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An explicit model for a quantum channel in 2DEG
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A two-parametric model for a channel in a two-dimensional electron gas (2DEG) is pro-
posed which allows for the explicit analytical solution for the problem of quantum electron
transport through the constriction. Conductance step smearing appears naturally and a sim-
ple criterion for the step occurrence in terms of channel parameters is given.
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1. Introduction

An interest has persistently been growing in micro- and nano-structures in which an electron can move
ballistically through some active region [1]. Quantization of the conductance of a narrow ballistic channel
in a two-dimensional electron gas (2DEG) byG0 = 2e2/h, first discovered by van Weeset al. [2] and
Wharamet al. [3], is, perhaps, one of the most exciting phenomena which can be realized in such structures.
Moreover, the differential conductance may also be quantized in such structures as a function of applied
bias [4, 5]. Though the principal physical reason for the quantization effects has been clear since the earliest
works [2–5], various theoretical approaches have been exploited for treating the problem (see, e.g. [6–23]).
Smooth [6–9, 17, 18] and abruptly [10–15] changing channel boundaries were assumed and some channel
wall roughness [20, 21] was taken into account. The differential conductance quantization and other effects
of non-zero bias [4, 5, 19, 22, 23] were described.

The so-called ‘adiabatic’ approximation based on the Born–Oppenheimer approach [23] for a hard-wall
smooth channel [6–9] is, perhaps, one of the most developed and widely used. Nevertheless no explicit
model of a constricting quantum channel has yet been analysed which allows for an exact analytical adia-
batic solution for electron quantum transmission. Such a model however, though not a general one in itself,
could permit a good physical insight and provide physical criteria for experimental observation of quan-
tization effects in terms of model structure parameters.1 It is useful for experimental structure evaluation
and for experimental data analysis and can be easily generalized. In this paper we propose and analyse a
two-parametric model of that kind.

†Permanent address: Moscow State University of Technology “Stankin”, Moscow 101472, Russia.
1Actually, an attempt of that kind was undertaken in [17] but a parabolic potential used there can hardly be brought into
correspondence to some real structure and is in fact only an approximation near the bottleneck.
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Fig. 1.Schematic picture of model channel boundaries for various values of dimensionless parameter(βw0): (1)βw0 = 0.1; (2)βw0 =

0.2; (3)βw0 = π ; (4) boundary defined by (1′) for βw0 = 0.5, W/w0 = 10.

2. Model

One needs at least two parameters as a minimum set to describe a constricting channel, i.e. the bottleneck
width,w0, and the characteristic channel length,l . Assuming that the 2DEG leads to the channel lies far away
from its bottleneck at a distance much longer thanl and is much wider thanw0 one can consider a channel,
which is broadening smoothly from the bottleneck to infinite 2DEG reservoirs. For a stiff-wall channel model
one thus has to find a proper and convenient two-parametric functiony = f (x) for anx-dependent channel
border, wherex is the coordinate along the channel andy is in the perpendicular direction to the plane of the
2DEG sheet. We putf (x) = 0 for one border, while for the other we choosef (x) in the form

f (x) = w0 · cosh(βx), (1)

which, as one shall see, allows for an exact analytical adiabatic solution for the scattering problem of quantum
electron transmission throughout the channel. For such borders the variable width of a channel is:

w(x) = w0 · cosh(βx). (2)

Channel boundaries described by eqn (1) are drawn schematically in Fig.1 for various values of dimension-
less parameterβw0. One can easily see that whenβw0 � 1 we have alongchannel, while forβw0 � 1 we
have ashortone. Varying parametersβ andw0 one can adjust such a model channel very close to a number
of experimental structures. It is also worth mentioning that the same parameterβ−1 determines the spatial
scale of channel boundary variation soβ can be considered as an inverse characteristic length of the channel:

β ∼ l−1.

The symmetric channel with boundaries|y| = f (x) can obviously be treated in the same way.
For a particular (usually the lowest) two-dimensional (2D) subband the problem of electron transmission

through a stiff-wall channel is that of a solution of a 2D Schrödinger equation for stationary states with zero
boundary condition at the channel walls and finite asymptotic at infinity for wavefunction8(x, y)

h̄2

2m

d28

dx2
+

h̄2

2m

d28

dy2
= E8,

8(x, y = 0) = 0, 8(x, y = f (x)) = 0, (3)

where the energyE is measured relative to the edge of the 2D subband. In the adiabatic approximation [6–
9, 20] one searches for a stationary solution of (3) as a product

8(x, y) = ψ(x) φ(x, y), (4)
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assuming thatφ(x, y) satisfies the equation

h̄2

2m

∂2φ

dx2
+

h̄2

2m

∂2φ

dy2
+ ε(x)φ = 0, (5)

with the boundary conditions

φ(x, y = 0) = φ(x, y = f (x)) = 0, (5′)

wherex is considered as a parameter, but not as a variable.
For that one easily finds a discrete spectrum

