. Put Gm−i=Lj+i \Gm+i.

(ii) For i= k − j + 1; k − j + 2; : : : ; 
(l − 2)=3�, let Gm+i be the union of i paths of
length three and (m − 2i) independent edges obtained from Mj−k+i ∪L′j−k+i. Put
Gm−i=Lj−k+i \Gm+i.

(iii) For i= 
(l−2)=3�+1; 
(l−2)=3�+2; : : : ; 
(l−2)=3�+(k−j), let Gm+i be the union
of i−
(l−2)=3� paths of length Jve, 2
(l−2)=3�−i paths of length three and m−

(l−2)=3�− i independent edges from Mj−k+i ∪L′j−k+i. Put Gm−i=Lj−k+i \Gm+i.

(iv) For i= 
(l− 2)=3�+ (k − j+1); : : : ; k − 1, let Gm+i be the union of (k − j) paths
of length Jve, i− 2(k − j) paths of length three and m+(k − j)− 2i independent
edge from Mj−k+i ∪L′j−k+i. Put Gm−i=Lj−k+i \Gm+i.

(v) Let Gm+k be the union of G′
m+k

∼=Gm+k−1 from Mj ∪L′j and an edge from Lj \L′j.
Put Gm−k =Lj \Gm+k .

Now, it is a routine matter to check that Gm+i6Gm+i+1 for i=1; 2; : : : ; k − 1.
(In (i)–(v), Gm+i has m+ i edges for i=1; 2; : : : ; k; Gm+i6Gm+i+1 follows.)

Theorem 2.5. Let G be an r-regular graph of size ( n+1
2 ) + t edges where 06t6n.

Then G has an ascending subgraph decomposition.

Proof. Let |V (G)|= v. There are three cases to consider. Since the Jrst case can be
proved by using the technique in [2] and also the proof is similar to the second case,
we omit the proof here.
Case 1: r62n=3. See [2] for details.
Case 2: 2n=3¡r¡v=2.
By Vizing’s Theorem and the adjustment of colors, G has an equalized (r+1)-edge

coloring which induces r+1 matchings M1; M2; : : : ; Mr+1 where m= |M1|¿|M2|¿ · · ·¿
|Mr+1|¿m− 1. Now, consider two subcases.
Case 2(a): v is even. First, we claim m= |M1|= |M2|= · · · = |M2(n−m)+1|=

(v − 2)=2. By direct counting, we see that m6(v − 2)=2. Assume that m6(v − 4)=2.
Then rv=26(v− 4)=2(r+1) which implies v¿4r+4. Since |E(G)|=( n+1

2 )+ t= vr=2;
(n2 + 3n)=2¿vr=2¿r(2r + 2); n2 + 3n¿4r2 + 4r. Now, if r¿ 2

3n, then n2 + 3n¿
4(2n=3)2 + 4(2n=3) which is not possible. Hence, we conclude that m=(v − 2)=2.
In order to prove the claim, suppose that |M2(n−m)+1|=m − 1. Then rv=262(n − m)
((v− 2)=2) + [(r + 1)− 2(n− m)]((v− 4)=2), and we have v− 4r − 4 + 4n− 4m¿0.
By the assumption that r¿2n=3; v+ 2r − 4m− 4¿0. Since r¡v=2; 2v− 4m− 4¿0,
i.e., m¡(v− 2)=2 which is a contradiction. Thus, we have the claim.
Now, we are ready for the decomposition. Since for any two matchings Mi1 and

Mi2 ; 16i1; i262(n−m)+1; |V (Mi1 )\V (Mi2 )|62, and |Mi1 |+
|Mi2 |=2�¿n. Therefore,
we can pair oL M1; M2; : : : ; M2(n−m)+1 into n − m pairs and one matching M1 of size
m. By Lemma 2.4, we obtain Gm+i’s and Gm−i’s for i=1; 2; : : : ; (n − m), such that
Gm+i6Gm+i+1 and Gm−i6Gm−i+1. Also, we let Gm be M1.
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Finally, we consider the decomposition of M =
⋃r+1
i=2(n−m)+2 Mi. Since |Mi|¿m − 1

for each i=2(n−m)+2; : : : ; r+1, and
∑r+1

i=2(n+m)+2 |Mi|=(2m−n2 )+ t. By Lemma 2.1,
M can be decomposed into matchings of size i; i=1; 2; : : : ; 2m − n − 1 and a
graph T induced by t edges in M . Let these matchings be G1; G2; : : : ; G2m−n−1. Then
G1; G2; : : : ; Gn ∪T is the desired decomposition.
Case 2(b): v is odd. By a similar argument, we have m= |M1|= |M2|= · · · =

|Mn−m+1|=(v − 1)=2, and |Mr+1|= |Mr|= · · · = |Mr−n+m+1|=(v − 3)=2. Now, let
Li=Mr−n+m+i for i=1; 2; : : : ; n − m + 1 as in the proof of Lemma 2.4. Then the
proof follows by the same argument as in Case 2(a).
Case 3: r¿v=2. First, we assume that G is not a complete graph which has an

