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Abstract

This study investigates the contact characteristics of beveloid gear pairs with intersected, crossed and
parallel axes. Tooth contact analysis (TCA) is performed to examine the meshing and bearing contact of
the beveloid gear pairs composed of a pinion and a gear. In addition, the principal directions and curva-
tures of the pinion and gear surfaces are investigated and the contact ellipses of the mating tooth surfaces
are also studied. Numerical illustrative examples are provided to demonstrate the computational re-
sults. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Beveloid gears, also known as conical involute gears, are involute gears with tapered tooth
thickness, root and outside diameters. This type of gears can transmit rotational motion between
intersected, crossed and parallel axes in any relative position. Owing to its tapered tooth thickness,
the beveloid gear can also be used as the backlash control gears. Moreover, under non-parallel
axes meshing, beveloid gears are not sensitive to assembly errors. The meshing of beveloid gears
has seldom been studied, and Mitome [1–4] has conducted most of the researches in this area. The
tooth action of a beveloid gear pair was investigated both theoretically and experimentally by
Mitome [1]. His investigation verified that beveloid gear pairs transmit a uniform rotational
motion between intersected axes even when assembly errors exist. Mitome [2] also proposed a
design for the crossed axes beveloid gears and established their engagement models. In addition,
the concept of infeed grinding which can enlarge the contact patterns of straight beveloid gears
with intersected axes was proposed [3]. More recently, Mitome [4] also proposed a novel design
for miter beveloid gears, which enables the tooth bearing contact located at the middle region of
the tooth width.
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Although the above investigations contributed significantly to the meshing of beveloid gears,
they failed to establish a complete simulation model for tooth contact analysis (TCA). The TCA
method was proposed by Litvin [5,6], and it has been applied to simulate the meshing of various
types of gear drives. The TCA results provide valuable information on the contact points, contact
lines, lines of action and transmission error (TE) of the mating gear pair during their meshing
process. This study investigates the meshing characteristics of beveloid gear pairs with intersected,
crossed and parallel axes. Theoretically, the bearing contact of a beveloid gear pair under non-
parallel axes meshing is a point contact. Due to the elasticity, the gear tooth contact is spread over
an elliptical area around the instantaneous contact point. The direction and dimension of the
contact ellipse provide further contact and lubrication characteristics to the gear meshing. In this
work, methodologies proposed by Litvin [5,6] considering the principal directions and curvatures
of mating surfaces was adopted to obtain the contact ellipses of the non-parallel axes beveloid
gear pairs. The numerical illustrative examples accurately reflect the contact nature of a beveloid
gear pair under several assembly conditions.

2. Mathematical model of beveloid gear pairs

According to Merritt’s generation concept [7], a beveloid gear can be generated by a basic rack
whose pitch plane intersects with the axis of the gear, and forms an angle that equals the gen-
erating cone angle. In industrial applications, the most conventional means of beveloid gear
manufacturing method is the taper hobbing proposed by Mitome [8,9]. According to Mitome’s
results, the envelope generated by the hob in the space can be considered a rack cutter. In this
work, the rack cutter is used to simulate the generating process of beveloid gears.

2.1. Mathematical model of rack cutter

The beveloid gear pair for the meshing simulation comprises a pinion and a gear. Assume that
the cutter surface RF generates the pinion tooth surface R1, and the cutter surface RG generates the
gear tooth surface R2. Notably, subscripts i ¼ 1 and 2, and j ¼ F and G represent the surfaces of
pinion R1 and gear R2 and their corresponding cutters RF and RG, respectively, in the following
derivation. According to Fig. 1, the normal section of the rack cutter consists mainly of two

Fig. 1. The normal section of rack cutter.
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straight edges. The straight edge M ðjÞ
0 M

ðjÞ
2 can be represented in coordinate system

SðjÞn ðX ðjÞ
n ; Y ðjÞ

n ; ZðjÞ
n Þ by

xðjÞn ¼ ‘j cos aðjÞ
n � aj;

yðjÞn ¼ ‘j sin aðjÞ
n � aj tan aðjÞ

n � bj;
zðjÞn ¼ 0;

ð1Þ

where design parameter ‘j ¼ jM ðjÞ
0 M

ðjÞ
1

�����!
j represents the distance measured from the initial point

M ðjÞ
0 , moving along the straight line M ðjÞ

0 M
ðjÞ
2 , to point M ðjÞ

1 ; aðjÞ
n denotes the normal pressure

angle, and symbols Pn and pn represent the gear diametral pitch and circular pitch, respec-
tively.

