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Abstract

With the fast growing and globally accepted e-learning technology, Computer-Assisted Learning (CAL) system, which can provide the
individualized materials, becomes a matter of great importance. In this paper, we propose a CAL Expert System (CAL-ES), in which teachers
can provide their teaching strategy as guidance to students’ learning. Because the knowledge hierarchy and the knowledge itself are both
important in CAL domain, and the teaching strategy can be considered as rule-format, Two-phase Knowledge Acquisition is proposed to
acquire the knowledge hierarchy and the rule-based knowledge by the cooperation of teachers and knowledge engineers. The prototype of
CAL-ES is constructed of the mathematical teaching materials. The CAL-ES is useful for student learning and is easy for teachers

maintaining. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As Internet usage becomes more popular over the world,
e-learning system, e.g. online learning, employee training
courses, e-book, etc. has been accepted globally. How to
provide the optimum content for individualized learning is
an important issue for e-learning system. Several e-learning
systems including online teaching, online tutoring, e-book,
etc. have been proposed in the past 10 years (Alessi &
Trollip, 1991; Beishuizen & Stoutjesdijk, 1999; Chou,
1996; Hwang, 1998; Oakley, 1996; Sun & Chou, 1996).
However, these systems have provided the same or similar
materials based on some fixed strategy or fixed learning map
for all online learners despite of their personalized features
or learning status.

A Computer-Assisted Learning (CAL) system, a kind of
e-learning system, based upon Object-Oriented Course
Model (OOCM) (Su, Tseng, Tsai, & Cheng, 1999, 2000)
have been proposed to provide individualized teaching
materials for learners in accordance with their learning apti-
tudes and evaluation results. In this system, the original
teaching materials are divided into several segments,
which are called teaching objects, according to the instruc-
tional objectives defined by teachers or teaching material
editors. Then, these teaching objects can be constructed
dynamically in accordance with students’ learning status,
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when they are learning online. The construction algorithm
of teaching materials can be considered as the teaching
strategy of teachers. However, teaching strategy may differ
with teachers owing to the differences on teaching materials
and teaching experiences. Therefore, in this paper, we build
up a CAL Expert System (CAL-ES), which can guide
students to learn the online teaching materials according
to the teaching strategy provided by teachers in rule-format,
and the learning aptitudes and evaluation results of students.

The knowledge hierarchy and the relevant knowledge of
CAL-ES can be considered as the learning map and the
teaching strategy, respectively. The knowledge about how
to guide students to learn is stored as a set of rules, the
teaching strategy of different instructional objectives can
be modularized, and there exist some directed links
among the different knowledge objects (Wu & Cai, 2000),
which form the knowledge hierarchy, so it is considered as
the learning map.

Moreover, unfamiliarity with expert systems and compu-
ter technologies may have caused the difficulty in knowl-
edge acquisition for teachers. Therefore, we propose the
Two-phase Knowledge Acquisition (Tp-KA) to help
teachers acquire the knowledge hierarchy and the relevant
knowledge systematically and effectively. The first phase is
to construct the knowledge hierarchy and the hierarchical
grids. The second phase is to transform the knowledge hier-
archy from lattice structure into tree structure and extract the
rules with embedded meaning from the hierarchy grids.
Based upon Tp-KA, teachers can transform their teaching
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Fig. 1. Traditional and OO teaching materials.

strategy into guiding rules stored in CAL-ES, and students
can learn individualized online teaching materials by
following the instructions. The prototype of CAL-ES is
constructed on a basis of the domain about mathematical
teaching materials of senior high school.

2. Related works and meotivation

CAL systems, which can guide learners to study the
materials, become more popular over the world. Therefore,
how to design and construct CAL systems together with its
teaching materials is of much concern. Several approaches,
which can be used to provide the teaching materials for
students learning, had been developed in the past 10 years
(Alessi & Trollip, 1991; Beishuizen & Stoutjesdijk, 1999;
Chou, 1996; Hwang, 1998; Oakley, 1996; Sun & Chou,
1996). Some of them (Hwang, 1998; Oakley, 1996; Sun &
Chou, 1996) provide the evaluation mechanism to find out
what instructional objectives were not achieved well.
According to these evaluation results, the proper remedial
teaching materials can be offered to the students, who have
not learned well.

As shown in Fig. 1(a), the traditional materials usually
arrange the content and quizzes in sequence monotonously.
It means that all the students learn the same teaching
materials sequentially without allowed to skip the sub-
section they have learned. In Fig. 1(b), OOCM (Su et al.,
1999, 2000) can segment the original teaching materials into
several segments, which are called teaching objects. These
teaching objects contain the teaching content and quizzes
based on the instructional objectives defined by teachers.

Based upon the OOCM, the teaching materials can be
constructed dynamically by organizing the teaching objects
according to learning map and students’ learning aptitudes
and evaluation results. Thus, the individualized teaching
materials can be offered to each student for learning.

The learning map, which is defined by teachers or teach-
ing materials editors, consists of some teaching objects and
teaching strategy of teachers. The teaching materials can be
provided for students to learn according to the learning map.
In other words, the learning map can guide the learning

Fig. 2. An example of learning map.

process of students. Given four teaching objects, A, B, C,
and D in the example of learning map shown in Fig. 2, A is
the prerequisite knowledge of B and C, B and C are the
prerequisite knowledge of D, and D is the end of the course.
Based on this learning map, A is provided for students to
learn first, and then either B or C is provided in accordance
with the learning aptitudes and evaluation results of the
students. Finally, D is provided for finishing this learning
process.

As we know, most existing CAL systems guide students
to learn under fixed strategy and fixed material construction
algorithm. They rarely provide dynamical mechanism, a
function allowing teachers to use their own teaching strat-
egy or the existing teaching strategy defined by educational
experts or senior teachers to guide the students in learning
process. Therefore, our idea is to construct a rule-based
CAL-ES, in which the teaching strategy of teachers is repre-
sented by rule-format. Teachers can easily encode their
teaching strategy into rule-format to guide students learning.
Moreover, the learning map and the teaching strategy,
which are constructed by senior teachers or educational
experts and stored in the Knowledge Base (KB) of CAL-
ES as the knowledge hierarchy and the relevant knowledge,
respectively, can be reused as a reference for junior teachers
to improve their teaching skills.