ε(x) = εn(x) =
π2n2

w2(x)
, (6)

with

φ(x, y) =

√
2

w(x)
sin

πn

w(x)
y, (7)

andn = 1,2, . . . being a transverse mode quantum number.
Substituting (4), (6), (7) into eqn (3) and neglecting slowly (‘adiabatically’) varying terms [6–9, 20] one

finds the one-dimensional (1D) Schrödinger-like equation for a singlenth mode wavefunctionψn(x) of
electron motion along the channel in the effective quasi-potentialεn(x):

h̄2

2m

d2ψn

dx2
+ [E − εn(x)]ψn = 0. (8)

Transitions between transverse modes are not thus taken into account by the adiabatic approximation.
Intermode scattering breaks the adiabatic approximation when a channel is not smooth enough [6]. How-

ever intermode scattering results in a change of a longitudinal momentum of the order ofπ/w(x) for a
constant energy, so it is essential only when the spatial scale of channel boundary variation is of the order of
w(x)/π . The latter can be locally characterized by a logarithmic derivativew′(x)/w(x) which for a model
under consideration is:

w′(x)/w(x) = β · tanh(βx).

When the dimensionless parameter

λ−1
= βw/π < 1, (9)

intermode scattering is negligible in the region

|x| < β−1 ln λ

unless a ballistic regime holds.1 That is a condition forlocal adiabacityin the vicinity of the bottleneck.
However, whenλ−1 is small (i.e. alongchannel), one has

β−1 ln λ > 1,

so such a channel can be considered as adiabatic at the length longer than its characteristic length,l , i.e.
almost ‘globally’ adiabatic [8].

Equation (1) may look unsatisfactory because the width of the channel becomes infinite whenx tends to
infinity. To limit the channel width by some finite value and to formally include into the model the leads of
the width∼ W � w0 at x → ∞ one can use, for example

f (x) = (1 + w0/W)
w0 cosh(βx)

1 + (w0/W) cosh(βx)
(1′)

1Adiabatic approximation fails near turning points, however the asymptotic results hold.
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Fig. 2. Effective quasi-potentialεn(x) for the first three transversal modes(n = 1,2,3): A λ = 2π ; B λ = 3π ; Fermi-energy,εF is
shown in A and B for the same value of(kF/β) = 2π .

instead of (1). We show a channel boundary(1′) in Fig. 1 for illustration. The channel length can then be
estimated asL ≈ l ln(W/w0). It, however, has no effect on electron transmission through the channel when
L � l so eqns (6)–(8) with w(x) in the form of (2) are valid anyway. Yet this may be useful, say, for
transversal mode counting.

3. Results and discussion

The problem of electron transmission through a constricted channel is thus reduced to a 1D scattering
problem with a potential barrierεn(x). When the channel widthw(x) is given by formula (2), eqn (8) leads
to the following equation

ψ ′′
+

(
k2

+
β2λ2n2

cosh2 βx

)
ψ = 0, (10)

where we put

E =
h̄2k2

2m
(10′)

andλ is defined by (9). Equation (10) is similar to that considered by Pöschel and Teller [24]. The effective
quasi-potentialεn(x) for the first three modes(n = 1,2,3) is shown in Fig.2 for two values of parameterλ:
λ = 2π andλ = 3π .
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With the substitution

ψ = coshs(βx)u,

where

s(s − 1) = λ2n2, s =
1
2

(
1 + i

√
4λ2n2 − 1

)
,

eqn (10), by introducing the new variablez = sinh2(βx), is reduced to a hypergeometric equation (see,
e.g. [25])

z(1 − z)u′′
+ [c − (a + b + 1)z]u′

− abu = 0, (11)

with a = (s + i κ)/2, b = (s − i κ)/2, c = 1/2, κ = k/β. As follows from (11) the general solution of
eqn (10) is of the form

ψ = C1ψ1 + C2ψ2, (12)

where

ψ1 = coshs(βx) · 2F1(a,b; 1/2; − sinh2(βx)),

ψ2 = coshs(βx) · sinh(βx) · 2F1(a + 1/2,b + 1/2; 3/2; − sinh2(βx)),

2F1 being the hypergeometric function of corresponding arguments, andC1 andC2 are arbitrary constants.
So, one can find the exact analytical solution of eqn (10).

