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Estimation of the Contouring Error Vector for the
Cross-Coupled Control Design

Syh-Shiuh Yeh and Pau-Lo Hsu

Abstract—In biaxial motion systems, applying the cross-cou-
pled control (CCC) significantly improves contouring accuracy
for linear and circular contours. As geometrical and parametric
curves become more popular in modern manufacturing, ma-
chining processes with multiaxis motion systems are required,
however, the available biaxial CCC cannot be directly applied
to arbitrary contours with multiaxis machining systems. In this
paper, we propose a novel approach for arbitrary contours by
estimating the contouring error vector to efficiently determine the
variable gains for CCC. Experimental results for a biaxial motion
system indicate that the proposed approach efficiently yields
variable gains similar to those in traditional CCC. Furthermore,
results on a three-axis CNC machining center show that the
present approach significantly improves motion accuracy in
multiaxis motion systems.

Index Terms—Cross-coupled control, contouring error, cross-
coupling gains, multiaxis motion systems.

I. INTRODUCTION

I N MACHINING processes, motion precision depends
on both tracking and contouring accuracy. Traditionally,

tracking accuracy was improved by applying feedback and
feedforward control loops to each axis individually. Pooet al.
[1] analyzed relations between the feedback controller and
the contouring error and concluded that the matched dc gain
in feedback control design improves contouring precision.
Feedforward control loops are also common in motion control
design because they efficiently reduce the servo lag and, thus,
decrease the contouring error [2]–[5]. In addition to feedback
and feedforward control loops, the cross-coupled control
(CCC) structure, which considers the mutual dynamic effects
among all axes, was developed by Koren [6] to further reduce
the contouring error. Various improved CCC designs have since
been proposed [7]–[9].

Recently, the variable-gain CCC was proposed by Koren and
Lo [10], [11] to provide more precise contouring results by es-
timating the magnitude and the direction of contouring errors
for further compensation. For arbitrary contour applications, the
variable-gain CCC estimates the contouring error by applying
the circular contour approximation and compensates each axis
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along the direction of estimated contouring error vector. The
variable-gain CCC works well for biaxial motion systems, but
it is difficult to apply the available CCC design to multiaxis ma-
chines that are gaining popularity in modern industries. Also,
CCC needs an efficient algorithm to determine the variable gains
of arbitrary contours in real time.

To improve contouring accuracy for multiaxis motion sys-
tems, Lo [12] proposed an approach by transforming the coor-
dinate to obtain the moving basis to form a feedback controller
for a 3-axis motion system. Chiu and Tomizuka [13] proposed
the task coordinated approach by considering all axes as the
first-order loops to obtain the feedback and the feedforward con-
trol loops. However, Lo’s approach is difficult to be applied to
more than three axes and its tracking accuracy of the controller
without a feedforward control loop can be further improved. On
the other hand, performance of a simplified first-order design
including an unreliable plant model by Chiu and Tomizuka is,
thus, inherently limited as verified in [14].

In this paper, we propose a modified variable-gain CCC de-
sign based on the contouring error vector by applying the linear
contour approximation. The design can be directly extended to
multiaxis motion systems. Theoretically, the contouring error
vector is defined as a vector from the actual position to the
nearest point on the contour. However, its computation is very
complicated. In our approach, a vector from the actual posi-
tion to the nearest point on the line that passes through the ref-
erence position tangentially is adopted if the tracking error is
minimized. Finally, experimental results on a 3-axis machining
center show that the variable gains in multiaxis CCC are more
efficiently obtained and contouring accuracy of the CNC is sig-
nificantly improved by applying the proposed multiaxis CCC
design.

II. THE VARIABLE-GAIN CCC

The biaxial motion control system with the variable-gain
CCC is shown in Fig. 1. ( ) are position loop con-
trollers, ( ) represent the controlled plants within the
position loops, ( ) and ( ) denote reference posi-
tion and the actual position, respectively. ( ) are the axial
errors of each axis, denotes the estimated contouring error,
( ) are varying cross-coupling gains which depend on
the tool path trajectory and is the cross-coupled controller.