One important function of CAL-ES is to provide a proper
knowledge acquisition to assist the teachers, who are not
familiar with computer and expert system technologies in
acquiring their teaching strategy and store them into the KB.
In addition, the knowledge hierarchy and the relevant
knowledge are both important for constructing expert
system in CAL domain, since the information about learn-
ing map and the teaching strategy is important for teachers
to refine their designed teaching materials. Therefore, we
also propose Tp-KA, which divides the processes of
constructing the knowledge hierarchy and acquiring the
knowledge into two phases, to knowledge engineers so as
to assist teachers in processing the knowledge acquisition
systematically and effectively.

3. CAL Expert System

As we know, rule-based expert system is to model the
decision-making competence of human experts, in this
case, considered as the ability of teachers to guide students
learning in accordance with their learning aptitudes and
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evaluation results. The reasoning processes of CAL-ES are
modeling those of human experts in solving problems,
which can be considered as the thinking processes of
teachers on how to teach the students in accordance with
their learning aptitudes. Thus, CAL-ES, which stores the
rule-format teaching strategy to guide the learning processes
of students, is designed as a kind of rule-based expert
system.

Because teaching strategy is a set of rules, the concept of
knowledge object, which is chunk of knowledge, is used to
represent the knowledge of CAL-ES. The teaching strategy
for different instructional objectives can be modularized,
and some directed links existing among the different knowl-
edge objects form the knowledge hierarchy can be con-
sidered as the learning map.

3.1. Architecture

Fig. 3 shows the architecture of CAL-ES composed of
Tp-KA module, User Interface (UI), Inference Engine (IE),
Query Transformer (QT), KB, and Teaching Resource Data-
base (TRD).

Ul is a web-based CAL system, which can provide proper
teaching materials for students according to their learning
aptitudes and evaluation results. KB contains learning map
and teaching strategy that are stored as knowledge hierarchy
and the relevant knowledge of KB. TRD stores the elements
of teaching materials, the teaching objects. IE uses forward
inference algorithm for inferring, which teaching objects are
best fit for students according to their learning aptitudes and
evaluation results of students. Then, QT is triggered to
retrieve the required teaching objects from TRD, combine
and organize the teaching objects into teaching materials,
and display the teaching materials to students through Ul In

the following sections, QT, TRD and Tp-KA will be
described more in detail.

3.2. Query Transformer and Teaching Resource Database

TRD stores the attributes and index of teaching objects,
which are the set of XML-based documents, for managing
and retrieving these teaching objects. The Document Type
Definition (DTD) describes the structure of XML-based
documents. It also includes the information about what
elements must be presented, what their attributes are, and
how they can be structured with links between each other.
The corresponding DTD of XML-based document is shown
as follows.

(\DOCTYPE DocumentObject [

(\ELEMENT DocumentObject (DOIndex, CombineSet,

Relationship))

(\ELEMENT DOlIndex (#PCDATA))

(\ELEMENT CombineSet (#PCDATA))
({ATTLIST CombineSet Member NMTOKENS
#REQUIRED)

(\ELEMENT Relationship (#PCDATA))
(\ATTLIST  Relationship  Link
#IMPLIED)

NMTOKENS

)

The (DocumentObject) tag consists of (DOIndex),
(CombineSet), and (Relationship) tags. The (DOIndex) tag
is the index of the document object. If this document is a
combination of several other document objects, all indexes
of these document objects are indicated in the Member
attribute of the (CombineSer) tag as several tokens separated
by space token, and a new index for the new combined
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document object is indicated in the (DOIndex) tag. If the
document object has a directed link with another document
object, the index of this document object is indicated in the
Link attribute of the (Relationship) tag.

To illustrate the definition and constructing operations of
teaching materials, we use the following six teaching
objects about the fundamental trigonometric function in
Examples 3.1-3.4.

D;: The teaching object of sine and cosine definition.

D,: The teaching object of tangent and cotangent
definition.

Ds: The teaching object of secant and cosecant definition.

Dy: The teaching object of basic Example 1.

Ds: The teaching object of basic Example 2.

Dg: The reference data.

Example 3.1. The teaching object D;, mentioned earlier,
can be defined as follows according to the DTD of teaching
object.

(!—The teaching object of sine and cosine definition—)
(DocumentObject)
(DOIndex Member = “1”)Definition of sine & cosine/
DOlndex)
(CombineSet Member = ““ ”X/CombineSet)
(Relationship Link = ”"){/Relationship)
{({DocumentObject)

When QT receives the inferring results of IE, it trans-
forms the inferring results into standard SQL commands,
and then retrieves the needed teaching objects from TRD.
After retrieving the teaching objects, QT executes Combine,
Organize and Show operations to construct the online teach-
ing materials. The operations of QT and the algorithm for
processing the teaching objects can be added, modified and
improved according to practical demand for processing the
XML-based documents. The following algorithm is pro-
posed to construct the teaching materials.

QT Execution Algorithm

Input: Inferring results of IE.

Output: Online teaching materials showed for students
learning.

Stepl: According to the inference results, retrieve the
required teaching objects from TRD.

Step2: Execute Combine operation to combine some
teaching objects into one larger teaching object.

Step3: Execute Organize operation to establish the links
among the teaching objects.

Step4: Execute Show operation to display the online
teaching materials on Ul for students learning.

The three operations of QT are defined as follows:

® Combine

Combine operation is to join together two or more XML
document objects into a new XML document object. It is
expressed as Combine(Doc_Index;;,, Doc_Indexy,,), where
Doc_Index;;, indicates the token list of the index of XML
document objects, in which tokens are separated by space
token, and New_Doc_Index indicates the new index of
combined XML document object.

