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An explicit model for a quantum channel in 2DEG
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A two-parametric model for a channel in a two-dimensional electron gas (2DEG) is pro-
posed which allows for the explicit analytical solution for the problem of quantum electron
transport through the constriction. Conductance step smearing appears naturally and a sim-
ple criterion for the step occurrence in terms of channel parameters is given.
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1. Introduction

An interest has persistently been growing in micro- and nano-structures in which an electron can move
ballistically through some active regiof][ Quantization of the conductance of a narrow ballistic channel
in a two-dimensional electron gas (2DEG) By = 2€?/h, first discovered by van Weest al. [2] and
Wharamet al. [3], is, perhaps, one of the most exciting phenomena which can be realized in such structures.
Moreover, the differential conductance may also be quantized in such structures as a function of applied
bias @, 5]. Though the principal physical reason for the quantization effects has been clear since the earliest
works [2-5], various theoretical approaches have been exploited for treating the problem (se&;23Jy. [
Smooth B9, 17, 18] and abruptly L0-15] changing channel boundaries were assumed and some channel
wall roughnessZ0, 21] was taken into account. The differential conductance quantization and other effects
of non-zero bias4, 5, 19, 22, 23] were described.

The so-called ‘adiabatic’ approximation based on the Born—Oppenheimer app23hébr [a hard-wall
smooth channel@-9] is, perhaps, one of the most developed and widely used. Nevertheless no explicit
model of a constricting quantum channel has yet been analysed which allows for an exact analytical adia-
batic solution for electron quantum transmission. Such a model however, though not a general one in itself,
could permit a good physical insight and provide physical criteria for experimental observation of quan-
tization effects in terms of model structure parametdtsis useful for experimental structure evaluation
and for experimental data analysis and can be easily generalized. In this paper we propose and analyse a
two-parametric model of that kind.

TPermanent address: Moscow State University of Technology “Stankin”, Moscow 101472, Russia.

1Actually, an attempt of that kind was undertakenii][but a parabolic potential used there can hardly be brought into
correspondence to some real structure and is in fact only an approximation near the bottleneck.
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Fig. 1. Schematic picture of model channel boundaries for various values of dimensionless patAmgtefl) Swg = 0.1; (2) Bwg =
0.2; (3) Bwg = ; (4) boundary defined by (Lfor Bwg = 0.5, W/wg = 10.

2. Model

One needs at least two parameters as a minimum set to describe a constricting channel, i.e. the bottleneck
width, wo, and the characteristic channel lengtiAssuming that the 2DEG leads to the channel lies far away
from its bottleneck at a distance much longer thamd is much wider thamg one can consider a channel,
which is broadening smoothly from the bottleneck to infinite 2DEG reservoirs. For a stiff-wall channel model
one thus has to find a proper and convenient two-parametric fungtienf (x) for anx-dependent channel
border, where is the coordinate along the channel anid in the perpendicular direction to the plane of the
2DEG sheet. We put (x) = 0 for one border, while for the other we chooké) in the form

f(X) = wo - cosh(Bx), 1)

which, as one shall see, allows for an exact analytical adiabatic solution for the scattering problem of quantum
electron transmission throughout the channel. For such borders the variable width of a channel is:

w(X) = wo - COSH(BX). (2)

Channel boundaries described by ethgre drawn schematically in Fid.for various values of dimension-
less parameteBwg. One can easily see that whgmg <« 1 we have dong channel, while foBwg > 1 we

have ashortone. Varying parametegs andwg one can adjust such a model channel very close to a number
of experimental structures. It is also worth mentioning that the same paragéteretermines the spatial
scale of channel boundary variationgaan be considered as an inverse characteristic length of the channel:

B ~1"1
The symmetric channel with boundarigs = f (x) can obviously be treated in the same way.