To obtain the rack cutter surface for beveloid gear generation, the above-mentioned normal

section of the rack cutter, attached to plane X ðjÞ
n –Y ðjÞ

n , is translated along the line OðjÞ
r O

ðjÞ
n with

respect to the coordinate system SðjÞr ðX ðjÞ
r ; Y ðjÞ

r ;ZðjÞ
r Þ, as illustrated in Fig. 2. Herein, uj ¼ jOðjÞ

r O
ðjÞ
n

����!
j is

also a design parameter of the rack cutter surface. Thus, the profile of the rack cutter can be
traced out in coordinate system SðjÞr , and plane Y ðjÞ

r –ZðjÞ
r can be regarded as the pitch plane of the

rack cutter. The angle bj, which determines the direction of tooth trace, is the helix angle of tooth
trace on the pitch plane of rack cutter. To simulate the taper hobbing process, the pitch plane of
the rack cutter is set to have an inclination angle di with respect to the plane axode coordinate
system SðjÞc ðX ðjÞ

c ; Y ðjÞ
c ; ZðjÞ

c Þ, and the rack cutter surface can be represented in coordinate system SðjÞc
as follows:

xðjÞc ¼ ‘j cos aðjÞ
n

�
� aj

�
cos di þ

�
� ‘j sin aðjÞ

n

�
� aj tan aðjÞ

n � bj
�

sin bj þ uj cos bj
�

sin di;

yðjÞc ¼ ‘j sin aðjÞ
n

�
� aj tan aðjÞ

n � bj
�

cos bj þ uj sin bj;

zðjÞc ¼ � ‘j cos aðjÞ
n

�
� aj

�
sin di þ

�
� ‘j sin aðjÞ

n

�
� aj tan aðjÞ

n � bj
�

sin bj þ uj cos bj
�

cos di:

ð2Þ

Owing to that the surface coordinates of rack cutter are ‘j and uj, the unit normal to the rack
cutter surface can be attained by

nðjÞc ¼ N ðjÞ
c

N ðjÞ
c

�� �� ðj ¼ F ;GÞ; ð3Þ

Fig. 2. Relations among coordinate systems SðjÞn , SðjÞr , SðjÞc .
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where

N ðjÞ
c ¼ oRðjÞ

c

ouj
� oRðjÞ

c

o‘j
: ð4Þ

Herein, RðjÞ
c denotes the position vector of the rack cutter surface represented in plane axode

coordinate system SðjÞc . Eqs. (2) and (3) result in the corresponding unit normals to the rack cutter
surface as follows:

nðjÞxc ¼ � sin di sin bj cos aðjÞ
n � cos di sin aðjÞ

n ;

nðjÞyc ¼ cos bj cos aðjÞ
n ;

nðjÞzc ¼ � cos di sin bj cos aðjÞ
n þ sin di sin aðjÞ

n :

ð5Þ

2.2. Mathematical model of beveloid gear

Fig. 3 illustrates a schematic generation mechanism and the coordinate relationship between
the rack cutter and the generated gear. Herein, SðjÞb ðX ðjÞ

b ; Y ðjÞ
b ; ZðjÞ

b Þ is the fixed coordinate system,
SiðXi; Yi;ZiÞ is the coordinate system attached to the generated pinion R1 ði ¼ 1Þ or gear R2 ði ¼ 2Þ,
and SðjÞc is the plane axode coordinate system attached to the rack cutter. In the gear generation
process, the gear blank rotates with angular velocity xi while the rack cutter translates with ve-
locity V ¼ xiri. The plane axode and the gear axode roll over each other without sliding on the
instantaneous axis of rotation I–I. Based on the theory of gearing [5,6], the mathematical model of
the generated beveloid gear tooth surfaces can be attained in coordinate system Si as follows:

xi ¼ xðjÞc cos /i � yðjÞc sin /i þ riðcos /i þ /i sin /iÞ;
yi ¼ xðjÞc sin /i þ yðjÞc cos /i þ riðsin /i � /i cos /iÞ;
zi ¼ zðjÞc ;

ð6Þ

where

/i ¼ yðjÞc n
ðjÞ
xc

�
� xðjÞc nðjÞyc

�.
rinðjÞxc
� �

: ð7Þ

Fig. 3. Coordinate relationship between the rack cutter and generated gear.
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Herein, i ¼ 1 and 2, and j ¼ F and G represent the surfaces of pinion R1 and gear R2 and their
corresponding cutters RF and RG, respectively; ri denotes the pitch radius of the generated gear
and /i represents the gear rotation angle in the generating process. Eq. (7) is the general form of
the equation of meshing which can be obtained by applying the concept that the normal vector to
any point on the generated tooth surface passes through the instantaneous axis of gear rotation I–
I [5,6]. Substituting Eqs. (2) and (5) into Eqs. (6) and (7) yields the mathematical models of
beveloid pinion R1 (i ¼ 1 and j ¼ F ) and gear R2 (i ¼ 2 and j ¼ G) expressed in coordinate sys-
tems S1ðX1; Y1;Z1Þ and S2ðX2; Y2;Z2Þ, respectively. The surface unit normal of the generated bev-
eloid gear tooth surfaces can also be obtained by

nix ¼ nðjÞxc cos /i � nðjÞyc sin /i;

niy ¼ nðjÞxc sin /i þ nðjÞyc cos /i;

niz ¼ nðjÞzc :