Example 3.2. This example shows how the three teaching
objects Dy, D, and D; are combined into the teaching object
D,, which are the teaching materials about definition of
fundamental trigonometric function.

(\—The command is Combine(1 2 3, 7)—)
(!—The teaching object of trigonometric function defini-
tion—)
{DocumentObject)
(DOIndex Member = “7”)Definition{/DOIndex)
(CombineSet Member = “1 2 3”)
1. Definition of sine & cosine,
2. Definition of tangent & cotangent,
3. Definition of secant & cosecant,
{(/{CombineSet)
(Relationship Link = ”){/Relationship)
{({DocumentObject)

® Organize

Organize operation is to arrange two or more XML docu-
ment objects into online teaching materials by establishing
the directed links among the teaching objects. It is expressed
as Organize(Ancestor_Index, Descendant_Index), where
Ancestor_Index and Descendant_Index indicates the index
of the ancestor and the descendant document object.

Example 3.3. The directed link between the teaching
objects D; and Dy is constructed by using Organize operator,
where the D; is the ancestor and the D, is the descendant.

(!—The command is Organize(7, 4)—)
(!—The relationship between the definition and basic
example—)
{DocumentObject)
(DOIndex Member = “7”)Definition{/DOIndex)
(CombineSet Member = “1 2 3”)
1. Definition of sine & cosine,
2. Definition of tangent & cotangent,
3. Definition of secant & cosecant,
(CombineSet)
(Relationship Link = “4”)Basic Example 1{/Relation-
ship)
{{DocumentObject)

® Show
Show operation is to display the XML document objects
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<DocumentObject>
<DOIndex Member="7">Defhition</DOIndex>
<CombineSet Member="1 2 3">
1. Definition of sine & cosine,
2. Definition of tangent & cotangent,

3. Definition of secant &
</CombineSet>
<Relationship Link="4">Basic Example</Relationship}
</DocumentObject>
.’ Dl
<DocumentObject>

<DOIndex Member="4">Basic Example 1 </DOIndex>
<CombineSet Member=""></CombineSet>
<Relationship Link="5 6">
5. Basic Example 2
6. Reference Data
</Relationship>
1 </DocumentObject>

[S

<DocumentObject>

<DOIndex Member="6">Reference Data</DOIndex>
<CombineSet Member=""></CombineS
<Relationship Link=""></Relationship>
</DocumentObject>

t]

<DocumentObject>

<DOIndex Member="5">Basic Example 2</DOIndex>
<CombineSet Member=""></CombineS:
<Relationship Link="6">Refe: Data</Relationshij
</DocumentObject>

Fig. 4. The teaching material after executing the above sample rule.

in Ul i.e. browser, by using eXtensible StyleSheet
Language (XSL). It is expressed as Show(Doc_Index),
where Doc_Index indicates the index of XML document
teaching materials.

Example 3.4. After IE inference processes, assuming the
condition part of the following sample rule is satisfied, the
system executes the algorithm of QT to construct the online
teaching materials. The result is shown in Fig. 4.

if condition part is satisfied, then
Combine(1 2 3, 7),
Organize(7, 4), Organize(4, 5), Organize(4, 6), Organ-
ize(5, 6), and
Show(7)

4. Two-phase Knowledge Acquisition

Knowledge acquisition is a difficult, but important
issue in constructing an expert system, especially for
those, who are not familiar with expert system and com-
puter technologies. In CAL-ES, the learning map is stored
in the KB as knowledge hierarchy and the teaching strategy
as knowledge. However, learning map cannot be shown
to teachers easily, since the knowledge representation of
CAL-ES is rule-format. That makes it difficult for teachers
to know the structure of overall teaching materials. So, it
is also difficult for teachers to refine teaching strategy
and reorganize the structure of teaching materials. Thus,
the concept of ontology is applied here to show the
knowledge hierarchy of teachers’ teaching strategy. Since
knowledge engineers need a systematical knowledge

acquisition to interview the teachers to transfer their
teaching strategy into rule-format, it seems to be neces-
sary to provide a systematical and effective knowledge
acquisition for teachers and knowledge engineers in
CAL-ES.

As shown in Fig. 5, Tp-KA acquires the knowledge hier-
archy and constructs the hierarchical grids in the first phase,
and then transforms the knowledge hierarchy into maintain-
able and traceable format and extracts guiding rules from
the hierarchical grids in the second phase. The algorithm of
Tp-KA is as follows:

Tp-KA Algorithm

Input: The teaching domain know-how.

Output: The KB containing the learning map and the

guiding rules.

Phasel
Stepl: Execute Constructing Knowledge Hierarchy
(CKH) Algorithm to construct the knowledge
hierarchy.
Step2: Execute Hierarchical Repertory Grids Analysis
(H-RGA) Algorithm to construct and fill up the hier-
archical repertory grids according to the knowledge
hierarchy constructed in Stepl.

Phase2
Stepl: Execute Lattice to Tree (L2T) Algorithm to
transform the ontological lattice into ontological
tree.
Step2: Execute Embedded Meaning Capturing and
Uncertainty Deciding (EMCUD) Algorithm to extract
guiding rules from the hierarchical repertory grids.
Step3: Store the ontological tree and the meaning-
embedded rules into KB of CAL-ES.
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Fig. 5. The flow of Tp-KA.

In the first phase, by interviewing the senior teachers and
educational experts, knowledge engineers can construct
the knowledge hierarchy in lattice structure (Venter,
Oosthuizen, & Roos, 1997), called ontological lattice. And
then the hierarchical grids can be constructed and filled up
according to the obtained knowledge hierarchy. In the
second phase, the ontological lattice is transformed into
tree structure, called ontological tree, for teachers to trace
and refine the learning map easily, since the information of
knowledge hierarchy is easier to be understood in tree struc-
ture than in lattice structure. In addition, the guiding rules
with embedded meanings, the teaching strategy, can be
extracted from the hierarchical grids obtained in the first
phase. Finally, the KB containing the ontological tree and
the meaning-embedded rules can be obtained in the end of
Tp-KA.