For a particular (usually the lowest) two-dimensional (2D) subband the problem of electron transmission
through a stiff-wall channel is that of a solution of a 2D Schrédinger equation for stationary states with zero
boundary condition at the channel walls and finite asymptotic at infinity for wavefunétigny)

h? d?® N h? d?®
2m dx2 = 2m dy?
P(x,y=0=0  o(xy=fx)=0 3)

=Eo,

where the energ¥ is measured relative to the edge of the 2D subband. In the adiabatic approxingation [
9, 20] one searches for a stationary solution 8f#s a product

D(X, y) = ¥(X) (X, ), 4)
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assuming thap (x, y) satisfies the equation
h? 92¢  h? 32
mdx? ﬁd—yzﬁ-E(X)(p—O, (5)

with the boundary conditions

p(X,y=0) =X y=f(x) =0, (5)
wherex is considered as a parameter, but not as a variable.
For that one easily finds a discrete spectrum

72n?
e(X) = en(X) = wz—(x)’ (6)
with
2 . 7mn
p(X,y) = | ——sin—-—y, (1)

w(X) w(X)
andn =1, 2, ... being a transverse mode quantum number.
Substituting 4), (6), (7) into egn @) and neglecting slowly (‘adiabatically’) varying term&-p, 20] one
finds the one-dimensional (1D) Schrodinger-like equation for a sintilemode wavefunctiony(x) of
electron motion along the channel in the effective quasi-potesiial):

h? d?y,
2m dx2
Transitions between transverse modes are not thus taken into account by the adiabatic approximation.
Intermode scattering breaks the adiabatic approximation when a channel is not smooth éhddigiv-|
ever intermode scattering results in a change of a longitudinal momentum of the ordéw@f) for a
constant energy, so it is essential only when the spatial scale of channel boundary variation is of the order of

w(X)/7. The latter can be locally characterized by a logarithmic derivati\(&) /w(x) which for a model
under consideration is:

+[E —en(X)]ym = 0. ®)

w'(X)/w(x) = B - tanh(Bx).
When the dimensionless parameter
A= Bw/r <1, 9)
intermode scattering is negligible in the region

IX| < B~ tInA

unless a ballistic regime holdsThat is a condition fotocal adiabacityin the vicinity of the bottleneck.
However, wher.~1 is small (i.e. dong channel), one has

ﬂflln)» > 1,

so such a channel can be considered as adiabatic at the length longer than its characteristic iength,
almost globally adiabatic B].

Equation () may look unsatisfactory because the width of the channel becomes infinitexatrads to
infinity. To limit the channel width by some finite value and to formally include into the model the leads of
the width~ W > wg atx — oo one can use, for example

wo COSh(BX)
1+ (wo/ W) coshBx)
Iadiabatic approximation fails near turning points, however the asymptotic results hold.

f(x) = (1+ wo/W) 1)
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Fig. 2. Effective quasi-potentiadn (x) for the first three transversal modes= 1,2, 3): A A = 2r; B A = 3r; Fermi-energygf is
shown in A and B for the same value &g /8) = 2.

instead of 1). We show a channel bounda¢¥) in Fig. 1 for illustration. The channel length can then be
estimated ag ~ | In(W/wp). It, however, has no effect on electron transmission through the channel when
L > | so eqns §)—(8) with w(x) in the form of @) are valid anyway. Yet this may be useful, say, for
transversal mode counting.

3. Results and discussion

The problem of electron transmission through a constricted channel is thus reduced to a 1D scattering
problem with a potential barrier,(x). When the channel widtly (x) is given by formula 2), eqn @) leads
to the following equation

25212
v+ <k2 + u)w =0, (10)
cost Bx
where we put
h?k?

andx is defined by 9). Equation £0) is similar to that considered by Pdschel and Telg# [ The effective
quasi-potentiatn (x) for the first three mode@ = 1, 2, 3) is shown in Fig2 for two values of parameter.
A =27 andi = 3x.
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With the substitution
Y = cosi(BX) u,

where

s(s— 1) = A%n?, s=3(1+iv4a2n2 - 1),
eqn (L0), by introducing the new variable = sint?(8x), is reduced to a hypergeometric equation (see,
e.g. R3)

z1-2u"+[c—(@+b+1zlu —abu=0, (11)
witha = (s+ix)/2,b = (s—ik)/2,c = 1/2,k = k/B. As follows from (1) the general solution of
egn (L0) is of the form

¥ = C1y1 + Cayz, (12)

where

Y1 = cosif(Bx) - 2F1(a. b; 1/2; — sinf?(Bx)).
Y2 = cosi(Bx) - sinh(BX) - 2F1(a+ 1/2, b+ 1/2; 3/2; — sintP(Bx)),

2F1 being the hypergeometric function of corresponding argumentsCarashdC, are arbitrary constants.
So, one can find the exact analytical solution of etf).(

To solve the scattering problem one should match the general sol@ipto(the boundary conditions at
X = £00