ASD with each member a star without a doubt. Thus, |V (G)|¿n + 2. Since r¿v=2;
G contains a hamiltonian cycle by basic property of graph theory. Now, let
H = {C1; C2; : : : ; Cx} be a collection of x hamiltonian cycles such that x is the
smallest integer with r − 2x¡v=2. Let G′ =G\H . Clearly, G′ is an (r − 2x)-regular
graph. For convenience, let r′ = r − 2x. Now, consider 4 cases on r′.
Case 3(a): r′ =(v − 2)=2 (v is even). Again, G′ has a v=2 equalized edge-

coloring which induces v=2 matchings M1; M2; : : : ; Mv=2, furthermore |Mi|=(v−2)=2 for
i=1; 2; : : : ; v=2. First, if (v − 2)=2 + 
(v − 2)=4�¿n then we can use the argument as
in Case 2 to obtain the ASD. Note here that a hamiltonian cycle can be decomposed
into two matchings each of size v=2.
On the other hand, let ((v−2)=2)+
(v−2)=4�¡n and v=2=2k or 2k−1 as the case

may be. Let Li=Mk+i for i=1; 2; : : : ; k−1. By Lemma 2.4, for i=1; 2; : : : ; k−1; Mi ∪Li
can be decomposed into a linear forest G(v−2)=2+i with (v−2)=2+ i edges which is the
union of disjoint paths with length one or three (or Jve), and G(v−2)=2−i a matching
with (v − 2)=2 − i edges. Let G(v−2)=2 be the matching Mk . Then we have Gi6Gi+1

for i=(v− 2)=2− (k − 1); (v− 2)=2− (k − 1) + 1; : : : ; (v− 2)=2 + (k − 1).
Since we have x hamiltonian cycles, (v− 2)=2 + k − 1 + x¿n. For otherwise,

|E(G)|6 v− 2
2

v
2
+
(
n− v− 2

2
− k

)
v

=
v2

4
− v

2
+ nv− v2

2
+ v− kv

= −v
2

4
+
v
2
+ nv− kv¡n(n+ 1)=2 (v¿n+ 2):

Since x¿n− (v− 2)=2− k + 1, we can take n− (v− 2)=2− k + 1 hamiltonian cycles
and make the following decomposition:

(1) For i= v=2 + k − 1; v=2 + k; : : : ; n; Gi is a subgraph of a hamiltonian cycle which
has i edges such that Gi6Gi+1.

(2) As a counterpart of Gi, we have M ′
v=2−k+1; M

′
v=2−k ; Gv=2−k−1; Gv=2−k−2; : : : ; Gv−n

which are matchings with v=2− k + 1; v=2− k; : : : ; v− n edges, respectively.
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(∗) Finally, take x − (n − (v − 2)=2 − k + 1) remaining hamiltonian cycles which
can be decomposed into two perfect matchings, respectively and M ′

v=2−k−1; M
′
v=2−k−2,

to obtain the smaller members Gi and T a set of t edges where Gi is a matching with
i edges, i=1; 2; : : : ; v− n− 1. (Note here that v=2− k¿v− n− 1.)
Case 3(b): r′ = v=2 − 2 (v is even). In this cases E(G′) can be partitioned into

(v−2)=2 matchings such that |M1|= |M2|= · · · = |M(v−4)=2|=(v−2)=2 and |M(v−2)=2|=
(v − 4)=2. Now, let G′

(v−2)=2 =M(v−2)=2 and the other members be obtained by the
other matchings and x hamiltonian cycles following the same idea as in the proof of
Case 3(a). Now, there are t + 1 edges in T ′ (corresponding to T in Case 3(a)). By
letting e∈T ′; G(v−2)=2 =G′

(v−2)=2 ∪{e} and T =T ′ \{e} we have the desired ASD.
Case 3(c): r′ =(v − 1)=2 (v is odd). Again, by direct counting, E(G′) can be par-

titioned into matchings M1; M2; : : : ; M(v+1)=2 such that |M1|= |M2|= · · · = |M(v+3)=4|=
(v − 1)=2 and the others are of size (v − 3)=2. Now, the proof follows by a similar
argument as above, see Case 3(a). Note here that v is odd, so we decompose every
unused hamiltonian cycles into a matching of size (v − 1)=2 and a subgraph of size
(v+1)=2 containing a matching of size (v−1)=2. Since every unused subgraph contains
more edges than the largest smaller members in (∗) of Case 3(a). We have the proof.
Case 3(d): r′ =(v− 3)=2 (v is odd). The proof is similar to that of Case 3(c).

3. Concluding remarks

In Case 3, we have spent a lot of time in dealing with the case when G is of class 2.
In fact, it is conjectured that all r-regular graphs of even order not greater than 2r is
of class 1. Therefore, if the conjecture is true, then our proof will be much shorter for
this case. On the other hand, since we mainly apply edge-coloring to obtain matchings
and then combine them together, suitably before we decompose the graph. Hence, in
case that we have a graph G which is almost regular and we can make sure for any
two matchings Mi; Mj; |V (Mi)\V (Mj)|62, then we can prove that G has an ASD as
well.
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