4.1. Ontology representation by RDF

As we know, Resource Description Framework (RDF) is
a resource description manner recommended by W3C. The
major difference between RDF and Extensible Markup

rdfs:Class

A

dft
reriype rd§:subClassOf

\

rd:subClassQf

sw:Ontology

A
rdfs:subClassOf

sw:EvaluatingStrategy

Language (XML) is that RDF has a unique representation,
but XML may have various representations for the same
object. This unique property is useful for depicting the
domain-specific ontology, and for exchanging the informa-
tion of ontology. For example, RDF is used to depict the
framework of the semantic web, which can be considered as
a kind of ontology (Decker, Mitra, & Melnik, 2000).

Fig. 6 shows the RDF schema, which is used to depict the
ontological lattice and the ontological tree of CAL-ES. In
RDF, rdfs:Class indicates the object is a class, rdfs:
Resource, which indicates the resource, is the subclass of
rdfs:Class, and the relationship between superclass and
subclass is indicated as rdfs:subClassOf. rdfs:Property,
which indicates the property of some class, is also the
subclass of rdfs:Class, with the range and the domain. If
some object is a type of class or property, then this relation-
ship is indicated as rdf:type. The relationship between the
object, which is a type of property, and its range is indicated
as rdfs:range, and the relationship between this object and
its domain is indicated as rdfs:domain.

According to the RDF schema shown in Fig. 6, sw:
Ontology, which is a type of class and is a subclass of

rdfs:domain
rdfS:rang

Fig. 6. The RDF Schema in CAL-ES.
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resource, contains two subclasses, sw:TeachingStrategy
and sw:EvaluationStrategy. These two are the type of
resources and indicate the teaching strategy and evalua-
tion strategy, e.g. guiding rules or evaluation rules created
by teacher. In sw:TeachingStrategy, there are two proper-
ties, sw:Successor and sw:MajorConcept. sw:Successor
indicates the successor of the node on the ontology, and
thus the range and domain of sw:Successor are both
sw:TeachingStrategy. sw:MajorConcept indicates the major
concept of the teaching strategy or evaluation strategy, and
thus the range is the literal defined as rdf:literal, and the
domain is sw:TeachingStrategy or sw:EvaluationStrategy.

4.2. Knowledge construction in the first phase

In most cases, when teachers guide students to work on
the teaching materials, the students may think of some
problems, which need to be solved by teachers. Different
teachers may deal with these problems by different strate-
gies, but some of these strategies will have something in
common, which can be divided into some chunks of knowl-
edge (Tsai, Tseng, & Wu, 1999), called knowledge objects,
and modularized to be reused by teachers for guiding
students in learning. It is useful to manage these teaching
strategies. These related knowledge objects are connected
by some directed links to show the causal knowledge.

Here, we need to model the knowledge about teaching strat-
egy of teachers in an acyclic conceptual map or semantic
network, since the directed links among knowledge objects
do not contain any cycle when inferring, if do, will cause the
infinite inferring problem. However, the general conceptual
map or semantic network does not exclude the existence of
cyclic relationships. Thus, we adopted ontological lattice, a
kind of Directed Acyclic Graph (DAG), where the nodes indi-
cate the knowledge objects and the directed links among the
nodes indicate the causal knowledge.

To construct the ontological lattice for some problem
domains, cooperation between domain experts and knowl-
edge engineers is required. The following CKH Algorithm
can guide the constructing process of knowledge hierarchy.

CKH Algorithm

Input: The teaching domain know-how.
Output: The learning map in ontological lattice format.
Stepl: List all elementary knowledge objects according
to the instructional objects of teaching materials.
Step2: While the knowledge hierarchy is not completed,
ask the domain experts to proceed the following substeps:
Step2.1: List the meta-knowledge objects based on
some of built knowledge objects.
Step2.2: Establish the directed links among the meta-
knowledge objects and the built knowledge objects.

Example 4.1. In this example, we want to construct the
ontological lattice of teaching materials by giving funda-

mental trigonometric function as an example. According
to CKH Algorithm, the following 12 knowledge objects
are listed in the sequence. First, list (KO, KO;, KO,,),
second, list (KOg, KO;, KOy), third, list (KO,, KOs, KO,,
KO»), and finally list (KO,).

Teaching strategy:
KOy: [Definition I] The definition course of acute angle
trigonometric.
KO,: [Formula I] The formula course of acute-angle
trigonometric.
KOj: [Exercise I] The exercises of fundamental defini-
tion and formula.
KOy: [Formula I (Supplement)] The supplementary
course of formula.
KOs: [Applied Example I] The simple practical exam-
ple of trigonometric.
KOg: [Definition II] The definition course of general-
ized trigonometric.
KO7: [Formula II] The formula course of law of sines
and cosines.
KOg: [Applied Example II] The advanced practical
example of triangulation.
KOy: [End_Course] The test of teaching materials.
Evaluation strategy:
KO: [Learning Grade] The grade evaluation of the
quizzes following the course.
KO : [Network Learning Performance] The perform-
ances evaluation of online learners.
KO,: [Interview] The interview evaluation between
online tutor and student through an online chat room.

Fig. 7(a) shows the sample ontological lattice of the
learning map of fundamental trigonometric function. Fig.
7(b), which contains the teaching materials of Definition I,
Formula I, and Exercise I, is a part of learning map shown in
Fig. 7(a). The elliptical knowledge objects are the teaching
strategies worked out by teachers, and the rectangular
knowledge objects are the evaluation strategies, which are
the elementary knowledge objects.

Based upon the RDF schema defined in Section 4.1, the
following shows how the node of the ontological lattice,
Definition I, is described in RDF document.