Since an arbitrary contour can be approximated by a circular
contour, let be the radius of curvature at the reference position

and be the traversal angle of a circular motion. The esti-
mated contouring error is obtained as

(1)
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Fig. 1. Biaxial motion control system with variable-gain CCC [10], [11].

( ) denotes the center of curvature. Because the actual
position ( ) can be represented as

(2)

(3)

by substituting (2) and (3) into (1), the estimated contouring
error becomes

(4)

If the radius of curvature is large enough and the contouring
error is much smaller than the axial errors ( ), the esti-
mated contouring error can be approximated by the Taylor’s
expansion of (4), which is

(5)

The cross-coupling gains ( ) are then

(6)

(7)

For a linear contour, the radius of curvatureis infinite and the
corresponding cross-coupling gains are

(8)

(9)

where denotes the incline angle of the linear contour.
For a circular contour, the cross-coupling gains are the same

as (6) and (7), except denotes the circular contour traversal
angle and is replaced by the fixed radiusof the circular con-
tour as

(10)

(11)

In general, all curve contours can be approximated by circular
contours with different radii.

Fig. 2. Linear contour representation.

III. B IAXIAL CONTOURING ERRORVECTOR

A. Estimation of the Contouring Error Vector

In this section, we propose an estimation approach of the
contouring error vector for obtaining the variable-gain vector

in the biaxial CCC. This approach will be ex-

tended to multiaxis motion systems as in Section IV. Consider
the linear contour as shown in Fig. 2.is the incline angle
of the linear contour. The normalized tangential vector of the

linear contour is . is the normal-

ized normal vector which is perpendicular to tangential vector
are the axial errors. The tracking error vector is

. is the contouring error. and denote the actual

and the reference position, respectively. The contouring error
can be directly obtained as

(12)

where, is the inner product operator.
Define the contouring error vectoras a vector from the ac-

tual position to the nearest point on the contour trajectory as

(13)

The contouring error vectoris, thus, a vector with contouring
error and direction . Furthermore, the contouring erroris
the inner product of tracking error vectorand the normalized
normal vector , as shown in (12).

B. Determination of the Variable Gains

Comparing the cross-coupling gain vector in

(8)–(9) and the normalized normal vector , note that

the cross-coupling gain vectorcontains the corresponding el-
ement of the normalized normal vector, represented as

(14)

The contouring error vectorof a linear command can be di-
rectly obtained by (13). For arbitrary contour applications, the
geometric relations among the desired contour, the actual posi-
tion and the reference position in a biaxial motion systems
are as shown in Fig. 3. In the present approach, the estimated
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Fig. 3. Geometrical relations of biaxial motion systems [15].

contouring error vector is defined as the vector from the ac-
tual position to the nearest point on the line that passes through
the reference position tangentially with direction. Note that

the estimated contouring error vectorapproximates the con-
touring error vector well only with small tracking error [15].

Since the direction of the estimated contouring error vector

is parallel to the normalized normal vectorat the reference

position , the magnitude of denoted as is, thus, defined as
the inner product of the tracking error vectorand the normal-
ized normal vector .

Let the tangential vectorand the normalized normal vector

be and , respectively. The vector can

be directly derived as

(15)

and the estimated contouring erroris

(16)

The estimated contouring error vectoris then expressed as

(17)

By comparing (17) and (13), the cross-coupling gains
( ) can be replaced by the elements of the normalized
normal vector , as shown in (14).

