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LR(k) is the most general category of linear-time parsing.  Before a symbol is rec-

ognized in LR parsing, it is difficult to invoke the semantic action associated with the 
symbol. Adding semantic actions to an LR(k) grammar may result in a non-LR(k) gram-
mar.  There are two straightforward approaches adopted by practitioners of parser gen-
erators.  The first approach is to delay all semantic actions until the whole parse tree is 
constructed.  The second is to add semantic actions to the grammar by chance.  This 
paper presents an efficient algorithm for finding positions (called free positions) that can 
freely put semantic actions into an LR(k) grammar.  The speedups of our method range 
from 2.23 to 15.50 times for the eight tested grammars.  
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1. INTRODUCTION 

Using parser generators [1] is a fast and easy way to construct parsers or compiler 
front ends [2].  Most parser generators support a category of context-free grammars.  
LR(k) grammars are the most general category for deterministic linear-time parsing. 
Parser generators such as YACC [3] and Bison [4] support LALR(1), a subcategory of 
LR(1).  These generators have been widely used in the development of compilers, e.g., 
the parser of GNU C compiler.  Recent advances [5, 6] in parser generators can further 
speed up the efficiency of generated parsers.  

Although LR(k) has a larger scope than top-down parsing technique, e.g., LL(1), 
adding semantic actions in LR(k) grammars is more difficult than in LL(1).  A position 
is a place between grammar symbols in the production of a grammar.  For example, the 
dots in T → · P · * · T ·, indicate all the positions in the production T → P * T.  In LL(1) 
parsing semantic actions can be invoked at any position because the production rules that 
are matched can always be predicted.  Before a symbol is recognized in LR parsing, it is 
difficult to invoke the semantic action associated with the symbol, because not all posi-
tions of an LR(k) grammar are free for adding these actions.  Adding actions to an LR(k)  
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grammar may make the grammar no longer LR(k).  Consider the following example:  

rule 1: E → E + id  
rule 2: E → id 

The grammar is LR(1).  Adding the following action (#action) to the grammar makes 
the grammar no longer LR(k): 

rule 1: E → #action [1, 0] E + id. 

This is because adding a new symbol X in position [1, 0] with an ε-production  

X → ε {the code to perform #action}  

makes the grammar no longer LR(k). 
There are two straightforward approaches commonly adopted by practitioners of 

parser generators.  The first is to delay all semantic actions until the whole parse tree is 
constructed [7].  Only the semantic actions that construct parse trees are invoked by the 
generated parser.  The second approach is to add semantic actions to the grammar by 
chance [8]. When the resulting grammar violates the grammar class, the designer needs to 
rewrite part of the grammar or put the semantic actions in other positions.  Both ap-
proaches have disadvantages.  The first approach costs more memory storage and com-
puting time because the whole parse tree must be constructed for the semantic analysis.  
The second is very tedious and error prone.  In addition the resulting grammar rules may 
be far different from the original rules specified in a language reference manual. 

Purdom and Brown [9] proposed a method to distinguish free and forbidden posi-
tions in LR(k) grammars.  A position is free if adding a useless symbol (a symbol de-
fined by ε-production) at the position still results in an LR(k) grammar; otherwise, the 
position is forbidden.  Their method uses a partial state position graph (PSPG) to clas-
sify position types.  

This paper presents an improvement over Purdom and Brown’s method and dis-
cusses how to handle grammars containing conflicts.  We tested this algorithm on sev-
eral grammars defined for programming languages.  Our results indicate that the speed-
ups of our method range from 2.23 to 15.50 times for the eight tested grammars.  Our 
results also show that about 53.9% to 86.9% of positions are free in these grammars.  
Our implementation is based on Bison [4], a YACC-compatible parser generator distrib-
uted by GNU. 