(Ontology)
(TeachingStrategy)
(rdf:type resource = “Hyperlinks of teaching strat-
egy about Definition I”)
(Successor)
(rdf:type resource = “Hyperlinks of Formula 1"’
{/Successor)
(MajorConcept)
(rdf:type resource = “Definition I"’)
(IMajorConcept)
(/TeachingStrategy)
(/Ontology)
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Fig. 7. Ontological lattice of teaching strategy about trigonometric function.

According to the obtained knowledge hierarchy, many
kinds of knowledge acquisition approaches, grid-driven
procedure, menu-driven procedure, table-driven procedure,
and question/answer procedure (Boose, 1989; Boose &
Gaines, 1988; Hwang & Tseng, 1990; Jeng & Chen, 1997;
Marcus, 1988) may be applied to transform expertise into
KB. In this paper, we use the multiple-level grid-driven proce-
dure to acquire and generate the rule-format knowledge.

In the knowledge hierarchy in ontological lattice format
as shown in Fig. 7(a), each node of the ontological lattice
indicates a knowledge object in accordance with character-
istics of problem domain. The ancestor node can be con-
sidered as the meta-knowledge of the descendant node. For
each knowledge object, a repertory grid is used to describe
its properties, with the objects as column headers and attri-
butes as row headers of the grid. The hierarchical relation-
ship between the ancestor grid and the descendant grid is
determined by the multiple-level grids based upon the onto-
logical lattice. Thus, the following H-RGA Algorithm is
proposed to construct and fill up the hierarchical multiple
grids according to the knowledge hierarchy built in the first
stage of the first phase in the cooperation of experts with

knowledge engineers. Based upon H-RGA, the row and the
column of each repertory grid consist of an attribute set and
an object set, respectively, which are used to elicit knowl-
edge from experts.

H-RGA Algorithm

Input: The learning map in ontological lattice format.
Output: The hierarchical grids.

Stepl: Visit the lattice according to Depth First Search
algorithm.

Step2: Derive objects of grid from the experts according
to the major concept of the visited node.

Step3: Elicit attributes from the experts, in which some
attributes are corresponding with the child node of the
ontological lattice and can be used to build the directed
link between two nodes.

Step4: Fill in the values of the derived pair of [object,
attribute] of the grid.

Step5: If there exists any unvisited node, then go to Stepl.
Step6: Stop.

Step2 and Step3 are to construct the multiple hierarchical
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Table 1
An example of Definition I grid

243

Definition Basic_Example_1 Basic_Example_2 Next_Section
Prerequisite X Definition Definition Definition
Major Concept Trigonometric Definition Trigonometric Example Trigonometric Example Formula
Difficult Level 1 1 2 0

grids according to the knowledge hierarchy of problem
domain. Step4 is to fill in the value of the pair of [object,
attribute] of the grids.

Example 4.2. For the ontological lattice shown in Fig.
7(b), the following five grids are constructed by H-RGA
Algorithm.

The Definition I grid as shown in Table 1 contains four
objects: Definition, Basic_Example_1, Basic_Example_2
and Next_Section, and three attributes: Prerequisite, Major
Concept and Difficult Level.

The Formula I grid as shown in Table 2 contains four
objects: Basic_Formula, Sum_of_Product, Last_Section
and Next_Section, and five attributes: Prerequisite, Major
Concept, Difficult Level, Learning Grade and Network
Learning Performance. This grid and Learning Grade grid
are related to each other by Learning Grade attribute, and
the Network Learning Performance grid by Network Learn-
ing Performance attribute.

The Exercise I grid as shown in Table 3 contains five
objects: Definition, Formula, Integration, Next_Section_1
and Next_Section_2, and four attributes: Prerequisite,
Major Concept, Difficult Level and Learning Grade. This
grid and Learning Grade grid are related to each other by
Learning Grade attribute.

The Learning Grade Evaluation grid as shown in Table 4
contains five objects: Poor, Not Good, Average, Good and
Excellent, and three attributes: Upper Bound, Lower Bound
and Understanding Level.

The Network Learning Performance Evaluation grid as
shown in Table 5 contains three objects: Non-Active, Aver-
age and Active, and four attributes: Interaction, Effective
Learning Time, Effective Quizzing Time and Session Time.

4.3. Knowledge hierarchy transformation and knowledge
extraction in the second phase

The second phase contains two procedures: L2T Algo-
rithm and EMCUD Algorithm (Hwang & Tseng, 1990).

Table 2
An example of Formula I grid

L2T Algorithm is to transform the knowledge representa-
tion from ontological lattice into ontological tree. EMCUD
Algorithm is to extract rules with embedded meaning from
the hierarchically grids constructed in the first phase.

The existence of the cross-links among knowledge
objects in lattice representation seems to have made it diffi-
cult for teachers to trace and refine the completed ontologi-
cal lattice. On the contrary, the tree representation, which
can show the hierarchical information in more easily and
clearly way than lattice representation, is useful for teachers
to verify and refine the learning map. Therefore, we propose
an algorithm for transformation, L2T Algorithm, to trans-
form the knowledge representation from ontological lattice
into ontological tree.

L2T Algorithm

Input: The learning map in ontological lattice format.
Output: The learning map in ontological tree format.
Stepl: Visit the lattice according to Depth First Search
Algorithm, and set the visited node a visited-flag.

Step2: If the node has set the visited-flag, then duplicate
the subtree with the visited node as root, and construct
relationship from the parent node of the visited node to
the new duplicated tree.

Step3: If there exists any unvisited node, then go to Stepl.
Step4: Stop.

Example 4.3. The ontological lattice shown in Fig. 7(b)
can be transformed by using L2T Algorithm into the
ontological tree shown in Fig. 8.