ð8Þ

3. Meshing model and tooth contact analysis

Adopting the engagement model proposed by Mitome [2], Fig. 4 illustrates the schematic
meshing model of the beveloid gear pair, including the pinion R1, the gear R2, and the pitch plane
of the imaginary engaging rack. Beveloid pinion and gear can be considered two imaginary cones
with cone angles d1 and d2, lying on opposite sides of the pitch plane of the imaginary engaging
rack, while Sf ðXf ; Yf ;Zf Þ and Sg ðXg; Yg; ZgÞ are the reference coordinate systems for the pinion
coordinate system S1ðX1; Y1; Z1Þ and gear coordinate system S2ðX2; Y2; Z2Þ, respectively. Further-
more, /0

1 and /0
2 denote the rotation angles of the pinion and gear during meshing. Meanwhile,

points Of and Og are the centers of the pitch circles of the pinion and gear, where r1 and r2 denote

Fig. 4. Schematic relationship for the meshing of pinion, gear and the pitch plane of the imaginary engaging rack.
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their respective pitch radii, and Pf and Pg are the apexes of the imaginary cones; PfOf and PgOg are
the axes of the imaginary cones. The pitch circles of the pinion and gear are in tangency at point
Q. In addition, the tangent lines of the two imaginary cones with respect to the pitch plane of the
imaginary engaging rack, PfQ and PgQ, form an angle C ¼ bF þ bG (or C ¼ bF þ bG þ p). Herein,
bF and bG denote the helix angle on the pitch plane of the rack cutter in the generation of the
pinion R1 and the gear R2, respectively. The preceding meshing model of the beveloid gear pair is
designed to simulate the meshing of a beveloid gear pair with crossed axes. Consider that when the
angle C ¼ 0 or C ¼ p, the axes of two imaginary cones intersect and form an intersected angle of
d1 þ d2 (when C ¼ 0) or jd1 � d2j (when C ¼ p). Thus, the meshing model regresses to the case
which can simulate the meshing of beveloid gears with intersected axes. Furthermore, when the
intersected angle becomes zero, the axes of the two imaginary cones become parallel, and the
meshing model regresses again to the case which can simulate the meshing of beveloid gears with
parallel axes.

To investigate the meshing of beveloid gear pair with assembly errors, auxiliary coordinate
systems SeðXe; Ye;ZeÞ, ShðXh; Yh; ZhÞ and SvðXv; Yv; ZvÞ have been set up to simulate the assembly
errors of the gear R2 as depicted in Fig. 5. Coordinate system Se is set up and keeps its orientation
with respect to coordinate system Sg. However, the origin Oe of coordinate system Se has an offset
deviation from the origin Og of coordinate system Sg. The offset OgOe ¼ Dd ¼ ðDxg;Dyg;DzgÞ
indicates the mounting position deviation of the gear R2. Moreover, coordinate system Sh simu-
lates the gear R2 having a horizontal misaligned angle Dch with respect to coordinate system Se,
while coordinate system Sv simulates the gear R2 having a vertical misaligned angle Dcv with re-
spect to coordinate system Sh. Hence, coordinate system Sv is the reference coordinate system for
the gear coordinate system S2 when assembly errors Dd;Dch and Dcv exist.

Applying the coordinate transformation matrix equation, the position vectors and unit normal
vectors of the pinion R1 and the gear R2 can be represented in the coordinate system Sf . The
mating pinion and gear must satisfy the following conditions at their instantaneous contact point
[5,6]:

Fig. 5. Assembly errors of the beveloid gear.
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R
ð1Þ
f ¼ R

ð2Þ
f ; ð9Þ

and

n
ð1Þ
f ¼ 
n

ð2Þ
f ; ð10Þ

where R
ð1Þ
f and R

ð2Þ
f are the position vectors while n

ð1Þ
f and n

ð2Þ
f denote the unit normal vectors of

pinion R1 and gear R2, represented in coordinate system Sf , respectively. In a three-dimensional
space, Eqs. (9) and (10) form a system of five independent non-linear equations with six un-
knowns /0

1, ‘F , uF , /0
2, ‘G and uG. By choosing the pinion rotational angle /0

1 as an input
variable, all other unknowns can be solved in terms of /0

1. The instantaneous contact points on
the pinion and gear surfaces can be obtained by substituting the solved unknowns into the
pinion and gear tooth-surface equations. The deviation of the real gear rotational angle /0

2ð/
0
1Þ

from its ideal rotational angle is defined as the transmission error (TE) which can be expressed
as follows:

TE ¼ /0
2ð/

0
1Þ � /0

1

N1

N2

; ð11Þ

where N1 and N2 denote the number of teeth of the pinion and gear, respectively.