2. BASIC DEFINITIONS AND RELATED WORK 

LR(k) Grammars and Free Positions  

A context-free grammar is a four-tuple G = (N, T, P, S). N and T denote finite sets of 
nonterminal and terminal symbols respectively, and form the vocabulary V = N ∪ T, and 
N ∩ T = ∅. P is a finite set of productions. S ∈ N is the start symbol, which cannot ap-
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pear on the righthand side of any production. A production p ∈ P is denoted by p: X0 → 
X1... Xnp, where np ≥ 0, X0 ∈ N, and Xk ∈ V, 1 ≤ k ≤ np.  For production p we say that X0 
derives X1... Xnp.  

A position in a grammar G is a pair [i, j], where i is the rule number of production p, 
0 ≤ j ≤ np, and np is the number of symbols in the righthand side of p.  Position [i, j] 
represents the location after the j-th symbol in the production i.  An item of a grammar 
G is a production with a dot (·) at a position of the righthand side.  Positions [0, 0] and [i, 
j], j ≥ 1 are main positions; [i, 0], i > 0 are derived positions.  Whether an item is main 
or derived depends on whether the associated position is main or derived.  Note that a 
main item cannot be derived from any item. 
 

S → [0, 0]  E 
E → [1, 0]  E  [1, 1]  +  [1, 2]  T  [1, 3] 
E → [2, 0]  T  [2, 1] 
T → [3, 0]  P  [3, 1]  *  [3, 2]  T  [3, 3] 
T → [4, 0]  P  [4, 1] 
P → [5, 0]  ([5, 1]  E  [5, 2])  [5, 3] 
P → [6, 0]  id  [6, 1] 

Fig. 1. Example grammar. 

 

The example grammar shown in Fig. 1 has positions marked between grammar sym-
bols (boldfaced).  For example, T → P · * T is an item that corresponds to position [1, 
3]. 

An LR(k) parser scans an input program from left to right with k symbols of looka-
head and constructs the rightmost derivation in reverse.  It uses a stack of symbols to 
store the progress of parsing.  The parser pushes terminal symbols onto the stack when 
scanning a program.  Whenever the top n elements of the stack can be reduced to a non-
terminal symbol X, i.e., X can derive the top n elements of the stack, the top n elements 
are popped and X is pushed onto the stack.  If a program is syntactically correct, the 
stack contains only the start symbol after the whole program is parsed.  

An LR(k) generator constructs parser states and the transitions between these states.  
A state contains a set of items that represent the set of productions to match.  The transi-
tions from state to state, i.e., the parser recognizes a symbol, represent shifts of positions 
in productions.  A state starts with a set of items that shift from items in other states.  
The other items of the state are added by an ε-closure operation [10, Fig. 4.33] on their 
main items.  

A position [i, j] in an LR(k) grammar G is free if, after adding a symbol X that de-
rives an empty string at [i, j] of G, the resulting grammar is still LR(k).  If adding a 
symbol X at [i, j] makes the resulting grammar no longer LR(k), then [i, j] is a forbidden 
position. 

Fig. 2 presents the complete state transition graph of Fig. 1.  The starting item of 
the initial state is the production of the start symbol with the leftmost position. 
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Fig. 2. States and transitions of parser in Fig. 1.  

Purdom and Brown’s Method  

Purdom and Brown [9] proposed a method to distinguish free positions and forbidden 
positions in LR(k) grammars.  In their method a partial state position graph (PSPG) is 
constructed to classify the position types.  A partial state of a parser state contains the 
following items: 

• an item d that shifts a terminal symbol or reduces a production. 
• any main item that derives d.  Let the set of these main items be m.  
• any item that is in closure(m) [10, Sec 4.7] and derives d. 

 
There is a PSPG for each partial state where the graph contains an initial node, a fi-

nal node, and one intermediate node for each position [i, j] that is associated with an item 
of the partial state.  The graph is a directed graph in which arcs represent the order of 
ε-transitions between items.  There are arcs from the initial node to the set of nodes for 
m and an arc from the node of d to the final node.  Each arc of the form a → b, where a 
and b are neither an initial node nor final node, indicates that a derives b in one 
ε-transition.  A node in a partial state position graph represents a position in the gram-
mar.  Fig. 3 presents one PSPG of the initial state in Fig. 2.  The final node is repre-
sented as “shift s” or “reduce r” in the following sections. 