It seems that the ontological tree needs enormous space to
store the duplicated nodes. Generally speaking, the knowl-
edge object does not need to duplicate itself, but only a
change of its index. When user gives the conditions (learn-
ing aptitudes and evaluation results) for some inference
results, the related knowledge objects are initialized and
copied into the working memory. Then the conditions

Basic_Formula

Sum_of_Product

Last_Section Next_Section

Definition
Trigonometric Formula
1

Good

Average

Prerequisite

Major Concept

Difficult Level

Learning Grade

Network Learning Performance

Basic_Formula Definition Formula
Trigonometric Formula Trigonometric Formula Exercise
1 0 0
Excellent Not Good Good
Active Non-Active Average
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Table 3
An example of Exercise I grid

Definition Formula

Integration

Next_Section_1 Next_Section_2

Prerequisite Definition Formula
Major Concept Trigonometric Exercise Trigonometric Exercise
Difficult Level 1 1

Learning Grade Not Good Average

Definition, Formula and
Exercise
Trigonometric Exercise

Integration Integration

Applied Example Formula I Supplement
2 2

Good Average Poor

given by users would be dynamically bound into these
knowledge objects and starts the inference process. There-
fore, logically, both ontological lattice and ontological tree
need the same system resource, except the index file of
knowledge object.

The other procedure of the second phase is to extract rules
with embedded meaning from the hierarchical grids built in
the first phase. For extracting the rules with embedded
meaning, EMCUD knowledge acquisition (Hwang &
Tseng, 1990) based on Personal Construct Theory (Kelly,
1955) is used. The tools or approaches to extract rules from
the hierarchical grids can be substituted according to the
characteristics of problem domain, but should be improved
by following the concept of hierarchical grids. The detailed
process of EMCUD is described in Appendix A.

Each meaning-embedded rule extracted by EMCUD has
a Certainty Factor (CF), which is based upon a general
repertory-grid-analysis method. For the inference process
of each rule, the result may be affected by the rules in
child knowledge objects. In other words, the CF of the
inferred rule may be affected by the CFs of the rules in
child knowledge objects. In this paper, a new formula of
calculating CF based upon hierarchical grids is defined as
follows.

Formula 1

CF(R))

n

CF'(R) =

(n—m)+ > CFR) |

R,EM

where CF'(R;) indicates the new CF of R; based upon hier-
archical grids, n indicates the number of attributes of R;, m
indicates the number of attributes needed to infer another
rules, denoted as R;, to determine the attribute value, M is
the set of R;, and CF(R)) indicates the CF of R;.

In Formula 1, CF(R;)/n means the average CF of each
attribute of R;, n — m means the number of attributes,
where the attribute value is given by actual state, and

Table 4
An example of Learning Grade Evaluation grid

Poor Not Good Average Good Excellent

Upper Bound 50 60 70 80 100
Lower Bound 0 51 61 71 81
Understanding Level 1 1 2 2 3

ZR,EM CF(R;) means sum of CFs of R; in M, which are a
set of rules to be inferred for m attribute values of R;. The CF
formula of hierarchical grids is the general model. When m
is equal to 0 and M is the null set, the formula is specific as
original CF formula shown in Appendix A.

Example 4.4. Assume there are two rules as followings

Ry if atty = A and att, = B and att; = C then D
Ry: if atty=E then att, = B

The value of att, of R| needs to be determined by infer-
ring the rule R,. R| and R, are located at the ancestor and
descendant knowledge objects, respectively. The facts of
att|, att;, and att, are given as A, C, and E. Assume the
original CF(R;) and CF(R;) are equal to 0.9 and 0.8, respec-
tively. Then, the new CF of R based upon hierarchical grids
is as follows.

CF'(R)) = %(3 —1+0.8)=0.84.

Example 4.5. Based upon the new CF calculating formula
of hierarchically grids and original EMCUD, the rules with
embedded meaning can be derived from the Definition I,
Formula I, and Exercise I grids. For example, by interacting
with teachers, the second column of Definition I grid may
derive the following two meaning-embedded rules.

/“The teaching object D, to Dy is as shown in Fig. 4."/
R (CF = 1.0) if (Major Concept = Trigonometric Defini-
tion) A (Difficult Level = 1)
then Combine(1 2 3, 7),
Organize(7, 4), Organize(4, 5), Organize(4, 6),
Organize(5, 6), and
Show(7)

Table 5
An example of Network Learning Performance Evaluation grid

Non-Active Average Active
Interaction Infrequent Frequent Frequent
Effective Learning Time Short Average Average
Effective Quizzing Time X Average Short
Session Time Long Average Short
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Formular 1

Network
Learning Learning Grade
Performance Evaluation

Evaluation

Learning Grade
Evaluation

Fig. 8. The ontological tree transformed from Fig. 7(b).

/*The teaching object Dg is the advanced explanations
about the definition.”/
R,(CF = 0.5) if (Major Concept = Trigonometric Defini-
tion) A ~(Difficult Level = 1)
then Combine(1 2 3, 7),
Organize(7, 4), Organize(4, 5), Organize(4, 8),
Organize(5, 8), and
Show(7)

The second column of Exercise I grid may derive the
following two meaning-embedded rules.

/" The teaching object Dy is the basic exercise of trigono-
metric function definition.”/
R3y(CF = 1.0) if (Prerequisite = Definition) A (Major
Concept = Trigonometric Formula) A
(Difficult Level = 1) A (Learning Grade = Not Good)
then Show(9).
/*The teaching object D, is the advanced exercise of
trigonometric function definition.”/
R, (CF=0.8) if (Prerequisite = Definition) A (Major
Concept = Trigonometric Formula) A
(Difficult Level=1) A ~(Learning Grade = Not
Good)
then Show(10).

The third column of Learning Grade Evaluation grid may
derive the following two meaning-embedded rules.

Rs(CF = 1.0) if (Learning Grade < = 60) A (Learning
Grade > =51) A

(Understanding Level = 1)

then return(Not Good).
Rs(CF = 0.6) if (Learning Grade <=60) A (Learning
Grade > =51) A

~ (Understanding Level = 1)

then return(Not Good).

The CF values of R; and R, are influenced by Rs or Rg. If
the further inference of Rj is to infer Rg, then the new CF
value of R; is calculated as follows.