4. Curvature analysis and contact ellipses

In this study, the methodologies proposed by Litvin [5,6] evaluating the principal directions
and curvatures of the generated surfaces in terms of their corresponding generating tool sur-
faces are adopted to obtain the contact ellipses of the mating beveloid gear pairs with non-
parallel axes. Notably, only the derivation processes of curvature relationships between the
cutter surface RF and the generated pinion surfaces R1 are shown hereinafter. The principal
directions and curvatures of the gear surfaces R2 can also be derived as well by the same
procedure.

4.1. Principal directions and curvatures of rack cutter surface RF

The position vector and unit normal vector of the cutter surface RF are expressed in Eqs. (2)
and (5), respectively. According to Rodrigues’ equation, the principal curvatures of the cutter
surface RF can be obtained as [5,6]

jðF Þ
I;IIV

ðF Þ
r ¼ � _nnðF Þr ; ð12Þ

where V ðF Þ
r is the relative velocity at the contact point in its motion over the cutter surface RF ; _nnðF Þr

is the velocity of the tip of the surface unit normal in the above motion; and jðF Þ
I;II represents the

two principal curvatures of the surface at the contact point. Since uF and ‘F are the surface pa-
rameters of the rack cutter surface RF , Eqs. (2), (5) and (12) are used to calculate the principal
directions and curvatures of the rack cutter surface RF as follows:
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1. When ðd‘F=dtÞ ¼ 0, the first principal direction i
ðF Þ
I and curvature jðF Þ

I are derived as follows:

i
ðF Þ
I ¼ V

ðF Þ
rI

V
ðF Þ
rI

���
���
¼

sin d1 cos bF
sin bF

cos d1 cos bF

2
4

3
5; and jðF Þ

I ¼ 0: ð13Þ

2. When ðduF =dtÞ ¼ 0, the secondary principal direction i
ðF Þ
II and curvature jðF Þ

II are derived as fol-
lows:

i
ðF Þ
II ¼ V

ðF Þ
rII

V
ðF Þ
rII

���
���
¼

cos d1 cos aðF Þ
n � sin d1 sin bF sin aðF Þ

n
cos bF sin aðF Þ

n
� sin d1 cos aðF Þ

n � cos d1 sin bF sin aðF Þ
n

2
4

3
5; and jðF Þ

II ¼ 0: ð14Þ

Herein, unit vectors i
ðF Þ
I and i

ðF Þ
II are represented in the coordinate system SðF Þb ðX ðF Þ

b ; Y ðF Þ
b ; ZðF Þ

b Þ as
shown in Fig. 3. Noted that the principal curvatures jðF Þ

I and jðF Þ
II are both zero since the gen-

erating surface RF is a plane.

4.2. Principal directions and curvatures of the generated pinion tooth surface R1

The generated pinion tooth surface R1 and the cutter surface RF are in line contact and in
continuous tangency at every instant during the generation process. Therefore, the principal di-
rections and curvatures of the generated pinion tooth surface R1 can be determined by applying
the following equations [5,6]:

tan 2rðF 1Þ ¼ 2F ð1Þ

jðF Þ
I � jðF Þ

II þ Gð1Þ
; ð15Þ

jð1Þ
I þ jð1Þ

II ¼ jðF Þ
I þ jðF Þ

II þ Sð1Þ; ð16Þ
and

jð1Þ
I � jð1Þ

II ¼ jðF Þ
I � jðF Þ

II þ Gð1Þ

cos 2rðF 1Þ ; ð17Þ

where

F ð1Þ ¼ að1Þ31 a
ð1Þ
32

bð1Þ3 þ V ðF 1Þ � iðF ÞI

� �
að1Þ31 þ V ðF 1Þ � iðF ÞII

� �
að1Þ32

; ð18Þ

Gð1Þ ¼
að1Þ31

� �2

� að1Þ32

� �2

bð1Þ3 þ V ðF 1Þ � iðF ÞI

� �
að1Þ31 þ V ðF 1Þ � iðF ÞII

� �
að1Þ32

; ð19Þ

Sð1Þ ¼
að1Þ31

� �2

þ að1Þ32

� �2

bð1Þ3 þ V ðF 1Þ � iðF ÞI

� �
að1Þ31 þ V ðF 1Þ � iðF ÞII

� �
að1Þ32

; ð20Þ

að1Þ31 ¼ nðF ÞxðF 1Þi
ðF Þ
I

h i
� jðF Þ

I V ðF 1Þ � iðF ÞI

� �
; ð21Þ
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að1Þ32 ¼ nðF ÞxðF 1Þi
ðF Þ
II

h i
� jðF Þ

II V ðF 1Þ � iðF ÞII

� �
; ð22Þ

and

bð1Þ3 ¼ nðF Þxð1ÞV
ðF Þ
tr

h i
� nðF ÞxðF ÞV

ð1Þ
tr

h i
: ð23Þ

All the vectors in Eqs. (15)–(23) are represented in the coordinate system SðF Þb . Herein, i
ð1Þ
I and i