Let a dominator be a node that is included in every path from the initial node to the 
final node of a PSPG.  A dominator is a free position in the grammar [10].  For exam-
ple, the nodes representing S→•E, E→•T, and P→•id are dominators of the PSPG in 
Fig. 3.   These positions are free.  There is an almost linear-time algorithm [11] for 
finding dominators.  
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Fig. 3. A partial state position graph (PSPG).  

Usually there are several PSPGs for a parser state.  A parser state may have more 
than one final node, and the algorithm generates one PSPG for each pair of initial and 
final nodes. However, applying a dominator algorithm in these PSPGs separately may 
result in inconsistent position classification.  Consider the following grammar G’: 

S → A 
A → B 
A → C 
B → t1 
C → B t2 
C → t3 

Fig. 4. The grammar G’. 

Here t1, t2, and t3 are terminal symbols.  Two PSPGs of the state containing the start 
symbol are shown in Fig. 5.  The node number is denoted at each node's upper-right 
corner.  By definition nodes 1, 5, 6, 7, and 8 are dominators and thereby are free posi-
tions.  Nodes 2, 3, 4 are forbidden positions.  Note that nodes 3 and 7 represent the 
same position in G’, while node 7 is free but node 3 is forbidden.  When such an incon-
sistency occurs, the position is forbidden.  Only the intersection of dominators of corre-
sponding PSPGs are free positions.  
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Fig. 5. Two partial state position graphs (PSPGs). 

3. AN IMPROVEMENT IN FINDING FREE POSITIONS 

One deficiency in Purdom and Brown’s method is that it may construct more than 
one PSPG for a parser state. The dominator finding algorithm is applied for each PSPG.  
Here we present an improved method, which constructs one graph for each parser state 
and finds the dominators on each graph.  We call our graph the state position graph 
(SPG), which is the “merged” PSPGs.  Lemma 1 shows that the set of dominators in an 
SPG are the intersection of the dominators of the corresponding PSPGs.  Thus, the 
dominators in an SPG are free positions.  

Lemma 1: A node n is a dominator in an SPG if and only if n is a dominator in all of the 
corresponding PSPGs. 

Proof: If node n is a dominator in the SPG, then n is a dominator in all of the subgraphs 
of the SPG, which include all of the corresponding PSPGs.  

Conversely, suppose that n is a dominator in all of the corresponding PSPGs.  As-
sume that n is not a dominator in the SPG.  There are at least two paths going from the 
initial to a final node f that include node n.  Since both paths contains the final node f, 
they are in the same corresponding PSPG for node f.  Thus, node n is not a dominator in 
the PSPG for node f. A contradition.   

Q. E. D. 
Fig. 6 shows the SPG for the corresponding PSPGs in Fig. 5.  Nodes for S → • A 

(nodes 1 and 6 in Fig. 5) are combined into one node.  Nodes for A → • C (nodes 3 and 
7) are also combined.  The corresponding arcs of these nodes remain unchanged.  The 
only dominator in this SPG is the node for S → • A.  
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Fig. 6. A state position graph (SPG). 

Our algorithm takes the following steps: 

1. Label positions that can derive themselves as forbidden. 
2. Find all dominators in the state position graph. 
3. Label all unlabelled positions as free. 

The comparison between our method and Purdom and Brown’s is as follows.  The 
time complexity of both algorithms is proportional to the number of nodes constructed: 
for ours, the nodes in SPGs, and for Purdom and Brown’s, the nodes in PSPGs.  Assume 
that both algorithms are implemented with the same constant factor.  The speedup is 
thus 

{number of nodes in PSPGs} / {number of nodes in SPG} 

Let nf be the average number of final nodes in a parser state, nd be the average num-
ber of duplicate nodes of PSPGs, and nt be the average number of nodes in a PSPG.  The 
total number of nodes in PSPGs of a parser state is nt⋅nf.  The number of nodes in a SPG 
is nt⋅nf – nd(nf − 1) − (nf − 1) = nt⋅nf − (nd + 1)(nf − 1).  The speedup is thus 

nt⋅nf / (nt⋅nf − (nd + 1)(nf − 1)).  