1.0
CF(R;) = 5 B-1+06=087.

The Learning Grade attribute and the Network Learning
Performance attribute of Formula I grid should proceed a
further inference of the meaning-embedded rules derived
from Learning Grade Evaluation grid and Network
Learning Performance Evaluation grid, respectively. And
the like, the Learning Grade attribute of Exercise I grid
should infer the meaning-embedded rules derived from
Learning Grade Evaluation grid. Therefore, teachers can
construct the teaching strategy KB by filling up these
grids and answering the questions asked by EMCUD. More-
over, according to the teaching strategy acquired from
teachers, CAL-ES can show the teaching materials to
students for learning adaptively.

For each inference process, the CF of rule can be used as
an indication of the degree of supporting the guidance for
students. In other words, the low CF of the rule means the
low degree of executing the consequence part of this rule.
The system can set the threshold to prune some inference
results with low CF.

In CAL-ES, based upon rule-based technology, the
teaching strategy can be expanded, modified, and reused
easily. Senior teachers can construct the ontological
lattice of teaching strategy, since they may know more
about how to guide the students in learning processes,
and about the hierarchy of teaching materials. Thus, the
ontological lattice constructed by senior teachers can be
used for teaching not only by themselves, but also by
junior teachers to get to know about the skills and the
hierarchy of teaching materials. The junior teachers can
start the knowledge acquisition for their own teaching
strategies from the second phase of Tp-KA. In other
words, the ontological lattice constructed by senior
teachers can be considered as the template of teaching
strategies.

5. Implementation

As we know, online learning system is becoming popular
and usually of importance for both formal and informal
education. Right now, we are building an online learning
system, CAL-ES, to be applied to the mathematics educa-
tion of senior high schools in Taiwan. The prototype of
CAL-ES is built under Windows 2000 Server, IIS web
server, and ASP programming language. The CAL-ES
now has three topics of teaching materials, fundamental
concept of mathematics, fundamental trigonometric function,
and fundamental algebra. There are about 100 teaching
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Ontological Tree
(Learning Map)

e Rule :

@ (CF=1.0) if (Major Concept=Trigonometric Definition) A (Difficult Level=1)
then Combine(1 2 3, 7), Organize(7, 4), Organize(4, 5),Organize{4,
6).Organize(5, 6), andShow(7)

® (CF=0.5) if Major Concept=Trigonometric Definition) A ~(Difficult Level=1)
then Combine(1 2 3, 7), Organize(7, 4), Organize(4, 5),Organize(4,
8),Organire(5, 8), and Show(7)

e e v
i

Fig. 9. The management window of CAL-ES.

objects and 300 rules as the teaching strategy in these
materials. Students learn the online teaching materials and
teachers edit and manage the learning map and the teaching
strategy through Microsoft IE browser.

Base on the architecture of CAL-ES shown in Fig. 3 and
the flow of Tp-KA shown in Figs. 5 and 9 show the manage-
ment window of CAL-ES. The left frame shows the onto-
logical tree of Fundamental Trigonometric Function, the top
frame shows the hierarchical repertory grid of Definition I,
and the bottom frame shows the list of the rules with
embedded meaning corresponding with the grid shown in
the top frame. By tracing the ontological tree (learning
map), teachers can find out the interested grid and refine
the corresponding teaching strategy, i.e. the rules with
embedded meaning.

6. Conclusion

In this work, we proposed a CAL-ES and the correspond-
ing knowledge acquisition, Tp-KA. CAL-ES can guide
student to learn the online materials according to the learn-
ing map and the teaching strategy provided by teachers. The
KB of CAL-ES stores the learning map and teaching strat-
egy, which are constructed by using Tp-KA to interview
senior teaching or educational experts, and can be reused
by junior teachers to improve their teaching skills. Tp-KA
contains two phases, in which the first phase consists of
CKH Algorithm and H-RGA Algorithm, and the second
phase consists of L2T Algorithm and EMCUD Algorithm.

Based upon the concept of hierarchical grids, the new
formula of calculating CF is proposed in EMCUD Algo-
rithm. About the knowledge representation of CAL-ES,
the RDF is used to depict the ontological lattice and onto-
logical tree, the knowledge hierarchy of CAL-ES. The
prototype of CAL-ES was built on a basis of applying to
mathematics of senior high school, which contains three
topics of teaching materials, fundamental concept of mathe-
matics, fundamental trigonometric function, and funda-
mental algebra.

Tp-KA is not only useful for teachers and knowledge
engineers to construct the learning map and teaching strat-
egy in CAL-ES, but also useful for the other domains, which
exist the knowledge hierarchy and rule-based knowledge. In
the future, we will develop some similarity algorithm to
evaluate and compare two or more ontology, and develop
the merging and separating algorithm for these ontological
structures to assist teachers in refining the design of the
online teaching materials.
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Appendix A

EMCUD (Hwang & Tseng, 1990) is able to derive the
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embedded meanings of knowledge from the existing
multiple repertory grids by interacting with experts and to
guide experts to decide the certainty degree of each rule
with embedded meaning. The Attribute-Ordering Table
(AOT) (Hwang & Tseng, 1990), which is used to record
the importance of each attribute to each object, is employed
to capture the embedded meanings of the resulting grids.
The value of each AOT entry, a pair of attribute and object,
may be label ‘X’, ‘D’ or an integer. X means that there is no
relationship between the attribute and the object. D means
that the attribute dominates the object. The integer is used to
represent the important degree of the attribute to the object.
Larger integer implies the attribute is more important to the
object.

According to AOT, the original rules generate some rules
with embedded meaning, and the CF of each of them, which
is between 0 and 1, could be determined to indicate the
degree of supporting the inference result. A higher CF
means the result is more reliable. In addition, after deriving
the meaning-embedded rules, experts can add extra rules to
illustrate some special situations in each knowledge object,
since the repertory grid analysis does not cover all kinds of
situations. The following steps describe the process of
EMCUD.

Algorithm of EMCUD

Input: The hierarchical grids.