ð1Þ
II

are the first and second principal directions of the generated pinion tooth surface R1; jð1Þ
I and jð1Þ

II

represent the first and second principal curvatures of R1; and rðF 1Þ is the angle formed by the first
principal directions of the cutter surface i

ðF Þ
I and the generated pinion surface i

ð1Þ
I . It is recalled that

the vector xðF Þ ¼ 0 due to the translational motion of rack cutter RF . Therefore, the relative
angular velocity between the rack cutter surface RF and the generated pinion tooth surface R1, can
be expressed as

xðF 1Þ ¼ xðF Þ � xð1Þ ¼ �xð1Þ ¼
0
0
x1

2
4

3
5: ð24Þ

Meanwhile, the transfer velocity of the rack cutter RF is

V
ðF Þ
tr ¼

0
�x1r1

0

2
4

3
5: ð25Þ

In addition, the position vector of the contact point on the generated pinion tooth surface R1,
represented in coordinate system SðF Þb , can be expressed as

R
ð1Þ
b ¼

xðF Þc þ r1
yðF Þc � r1/1

zðF Þc

2
4

3
5; ð26Þ

where xðF Þc , yðF Þc and zðF Þc are expressed in Eq. (2). Therefore, the transfer velocity of contact point
on R1 is

V
ð1Þ
tr ¼ xð1Þ � R

ð1Þ
b ¼ x1

yðF Þc � r1/1

�xðF Þc � r1
0

2
4

3
5: ð27Þ

Thus, the relative velocity between surfaces RF and R1, represented in coordinate system SðF Þb , can
be obtained as

V ðF 1Þ ¼ V
ðF Þ
tr � V

ð1Þ
tr ¼ x

1

�yðF Þc þ r1/1

xðF Þc
0

2
4

3
5: ð28Þ

In addition, two common terms appeared in Eqs. (18)–(20) can be obtained by applying Eqs. (13),
(14) and (28):

V ðF 1Þ � iðF ÞI ¼ x1

��
� yðF Þc þ r1/1

�
sin d1 cos bF þ xðF Þc sin bF

�
; ð29Þ
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and

V ðF 1Þ � iðF ÞII ¼ x1

��
� yðF Þc þ r1/1

�
cos d1 cos aðF Þ

n

�
� sin d1 sin bF sin aðF Þ

n

�

þ xðF Þc cos bF sin aðF Þ
n

� ��
: ð30Þ

Furthermore, since jðF Þ
I ¼ jðF Þ

II ¼ 0 and xðF Þ ¼ 0, coefficients að1Þ31 ; a
ð1Þ
32 and bð1Þ3 can be attained as

follows:

að1Þ31 ¼ nðF ÞxðF 1Þi
ðF Þ
I

h i
¼ x1 sin d1 cos aðF Þ

n þ x1 cos d1 sin bF sin aðF Þ
n ; ð31Þ

að1Þ32 ¼ nðF ÞxðF 1Þi
ðF Þ
II

h i
¼ x1 cos d1 cos bF ; ð32Þ

and

bð1Þ3 ¼ nðF Þxð1ÞV
ðF Þ
tr

h i
¼ r1x2

1 sin d1 sin bF cos aðF Þ
n

�
þ cos d1 sin aðF Þ

n

�
: ð33Þ

It is obvious that all terms needed to express F ð1Þ, Gð1Þ and Sð1Þ have been derived completely.
Consequently, Eqs. (15)–(17) determine the principal curvatures and directions of the pinion tooth
surface R1 represented in coordinate system SðF Þb . Notably, the principal directions of R1 can be
represented in coordinate system S1 by applying the coordinate transformation matrix equation.
Similarly, the principal curvatures and directions of any point on the gear tooth surface R2

generated by cutter RG can be derived as well and expressed in coordinate system S2 by the same
procedure.