To solve the scattering problem one should match the general solution (12) to the boundary conditions at
x = ±∞

ψ(x)x→∞ = eikx
+ re−ikx, ψ(x)x→−∞ = teikx,

wherer and t are the reflection and transmission amplitude, respectively. That can easily be done using
the asymptotic expansion for the hypergeometric function, which leads to the known expression for the
transmission coefficientT = |t |2 (see, e.g. [26]) for thenth transversal mode:

Tn(k) =
sinh2(πk/β)

sinh2(πk/β)+ cosh2
(
π

√
4λ2n2 − 1/2

) . (13)

The reflection coefficient is found immediately asR = |r |
2

= 1 − T .
For the above scattering problem we also find the coefficientsC1 andC2 as

C1 =
0

(1
4 −

i
2γ−

)
0

(1
4 −

i
2γ+

)
20(1/2)0(−i κ)ei κ ln 2

, C2 = −
0

(3
4 −

i
2γ−

)
0

(3
4 −

i
2γ+

)
20(3/2)0(−i κ)ei κ ln 2

(14)

for anyn, where0 is the gamma function of corresponding argument and we introduce the notationsγ± =

κ ± δ, δ =

√
4λ2n2 − 1/2. Formulae (13) and (14) give full analytical solution of the problem.

Forκ, δ � 1 the transmission coefficientT for anyn can be approximated by the simplified expression:

Tn =
1

1 + cosh2πδ/ sinh2πκ
≈

1

1 + e2π(δ−κ)
. (15)

Whenλ > 1, δ ≈ λn, so

κ − δ ≈

(
k −

πn

w0

)/
β,

and eqn (15) shows thatTn are step-like functions of a variable

ξn = (kw0/π − n)/β

with a step-smearing width of the order ofβw0/π
2

= 1/πλ. Steps are thus well-defined for the parameter
of eqn (9), λ ≥ 1. Transmission coefficientsTn for somen calculated numerically as a function ofξ at
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Fig. 3. Dependence of the transmission coefficientTn on electron energy through the variableξn = (kw0/π − n)/β for various values
of parameterλ: A λ = 0.5; B λ = 1; C λ = π ; D λ = 3π ; dash-dot line—n = 1; dashed line—n = 2; solid line—n = 5; dotted
line—n = 10.

various values of parameterλ are plotted in Fig.3 (due to eqn (10′) this is, in fact,Tn dependence on electron
energy). One can see that whenλ > 1 they have a sharp enough stepwise shape, and the step smearing is
still less than 1 even forλ = 1, but it becomes more than 1 whenλ = 0.5. Step smearing is consistent with
estimation (15). For λ ≤ 1 the form of a step changes drastically with the mode number,n, but for a few
lowest modes only. Forλ ≥ 1 the form of a step only slightly depends on a mode number even for lown and
this dependence tends to vanish whenλ increases.

With the help of eqn (13) one can estimate the ballistic conductanceG of a quantum channel in a degen-
erate 2DEG of geometry (1) at the low temperature limit as

G =
e2

π h̄

∞∑
n=1

Tn(kF ), (16)

wherekF is the Fermi wave-number of 2DEG in the leads (see, e.g. [27]).
In Fig. 4 we present the conductanceG, calculated numerically in accordance with (16), as a function

of a variableξ = (kFw0/π) for a set of values of parameterλ. We sum as many termsK � ξ in (16) as
necessary to reach the smallest estimated error due to the summation of a finite number of terms for all values
of the variableξ under consideration.

One can see that the step-like dependence ofG on ξ survives even whenλ = 1 but only a few (two to
three) first steps are apparent enough. However step structure is obviously absent atλ = 0.5. Forλ > π

conductance steps show no marked dependence on the step number up to quite a high number of steps.
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Fig. 4. Conductance,G, of a channel calculated numerically as a function of a variableξ = (kFw0/π) for a set of values of parameter
λ: (1) λ = 0.5; (2)λ = 1; (3)λ = 1.5; (4)λ = π ; (5) λ = 2π ; (6) λ = 5π . (Every subsequent curve is shifted up by 1 for clarity).

Actually our calculations show thatN ≥ 20 steps are perfectly apparent, almost without smearing, say, for
λ = 2π , i.e. βw0 = 0.5. It evidently indicates out that if considerable step smearing, as well as higher
order step smearing, is observed in a long smooth channel it likely results from some other reason, probably
from scattering by channel wall roughness [20, 21]. The above results, therefore, enable one to evaluate the
‘quality’ of a channel.

At ξ < 1 no free propagating mode exists and the contact behaves as a peculiar tunnelling junction. When
λ > 1 its conductance for the values ofξ not very close to 1 can be estimated in accordance with (15) as:

G ≈
e2πλ(ξ−1)

1 − e−2πλ
.

It decays exponentially withkFw0 decreasing as seen in Fig.5A where some numerical results are presented
for a low-mode channel. Low modes dominate the contact conductance ifλ � 1 but for smallerλ higher
modes contribute significantly due to tunnelling through the quasi-potential barrier. If, e.g.λ = π one can
see at Fig.5A (2) thatG ≈ 0.1 even whenξ is as small as 0.8.