Output: The guiding rules with embedded meaning.
Step1: Build the corresponding AOT with each grid of the
hierarchical multiple grids.

Step2: Generate the possible rules with embedded
meaning.

Step3: Select the accepted rules with embedded meaning
through the interaction with experts.

Step4: Generate the CF of the rules with embedded
meaning.

Step5: Stop.

A Certainty-Sequence (CS) value represents the decreas-
ing degree of certainty for a meaning-embedded rule, which
is generated by negating some predicates of its original rule.
CS of the rules with embedded meaning is calculated by
using the following formula.

CS(R;) = SUM(AOT](attributey, object,]),

where attribute; belongs to the attribute set of R;, and object
is the object of R;.

Example 1. Assume the rules with embedded meaning
listed below are generated from the rule, R, if att;j=A
and atty = B and att; = C then goal = obj,, where the corre-
sponding AOT entries are [2(att,, obj,), 1(att,, obj,), D(atts,
objy)].

Ry if ~(att; = A) and att, = B and att; = C then goal =
obj,

R>: if att; = A and ~(att, = B) and att; = C then goal =
obj,

Rs: if ~(att;=A) and ~(att,=B) and att; = C then
goal = obj,

So the CS(R)) is AOTlatt,,obj,] + AOTatt,, obj,] =
2+1=3.

To decide the CF of the meaning-embedded rules, the
upper bound of CF, UB(R,) and the lower bound of CF,
LB(R,) must be determined first, where R, is the original
rule for these meaning-embedded rules. UB(R,) is the CF of
the original rule, since it is impossible for any meaning-
embedded rule to have a greater CF than its original rule.
LB(R,) is determined by comparing the meaning-embedded
rule with maximum CS value and the original rule. Four
comparison levels suggested by the experts are ‘confirm’,
‘strongly support’, ‘support’ and ‘may support’, which are
mapped to 1.0, 0.8, 0.6 and 0.4, respectively. CF of the
meaning-embedded rule, R;, is then generated by the follow-
ing formula:

CF(R;) = UB(R,) — {CS(R)/MAX(CS,){UB(R,)
~ LB(R,)}),

where MAX(CS,) is the maximum CS value of the meaning-
embedded rules generated from the original R,,.

Example 2. For the example R, and its generated mean-
ing-embedded rules, R;, R,, and R, the MAX(CS;) for R,
Rz, and R3 is CS3

Q,: Which degree support R,? /*To get the UB(R,)"/
Expert: Confirm. /"UB(R,) is 1.0%/

0,: Which degree support R;? /“To get the LB(R,)"/
Expert: May Support. /"LB(R,) is 0.4/

Then the CF(R,), CF(R;), and CF(R5) are as follows.
CF(R,)=1.0—-(2/3)(1.0 - 04) = 0.6

CF(R,) = 1.0 — (1/3)(1.0 — 0.4) = 0.8

CF(R;) = 1.0 — (3/3)(1.0 —0.4) = 0.4

References

Alessi, S. M., & Trollip, S. R. (1991). Computer-based instruction: Methods
and development, (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

Beishuizen, J. J., & Stoutjesdijk, E. T. (1999). Study strategies in a computer-
assisted study environment. International Journal of Learning and
Instruction, 9, 281-301.

Boose, J. H. (1989). A survey of knowledge acquisition techniques and
tools. Knowledge Acquisition, 1, 3-37.

Boose, J. H., & Gaines, B. R. (1988). Knowledge acquisition tools for
expert system, San Diego, CA: Academic Press.



248 C.-J. Tsai, S.S. Tseng / Expert Systems with Applications 22 (2002) 235-248

Chou, C. (1996). A computer logging method for collecting use-reported
inputs during formative evaluation of computer network-assisted
distance learning. Proceedings of ED-Media’96.

Decker, S., Mitra, R., & Melnik, S. (2000). Framework for the semantic
web. IEEE Internet Computing, 4 (6), 68—73.

Hwang, G. J. (1998). A tutoring strategy supporting system for distance
learning on computer networks. /IEEE Transactions on Education, 41
4), 9.

Hwang, G. J., & Tseng, S. S. (1990). EMCUD: A knowledge acquisition
method, which captures embedded meanings under uncertainty. Inter-
national Journal of Man Machine Studies, 33, 431-451.

Jeng, B., & Chen, M. C. (1997). An object-oriented approach to knowledge
acquisition. Journal of Information Science and Engineering, 13, 563—
583.

Kelly, G. A. (1955). The psychology of personal constructs, Vol. 1. New
York: W.W. Norton.

Marcus, S. (1988). Automating knowledge acquisition for expert systems,
Norwell: Kluwer Academic Publishers.

Oakley, B. (1996). A virtual classroom approach to teaching circuit analy-
sis. IEEE Transactions on Education, 39 (3), 287-296.

Su, G. H,, Tseng, S. S., Tsai, C. J., & Cheng, J. R. (1999). Building an
object-oriented and individualized learning environment on the WWW.
Proceedings of ICCE’99 (pp. 728-735).

Su, G. H,, Tseng, S. S., Tsai, C. J., & Cheng, J. R. (2000). Implementation
of an object-oriented learning environment based on XML. Proceedings
of ICCE’00 (Vol. 2, pp. 1120-1127).

Sun, C. T., & Chou, C. (1996). Experiencing CORAL: Design and imple-
mentation of distance cooperative learning. IEEE Transactions on
Education, 39 (3), 357-366.

Tsai, C.J., Tseng, S. S., & Wu, Y. C. (1999). A new architecture of object-
oriented rule base management system. Proceedings of International
Conference on ToolsAsia’99, Beijing, China.

Venter, F. J., Oosthuizen, G. D., & Roos, J. D. (1997). Knowledge discov-
ery in databases using lattices. Expert Systems with Aplications, 13 (4),
259-264.

Wu, X., & Cai, K. (2000). Knowledge object modeling. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and Humans, 30 (2),
96-107.