4.3. Contact ellipses

According to the TCA results, the principal directions i
ð1Þ
I and i

ð2Þ
I represented in coordinate

systems S1 and S2, respectively, can be described in coordinate system Sf by applying the coor-
dinate transformation matrix equation. Obviously, at any instantaneous contact point, i

ð1Þ
I and i

ð2Þ
I

are located on the common tangent plane of the mating surfaces R1 and R2, as shown in Fig. 6.
The orientation of the contact ellipse is determined by the angle c which can be represented with
the following equations [5,6]:

Fig. 6. Orientation and dimensions of contact ellipse.
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tan 2c ¼ g2 sin 2r
g1 � g2 cos 2r

; ð34Þ

where

g1 ¼ jð1Þ
I � jð1Þ

II ; ð35Þ
and

g2 ¼ jð2Þ
I � jð2Þ

II : ð36Þ
Meanwhile, angle r is formed by the first principal directions of the gear and pinion tooth surfaces
i
ð2Þ
I and i

ð1Þ
I , and it can be evaluated by

r ¼ cos�1 i
ð1Þ
I � ið2ÞI

� �
: ð37Þ

The half length of the major and minor axes of the contact ellipse, a and b, can be expressed in
terms of the elastic approach D by [5,6]

a ¼ D
A

����
����

1
2

; ð38Þ

and

b ¼ D
B

����
����

1
2

; ð39Þ

where

A ¼ 1

4
jð1Þ

R

h
� jð2Þ

R � ðg2
1 � 2g1g2 cos 2r þ g2

2Þ
1=2

i
; ð40Þ

B ¼ 1

4
jð1Þ

R

h
� jð2Þ

R þ ðg2
1 � 2g1g2 cos 2r þ g2

2Þ
1=2

i
; ð41Þ

jð1Þ
R ¼ jð1Þ

I þ jð1Þ
II ; ð42Þ

and

jð2Þ
R ¼ jð2Þ

I þ jð2Þ
II : ð43Þ

Thus, the orientation and dimension of the contact ellipse can be determined by utilizing Eqs.
(34)–(39).

5. Numerical illustrative examples for gear meshing simulations

Fig. 7 illustrates three typical types of gear mounting for beveloid gear pairs with intersected,
crossed and parallel axes. Applying the developed computer simulation programs, the TCA re-
sults can be obtained and the contact ellipses can be plotted on the contact tooth surfaces. The
elastic approach D for the contact ellipse simulation is chosen as 0.00635 mm, identical with the
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thickness of the coating paint used for contact pattern tests. Table 1 lists some major design
parameters of the beveloid gear pair chosen for the following examples.

5.1. Example 1: Straight beveloid gear pair with intersected axes

In this example, the gear pair is composed of straight beveloid pinion and gear ðbF ¼ bG ¼ 0�Þ
with cone angles d1 ¼ d2 ¼ 30�, mounted with an intersected angle of 60�, as Fig. 7(a) illustrates.
Cases 1–3 simulate the meshing of the gear pair under the following assembly conditions:

Case 1: Dch ¼ Dcv ¼ 0� and Dxg ¼ Dyg ¼ Dzg ¼ 0 mm (ideal assembly condition).
Case 2: Dch ¼ Dcv ¼ 0� and Dxg ¼ Dyg ¼ Dzg ¼ 0:3 mm.
Case 3: Dch ¼ 0:5�, Dcv ¼ �0:5� and Dxg ¼ Dyg ¼ Dzg ¼ 0:3 mm.
Case 1 is the ideal assembly condition. Case 2 indicates that the gear has a mounting position

deviation but there is no axial misalignment. Case 3 indicates that the gear pair has both mounting
position deviation and axial misalignments. The bearing contact of a straight beveloid gear pair
with intersected axes is a point contact. The TCA results and the TE were calculated and sum-
marized in Table 2. Meanwhile, the loci of contact points and their corresponding contact ellipses
on the pinion surface were illustrated in Fig. 8. Even when the gear pair meshes under various
assembly errors, the TEs remain zero and the loci of contact points remain in the middle region of
the tooth flank. These results indicate that the straight beveloid gear pair mounted with inter-
sected axes is insensitive to assembly errors. Under some circumstances, intersected straight
beveloid gears can replace bevel gears and take the advantage of insensitivity to the gear assembly
errors. However, the contact ellipses of a beveloid gear pair with intersected axes are relatively
small, especially with large cone angles. Therefore, tooth surface durability is generally low owing
to its high contact stress. Considering the straight beveloid gear pair in this example, one curve

Table 1

Major design parameters of the beveloid pinion and gear

Pinion Gear

Number of teeth N1 ¼ 24 N2 ¼ 36

Face width (thickness of gear blank) F1 ¼ 14 mm F2 ¼ 14 mm

Normal pressure angle aðF Þ
n ¼ 20� aðGÞ

n ¼ 20�
Normal module mn ¼ 5 (mm/teeth)

Fig. 7. Three typical mounting types of beveloid gear pairs: (a) intersected axes; (b) crossed axes; (c) parallel axes.
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ðbF ¼ bG ¼ 0�Þ in Fig. 9 shows how with the increase of cone angles d1 and d2, the ratio between
the major and minor axes of the contact ellipse, a=b, decrease significantly. Notably, the ratio a=b
approaches to infinity when the cone angles d1 and d2 tend to zero, which represents a spur gear
pair in line contact.