Whenξ < 2 a particular case of a single-mode channel is realized. Nevertheless the higher modes may
as well contribute significantly to contact conductance by tunnelling through the quasi-potential barrier ifλ

is not very large. This is well illustrated in Fig.5A where the first transmission coefficientT1 is shown in
comparison with the whole conductance and with the contribution of higher modes.

In Fig. 5B the conductance of a contact with two propagating modes compared to the contribution of
higher modes is shown for variousλ which demonstrate typical features for a channel with more propagating
modes. Tunnelling modes contribute near the step pointsξ = m. If λ ≈ 2π their contribution is substantial
far enough from the step point, i.e. at(ξ − m) ∼ ±1. For smaller values ofλ the contribution of tunnelling
modes, withn > m, to the channel conductance at(m− 1) < ξ < m is comparable with that of propagating
modes, and steps are smeared markedly. Whenλ > 3π the conductance forξ < m is determined mostly by
Tn with n < m, except for the small vicinity just near themth step point and step smearing is small, which
means that only propagating modes actually contribute to the conductance when parameterλ is large enough.
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Fig. 5. A Conductance,G, of a contact with none and single propagating mode calculated numerically; also the transmittanceT1 for
the lowest mode and the contribution of higher(n ≥ 2) modes,1G(2) are shown for comparison;G—solid line, T1—dashed line;
B conductance,G, of a contact for the two lowest propagating modes compared to the contribution of higher(n ≥ 3) modes,1G(3);
(1) λ = 1, (2)λ = π , (3) λ = 3π .
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We also draw attention to the fact that at the step points(ξ = m) the tunnelling component contribute about
0.5G0.

Whenλ � 1 for ξ < (m + 1) far enough from the(m + 1)th step their contribution can be estimated,
using (15), as:

∞∑
n=m

Tn(kF ) ≈
e2πλ(ξ−m−1)

1 − e−2πλ
.

With the help of (13), (15) one can also estimate the differential conductance of a long channel under
some, not very high, bias,V , between the 2DEG reservoirs. There are reasons to believe that in a long
narrow channel the electric potential varies monotonously along thex-axis (see also [28]). In that case the
approach developed in [4, 21] can be applied usingTn given by eqns (13), (15) instead of the step-like
transmission coefficient used in [4, 21]. Assuming that a bias is small enough so one can neglect the change
of quasi-potential, we find for the current,I , through a channel

I =
e

π h̄

∫ εF

εF−eV
T(E)d E, (17)
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Fig. 6. Low bias voltage dependence of differential conductance,g, of a long narrow channel withm propagating modes: Am = 2;
B m = 3; (1)λ = 1; (2)λ = π ; (3) λ = 3π ; (4) λ = 5π .
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where:

T(E) =

∞∑
n=1

Tn(k), E =
h̄2k2

2m
.

Differential conductance,g(V) = d I/dV, then is:

g =
e2

π h̄
T(εF − eV). (18)

Bias dependence of the differential conductance of a narrow channel with only a few,m, propagating
modes calculated for various values ofλ is shown in Fig.6. It decreases step-like with increasing bias
at [4, 21]

V ≈
εF − εn(0)

e
, n = m,m − 1,m − 2, . . . ,1 (19)

that is a particular feature of 1D flow. The channel reaches its ‘saturated’ regime when:

V > Vm =
εF − ε1(0)

e
. (20)

Nevertheless the differential conductance never reaches zero due to higher modes tunnelling. The steps are
quite sharp whenλ ≥ 3π , smear vastly for smallerλ, and disappear whenλ ≤ 1.

We should emphasize that the above approach is valid for along channeland for quitelow bias. It means
that the step-wise voltage dependence and saturation of differential conductance can be observed in a long
channel with only a few propagating modes, whenVm is not very high. For higher bias and for a short channel
the potential distribution along the channel should be considered more carefully. We found earlier that space-
charge effects at the mouths of a channel became essential at higher bias [21, 22] and results in substantial
non-zero differential conductivity atV > Vm. So some background is actually always present resulting in
non-zero differential conductance at a biasV higher thanVm, and the higher isVm, the more pronounced are
the background effects. Voltage dependence of a conductance for a short channel was estimated in [18, 19,
21, 22] and the results also differ markedly from those given by formulae (18)–(20).

4. Summary

In this paper we consider the problem of electron transport through a constricted quantum channel in a
2DEG. We propose and analyse a convenient two-parametric model for such a channel, which allows for an
analytical solution of the scattering problem in the adiabatic approximation. Conditions for observation of
channel conductance quantum steps and step-like differential conductance dependence on bias voltage are
expressed in terms of model parameters. We found that intrinsic smearing of the quantum steps is not crucial
for even quite a short channel—almost up to the limit of adiabatic approximation. The model, by fitting of
the parameters, can be used for a good variety of experimental structures, and thus enables one to estimate
the quality of a channel and to analyse experimental data.
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