This speedup is very large when nt⋅nf ≅ (nd + 1)(nf − 1), i.e., most nodes are duplicated 
and there are many final nodes.  
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4. HANDLING LR(k) GRAMMARS THAT CONTAIN CONFLICTS 

Purdom and Brown’s method assumes that there are no conflicts in an input gram-
mar. The LR(k) grammars that contain conflicts are difficult to understand; however, 
some of them have been well accepted in practice due to their simplicity.  Most LR 
parser generators have built-in conflict resolvers [1, p. 219].  This section discusses how 
to generate free positions for such grammars.  

LR Conflicts  

There are two types of LR conflicts: shift/reduce and reduce/reduce.  An example 
of a shift/reduce conflict is a grammar having if-then and if-then-else statements with a 
pair of rules like this: 

if_stmt → IF expr THEN stmt 
if_stmt → IF expr THEN stmt ELSE stmt . 
stmt → if_stmt 
expr → ... 

Here IF, THEN, and ELSE are terminal symbols; if_stmt, expr, and stmt are nonterminal 
symbols.  The following is a piece of input program:  

if  x  then  if  y  then  callX();  else  callY(); 

There would be a parser state containing 

if_stmt → IF expr THEN stmt • 
if_stmt → IF expr THEN stmt • ELSE stmt . 

Since the stmt may be an if_stmt, the parser cannot determine whether the else part be-
longs to the first if or the second if statement.  That is, the parser cannot determine 
whether to reduce the production p1 or shift the ELSE token on the production p2.  
Parser generators such as YACC [3] and Bison [4] give a warning message and choose to 
shift rather than reduce. 

A reduce/reduce conflict occurs if there are two or more productions that apply to 
the same sequence of input.  This usually indicates a serious error in the grammar.  
Consider the following grammar: 

S → DECL 
DECL → type VAR 
DECL → type F_NAME 
VAR → id 
F_NAME → id 

For a “type id” sequence, there are two derivations: 
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S ⇒ DECL ⇒ type VAR ⇒ type id 
S ⇒ DECL ⇒ type F_NAME ⇒ type id. 

In the above derivations, both VAR → id• and F_NAME → id• can be reduced.  Al-
though the program is syntactically correct, its semantic meaning is ambiguous.  Parser 
generators usually choose to reduce the production that appears first in the grammar.  In 
this case VAR → id• is reduced. 

Generate Free Positions for LR Conflicts  

If a reduce/reduce conflict occurs, the parser state looks like 

p1: A → C• 
p2: B → C• 

These positions are free.  Adding semantic actions at the end of both productions neither 
transforms the conflict nor changes the reduction priority of productions. 

In a free position where a shift/reduce conflict occurs, adding a semantic action in 
the position transforms the conflict into a reduce/reduce conflict.  Consider the follow-
ing parser state with a shift/reduce conflict:  

p1: A → C• 
p2: B → C•D 

The dotted position in p1 is a free position since it is the right-most position of p1.  Be-
cause the parser shifts D on production p2 by default, production p1 will not be matched.  
If we add a semantic action in the dotted position of p2, the parser replaces the semantic 
action with a new nonterminal symbol: 

p1: A → C• 
p2: B → C•XD 
p3: X → • 

The resulting grammar contains a reduce/reduce conflict on p1 and p3. The parser reduces 
on production p1 by default because production p1 is the first of all conflicting produc-
tions in the grammar. Now the semantic action at the end production p1 will be executed. 
Assigning this position to be free changes the semantics, so this position is forbidden.  