Table 2

TCA results of the straight beveloid gear pair with intersected axes

Case /0
1 (deg.) ‘F uF /0

2 (deg.) ‘G uG TE (arc-sec.)

1 6.0 8.813 0.000 189.000 1.829 0.000 0.000

3.0 7.738 0.000 187.000 2.903 0.000 0.000

0.0 6.664 0.000 185.000 3.978 0.000 0.000

)3.0 5.590 0.000 183.000 5.052 0.000 0.000

)6.0 4.515 0.000 181.000 6.127 0.000 0.000

2 6.0 9.027 )0.395 189.096 2.051 )0.504 0.000

3.0 7.953 )0.395 187.096 3.125 )0.504 0.000

0.0 6.878 )0.395 185.096 4.200 )0.504 0.000

)3.0 5.804 )0.395 183.096 5.274 )0.504 0.000

)6.0 4.729 )0.395 181.096 6.349 )0.504 0.000

3 6.0 9.033 0.099 189.185 1.620 0.669 0.000

3.0 7.958 0.099 187.185 2.695 0.669 0.000

0.0 6.884 0.099 185.185 3.769 0.669 0.000

)3.0 5.809 0.099 183.185 4.844 0.669 0.000

)6.0 4.735 0.099 181.185 5.918 0.669 0.000

Fig. 8. Bearing contact of a straight beveloid gear pair with intersected axes.
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5.2. Example 2: Helical beveloid gear pair with crossed axes

Fig. 7(b) illustrates a beveloid gear pair consisting of helical beveloid pinion and gear with
crossed axes. The cone angles of the helical beveloid pinion and gear are d1 ¼ d2 ¼ 20�, and the
helix angles on the pitch planes of the rack cutters for the pinion and gear are bF ¼ bG ¼ 15� (right
handed). The crossed angle formed by axes Zf and Zg, as shown in Fig. 4, is calculated as 49.6284�
by applying the algorithms proposed by Mitome [2]. This example investigates the meshing
simulations of gear pairs under the following assembly conditions:

Case 4: Dch ¼ Dcv ¼ 0� and Dxg ¼ Dyg ¼ Dzg ¼ 0 mm (ideal assembly condition).
Case 5: Dch ¼ Dcv ¼ 0� and Dxg ¼ Dyg ¼ Dzg ¼ 0:3 mm.
Case 6: Dch ¼ 0:5�;Dcv ¼ �0:5� and Dxg ¼ Dyg ¼ Dzg ¼ 0:3 mm.
Table 3 summarizes the TCA results and TEs of the gear pair, and Fig. 10 illustrates the

loci of contact points and their corresponding contact ellipses on the pinion surface. Even
under various assembly errors, the TEs remain zero and the loci of contact points also remain
in the middle region of the tooth flank. Therefore, the helical beveloid gear pair with crossed
axes is also insensitive to assembly errors. Another curve in Fig. 9 indicates the relationship
between the cone angles and the ratio a=b of this helical beveloid gear pair with
bF ¼ bG ¼ 15�. It is reasonable to find the ratio a=b approaches to a limited value when the
cone angles tend to zero, which represents that a crossed axes helical gear pair is in point
contact.

5.3. Example 3: Straight beveloid gear pair with parallel axes

Fig. 7(c) illustrates a straight beveloid gear pair mounted with the parallel axes. The pinion and
gear are identical to those in Example 1 (cf. Section 5.1). However, the gear is now turned over to
allow the heel of the gear to engage with the toe of the pinion. Thus, the axes of pinion and gear
are now parallel. Cases 7–9 simulate the meshing of the gear pair under the following assembly
conditions:

Fig. 9. The ratio a/b with respect to the cone angle.
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Case 7: Dch ¼ Dcv ¼ 0� and Dxg ¼ Dyg ¼ Dzg ¼ 0 mm (ideal assembly condition).
Case 8: Dch ¼ Dcv ¼ 0� and Dxg ¼ Dyg ¼ Dzg ¼ 0:5 mm.
Case 9: Dch ¼ 0:5�, Dcv ¼ 0� and Dxg ¼ Dyg ¼ Dzg ¼ 0:5 mm (edge contact condition).

Fig. 10. Bearing contact of a helical beveloid gear pair with crossed axes.

Table 3

TCA results of the helical beveloid gear pair with crossed axes

Case /0
1 (deg.) ‘F uF /0

2 (deg.) ‘G uG TE (arc-sec.)