Y (X)x—00 = eikX + refikx’ Y (X)x——00 = teikx’

wherer andt are the reflection and transmission amplitude, respectively. That can easily be done using
the asymptotic expansion for the hypergeometric function, which leads to the known expression for the
transmission coefficieri = |t|2 (see, e.g.Z6)]) for the nth transversal mode:

sint?(rk/B)

Th(k) = . (13)
¥ sintP(rk/B) + cosi (/422 — 1/2)
The reflection coefficient is found immediatelyBs= [r|2 =1 —T.
For the above scattering problem we also find the coeffic@p@ndC, as
1 1 3 3
o TG—orm )G —-3r) o _ TE—57-)rGE = o74) (19)

20 (1/2)T (—ik)gxin2 2= TN (/2 (—ik)exhnz

for anyn, whererl" is the gamma function of corresponding argument and we introduce the notaticas
Kk £8,8 =/4r2n2 — 1/2. Formulae 13) and (L4) give full analytical solution of the problem.
Fork, § > 1 the transmission coefficieiit for anyn can be approximated by the simplified expression:

1 1
Th = ~ .
"7 1+ cosk nd/sintfrix 1+ 20—

i)
wo

and eqn 15) shows thafl}, are step-like functions of a variable

én = (kwo/m —n)/B

with a step-smearing width of the order gfvg/72 = 1/ 1. Steps are thus well-defined for the parameter
of egn @), » > 1. Transmission coefficient, for somen calculated numerically as a function &fat

(15)

Wheni > 1,8 ~ An, so
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Fig. 3. Dependence of the transmission coeffici@nbn electron energy through the variable= (kwg/7 — n)/g for various values
of parametei: AL = 0.5;BA = 1; CA = 7; D » = 3r; dash-dot line-A = 1; dashed line-r = 2; solid line— = 5; dotted
line—n = 10.

various values of parametemre plotted in Fig3 (due to eqn (10 this is, in fact, T, dependence on electron
energy). One can see that when- 1 they have a sharp enough stepwise shape, and the step smearing is
still less than 1 even foxr = 1, but it becomes more than 1 when= 0.5. Step smearing is consistent with
estimation 15). For A < 1 the form of a step changes drastically with the mode nunthdat for a few
lowest modes only. Fox > 1 the form of a step only slightly depends on a mode number even fan kna
this dependence tends to vanish whencreases.

With the help of eqnX3) one can estimate the ballistic conducta&ef a quantum channel in a degen-
erate 2DEG of geometryi] at the low temperature limit as

G= — nzzlen(kF), (16)

wherekr is the Fermi wave-number of 2DEG in the leads (see, 24).

In Fig. 4 we present the conductan& calculated numerically in accordance witt6), as a function
of a variablet = (kpwo/m) for a set of values of parameter We sum as many ternmis > & in (16) as
necessary to reach the smallest estimated error due to the summation of a finite number of terms for all values
of the variables under consideration.

One can see that the step-like dependend® oh & survives even wheia = 1 but only a few (two to
three) first steps are apparent enough. However step structure is obviously abseat®5. Forir > =
conductance steps show no marked dependence on the step number up to quite a high number of steps.
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Fig. 4. ConductanceG, of a channel calculated numerically as a function of a varigbte(kp wg/m) for a set of values of parameter
A (D)Ar=052)r=1;3)r=15;4)r=m; (5) 1= 2r; (6) . = 57. (Every subsequent curve is shifted up by 1 for clarity).

Actually our calculations show thdN > 20 steps are perfectly apparent, almost without smearing, say, for
L = 2m, i.e. Bwg = 0.5. It evidently indicates out that if considerable step smearing, as well as higher
order step smearing, is observed in a long smooth channel it likely results from some other reason, probably
from scattering by channel wall roughneg9,[21]. The above results, therefore, enable one to evaluate the
‘quality’ of a channel.

At £ < 1 no free propagating mode exists and the contact behaves as a peculiar tunnelling junction. When
A > 1 its conductance for the valuesfuhot very close to 1 can be estimated in accordance WHhds:

2T(E-D)

GN 1_e—27'[)u-

It decays exponentially witkg wo decreasing as seen in FiA where some numerical results are presented
for a low-mode channel. Low modes dominate the contact conductaicg-ifl but for smaller. higher
modes contribute significantly due to tunnelling through the quasi-potential barrier. If, esgr one can
see at FighA (2) thatG ~ 0.1 even wherf is as small as 0.8.