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

Our implementation is based on Bison [4], which is a part of the GNU project.  
Bison’s implementation first generates LR(0) parser states internally.  These states are 
then translated into LALR states.  When generating LR(0) parser states, it does not store 
the transitions between items of a parser state.  We replace Bison’s code that generates 
parser states with the code that constructs state position graphs.   
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We have tested the grammars of several programming languages, including gram-
mars for Ada, C, C++, Fortran, and Pascal, as shown in Table 1.  Table 2 shows the sta-
tistics of free positions in these grammars. Our results show that there are about 53.9% to 
86.9% of free positions in these grammars.  The free positions removed due to LR con-
flicts are minor.  The only exception is in the C++ grammar, where 6.9% of positions 
are forbidden due to LR conflicts.  

Table 1. Grammars used in the experiment. 

Grammar Description Author 
Ada A parser for Ada83 Herman Fischer 

(HFisher@eclb.arpa) 
C1 A parser for ANSI C Jeff Lee  

(CSNet@CSNet-Relay.ARPA) 
C2 Another C grammar - 
C3 An ANSI C conformant grammar Jim Roskind (jar@ileaf.com) 

C++ A grammar concludes compliance  
with C++  2.0 

Jim Roskind (jar@ileaf.com) 

F77s A grammar for a subset of  
FORTRAN 77 

John Levine (Levine@yale.edu) 

Pascal1 A grammar for the Pascal language - 
Pascal2 A grammar for ISO Level 0 Pascal, 

plus some simple extensions 
Arnold Robbins 

Table 2. Statistics of free positions in the tested grammars. 

 Parser 
States 

Total 
posi-
tions 

Free 
posi-
tions 

Forbid-
den posi-

tions 

% of free 
positions 

S/R 
con-
flicts 

R/R 
con-
flicts 

Positions 
“forbidden” 
by conflicts 

Ada 858 1421 1081 340 76.1% 0 0 0 

C1 366 698 483 215 69.2% 1 0 1 

C2 494 900 613 287 68.1% 1 0 1 

C3 509 944 628 316 66.5% 1 0 1 

C++ 1233 2172 1170 1002 53.9% 24 18 149 

F77s 178 315 247 68 78.4% 0 0 0 

Pascal1 319 534 464 70 86.9% 1 0 1 

Pascal2 407 763 548 215 71.8% 0 0 0 

S/R = shift/reduce; R/R = reduce/reduce. 

Table 3 shows the number of nodes in our algorithm compared with Purdom and 
Brown’s.  Our experimental results show that the reduction ratios of our method range 
from 55.1% to 93.5% for the eight tested grammars.  The time complexity of both algo-
rithms is proportional to the number of nodes constructed.  The reduction in the number 
of nodes thus contributes to the speedups in our algorithm, which range from 2.23 to 
15.50 times for the tested grammars.  
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Table 3. Speedups of our algorithm compared with Purdom and Brown’s. 

 Total nodes of 
PSPGs (1) 

Total nodes of 
SPGs (2) 

Reduction 
ratio 

1- (2)/(1) 

Speedup 
(1) / (2) 

Ada 27153 7439 72.6% 3.65 

C1 72848 8708 88.0% 8.37 

C2 92401 11603 87.4% 7.96 

C3 100346 11388 88.7% 8.81 

C++ 675630 43584 93.5% 15.50 

F77s 4320 1938 55.1% 2.23 

Pascal1 6629 2808 57.6% 2.36 

Pascal2 10201 4050 60.3% 2.52 

6. CONCLUSIONS  

In this paper, we have presented an efficient method to determine whether a position 
is free or forbidden in LR(k) grammars.  We have also discussed the interactions of LR 
conflicts and free positions.  Positions with shift/reduce conflicts are not free; positions 
with reduce/reduce conflicts are free.  Our experimental results show that the speedups 
of our algorithm range from 2.23 to 15.50 times for the eight tested grammars.  Our re-
sults also show that about 53.9% to 86.9% of positions are free.  The free positions re-
moved due to LR conflicts are quite minor.  
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