4 6.0 8.813 1.684 189.000 1.829 )3.788 0.000

3.0 7.738 0.842 187.000 2.903 )2.946 0.000

0.0 6.664 0.000 185.000 3.978 )2.104 0.000

)3.0 5.590 )0.842 183.000 5.052 )1.263 0.000

)6.0 4.515 )1.684 181.000 6.127 )0.421 0.000

5 6.0 9.030 1.197 189.125 2.021 )4.423 0.000

3.0 7.955 0.355 187.125 3.096 )3.581 0.000

0.0 6.881 )0.487 185.125 4.170 )2.739 0.000

)3.0 5.806 )1.328 183.125 5.245 )1.897 0.000

)6.0 4.732 )2.170 181.125 6.319 )1.056 0.000

6 6.0 9.034 2.158 189.063 1.710 )2.698 0.000

3.0 7.960 1.316 187.063 2.784 )1.856 0.000

0.0 6.885 0.474 185.063 3.859 )1.014 0.000

)3.0 5.811 )0.368 183.063 4.933 )0.172 0.000

)6.0 4.736 )1.209 181.063 6.008 0.669 0.000
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Fig. 11 illustrates the bearing contacts of the gear pair on the pinion surface under three as-
sembly conditions. Meanwhile, the TCA results and TEs are listed in Table 4. Under the ideal
assembly condition (case 7) or with a mounting position deviation without an axial misalignment
(case 8), similar to a spur or helical gear pair mounted with parallel axes, the bearing contact is a
line contact and the TEs equal zero. However, when an axial misalignment occurs (case 9), the
bearing contact becomes an edge contact and the TEs are induced as shown in Table 4. Notably,
when the edge contact occurs, Eqs. (9) and (10) which describe the surface-to-surface continuous
tangency are no longer applicable. Litvin [5,6] proposed the general concept of curve-to-surface
continuous tangency to simulate edge contact in gear meshing. In Case 9, the edge contact occurs
on the heel edge of the pinion which is in tangency with the surface of the gear. Therefore, the
following equations must be observed:

z1 ¼ F1=2; ð44Þ

R
ð1Þ
f ¼ R

ð2Þ
f ; ð45Þ

and

t
ð1Þ
f � nð2Þf ¼ 0; ð46Þ

where, F1 is the face width of the pinion, and z1 ¼ F1=2 represents the transverse plane on the heel
side of the pinion. By combining R

ð1Þ
f and Eq. (44), the curve which represents the edge on the heel

of the beveloid pinion tooth is expressed in coordinate system Sf ; in addition, the tangent of this
edge can be derived and represented as t

ð1Þ
f . Eqs. (44)–(46) can be solved similarly to Eqs. (9) and

(10).

Fig. 11. Bearing contact of a straight beveloid gear pair with parallel axes.
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6. Conclusions

This study simulates the meshing of beveloid gear pairs with intersected, crossed and parallel
axes. Bearing contact characteristics of the beveloid gear pairs under various assembly errors, and
the contact ellipses of beveloid gear pairs with non-parallel axes are also investigated. Several
illustrative numerical examples are presented as well. Based on the results attained in this study,
we conclude the following:
1. Beveloid gear pairs with non-parallel axes exhibit point contact and are insensitive to assembly

errors. Besides, the orientation and dimension of the contact ellipse can be determined. The re-
sults are helpful to further investigations on the contact characteristics and lubrication of this
type of gear pairs.

2. The contact ellipses of non-parallel axes beveloid gear pairs are relatively small especially with
large cone angles. Therefore, tooth surface durability is generally low owing to its high contact
stress. Our upcoming research will provide some novel generation methods which can enlarge
the contact ellipses of non-parallel axes beveloid gear pairs.

3. Straight beveloid gear pairs with parallel axes without axial misalignments can mesh conju-
gately in line contact. However, when axial misalignments are present, the edge contact replaces
the line contact and unfavorable TEs, stress concentrations, noises and vibrations will occur. In
real applications, one of the beveloid gears should be crowned to localize the bearing contact in
the middle area of the tooth frank and to avoid edge contact.
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Table 4

TCA results of the straight beveloid gear pair with parallel axes

Case /0
1 (deg.) ‘F uF /0

2 (deg.) ‘G uG TE (arc-sec.)

7 6.0 Line contact 189.000 Line contact 0.000

3.0 187.000 0.000

0.0 185.000 0.000

)3.0 183.000 0.000

)6.0 181.000 0.000

8 6.0 Line contact 189.273 Line contact 0.000

3.0 187.273 0.000

0.0 185.273 0.000

)3.0 183.273 0.000

)6.0 181.273 0.000

9 6.0 4.852 7.828 189.320 5.932 7.064 20.213

3.0 4.021 7.378 187.317 6.775 6.636 10.107

0.0 3.190 6.927 185.314 7.618 6.207 0.000

)3.0 2.360 6.476 183.311 8.460 5.779 )10.107

)6.0 1.529 6.026 181.308 9.303 5.350 )20.213
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