Whené < 2 a particular case of a single-mode channel is realized. Nevertheless the higher modes may
as well contribute significantly to contact conductance by tunnelling through the quasi-potential barrier if
is not very large. This is well illustrated in Fi®A where the first transmission coefficieft is shown in
comparison with the whole conductance and with the contribution of higher modes.

In Fig. 5B the conductance of a contact with two propagating modes compared to the contribution of
higher modes is shown for varioisvhich demonstrate typical features for a channel with more propagating
modes. Tunnelling modes contribute near the step p&iatsm. If A =~ 27 their contribution is substantial
far enough from the step point, i.e. & — m) ~ +1. For smaller values of the contribution of tunnelling
modes, witn > m, to the channel conductance(at — 1) < & < mis comparable with that of propagating
modes, and steps are smeared markedly. When3z the conductance fagr < mis determined mostly by
Tn with n < m, except for the small vicinity just near tmath step point and step smearing is small, which
means that only propagating modes actually contribute to the conductance when pakasiatge enough.
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Fig. 5. A Conductance(, of a contact with none and single propagating mode calculated numerically; also the transniittéorce
the lowest mode and the contribution of highiar> 2) modes,AG® are shown for comparisot—solid line, T;—dashed line;
B conductanceG, of a contact for the two lowest propagating modes compared to the contribution of kigheB) modes AG®):
Wr=1,@2xr=mn,3)r=3r.
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We also draw attention to the fact that at the step pdints m) the tunnelling component contribute about
0.5Go.
Wheni > 1foré < (m+ 1) far enough from thém + 1)th step their contribution can be estimated,
using (5), as:
o0 e2Th(§—m—1)
> Tnke) ~ —
n=m

With the help of (3), (15) one can also estimate the differential conductance of a long channel under
some, not very high, biad/, between the 2DEG reservoirs. There are reasons to believe that in a long
narrow channel the electric potential varies monotonously along-vas (see alsoZ8]). In that case the
approach developed irt[ 21] can be applied usind, given by eqns 13), (15) instead of the step-like
transmission coefficient used iA,[21]. Assuming that a bias is small enough so one can neglect the change
of quasi-potential, we find for the current, through a channel

e [°fF

T(E)dE, (17)

7h ceg—eV

0.5 .

1.5

1.0

0.5

B

Fig. 6. Low bias voltage dependence of differential conductagcef a long narrow channel witi propagating modes: M = 2;
Bm=31r=1,2)r=m;3)A=3r;(4) 1 =5r.
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where:
- h2k?
(E) ; a(K), o
Differential conductanceg(V) = dl/dV, then is:
&2
g=—T(eg —eV). (18)
h

Bias dependence of the differential conductance of a narrow channel with only anfgwppagating
modes calculated for various values jofis shown in Fig.6. It decreases step-like with increasing bias
at [4, 21]

o EF en(0)

\Y — e n=mm-1m-2,...,1 (29)
that is a particular feature of 1D flow. The channel reaches its ‘saturated’ regime when:
—¢e1(0
V > Vi = w (20)

Nevertheless the differential conductance never reaches zero due to higher modes tunnelling. The steps are
quite sharp when > 37, smear vastly for smaller, and disappear when< 1.

We should emphasize that the above approach is validlfamgachanneblnd for quitelow bias It means
that the step-wise voltage dependence and saturation of differential conductance can be observed in a long
channel with only a few propagating modes, wignis not very high For higher bias and for a short channel
the potential distribution along the channel should be considered more carefully. We found earlier that space-
charge effects at the mouths of a channel became essential at highe21bi2® fand results in substantial
non-zero differential conductivity & > Vy5. So some background is actually always present resulting in
non-zero differential conductance at a biasigher thanvy,, and the higher i¥,, the more pronounced are
the background effects. Voltage dependence of a conductance for a short channel was estirh8té@,in [
21, 22] and the results also differ markedly from those given by formulade(20).

4. Summary

In this paper we consider the problem of electron transport through a constricted quantum channel in a
2DEG. We propose and analyse a convenient two-parametric model for such a channel, which allows for an
analytical solution of the scattering problem in the adiabatic approximation. Conditions for observation of
channel conductance quantum steps and step-like differential conductance dependence on bias voltage are
expressed in terms of model parameters. We found that intrinsic smearing of the quantum steps is not crucial
for even quite a short channel—almost up to the limit of adiabatic approximation. The model, by fitting of
the parameters, can be used for a good variety of experimental structures, and thus enables one to estimate
the quality of a channel and to analyse experimental data.
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