IV. M ULTIAXIS CONTOURING ERRORVECTOR

A. Estimation in Multiple-Dimensional Space

Consider the geometric relations among the arbitrary desired
contour, the actual position and the reference position in
three-dimensional space as shown in Fig. 4. Because it is dif-
ficult to obtain the contouring error vectorexactly, we adopt
the estimated contouring error vectorfor obtaining the vari-
able gains in the proposed multiaxis CCC. As shown in Fig. 4,
the estimated contouring error vectorlies on the plane ex-
panded by the tracking error vectorand the normalized tan-
gential vector and perpendicular to the normalized tangential

Fig. 4. Geometrical relations of 3-axis motion control systems.

vector . In fact, as the tracking error is small enough, the
contouring error vector can be closely approximated by the
estimated contouring error vector. Define the normalized es-
timated contouring error vector

(18)

where

(19)

or (20)

(21)

and is an inner product operator and is a 2-norm op-
erator. The relation between and can be derived from
(19)–(21) as

(22)

By substituting (22) into (20), and are obtained as

in which the signs of and determine the direction of the
normalized estimated contouring error vector. Because the
angle between the normalized estimated contouring error vector

and the tracking error vector is in general within 90 ,
90 , the following condition holds:

(23)

From (23), and can be further determined as

(24)

(25)
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Fig. 5. Multiaxis motion control systems with multiaxis CCC.

B. Determination of Multiaxis Variable Gains

As shown in (18) and Fig. 4, the magnitude of the estimated
contouring error vector is the inner product of the normal-
ized estimated contouring error vectorand the tracking error
vector

(26)

The estimated contouring error vectoris, thus, obtained as

(27)

Following our analysis of the biaxial variable-gain CCC in Sec-
tion II, the magnitude of the estimated contouring error vector

is modulated by a controller and then is used to compensate
for each axis along the direction of the estimated contouring
error vector. The compensation direction for each axis is
suitably determined by the cross-coupling gain vector in the
present variable-gain CCC. Therefore, the cross-coupling gains
can be obtained directly from the elements of the normalized
estimated contouring error vector. Let the normalized estimated
contouring error vector be . The
cross coupling gains are, thus, directly
determined as

Fig. 6. Experimental setup.

Fig. 7. Contour trajectory used in the biaxial experiments.

The proposed multiaxis CCC motion control system is shown in
Fig. 5 and (Kpx, Kpy, Kpz) denote the position loop controllers
for each axis of the motion system. From (21), we have

where is the angle between the tracking error vectorand
the normalized tangential vector. The singularity condition
occurs when the tracking error vectoris parallel to the nor-
malized tangential vector. In practice, one should check that

holds to avoid the singularity.
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Fig. 8. Experimental results for the proposed variable-gain CCC.

Fig. 9. Experimental results for the original variable-gain CCC.

V. EXPERIMENTS

The experimental setup of a three-axis DYNA 1007 CNC ma-
chining center is shown in Fig. 6. A PC-486 generated the main
control commands and recorded the signals including: the input
commands for different contours, the implementation of a vari-
able-gain CCC controller and the control inputs to the velocity
loop of the AC servo motors. The PC-486 interface utilized an
AD/DA card to send and receive the control inputs and position
output, respectively, at a sampling period of 1 ms.

To identify the controlled plant for each axis, the axial control
input was given a pseudorandom binary sequence (PRBS) and

the velocity control loops of the three axes was obtained using
the ARX model as shown in the equations at the bottom of the
previous page. To achieve both stable motion and matched gains
for the uncoupled system [1], the feedback loop proportional
gains ( ) were chosen as

To achieve significantly reduced tracking errors in applying the
proposed approach, the optimal zero phase error tracking con-
trol (ZPETC) was also applied to each axis [5].
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TABLE I
EXPERIMENTAL RESULTS FOR THEBIAXIAL MOTION CONTROL SYSTEM

A. Verification in Biaxial Motion

The well-tuned PID cross-coupled controller for the mo-
tion control system is chosen to be [14]

The contour trajectory of the motion control system is shown
in Fig. 7. The average speed is 853 mm/min, the maximum
speed is 2500 mm/min and the minimum speed is 250 mm/min.
Experimental results obtained by applying the proposed vari-
able-gain CCC approach and the original variable-gain CCC
are also shown in Figs. 8 and 9, respectively. Fig. 8 shows the
cross-coupling gains , the tracking error and the mea-
sured contouring error of the proposed approach. Fig. 9 shows
the cross-coupling gains , the tracking error, and the
contouring error as in [10], [11]. Results are summarized in
Table I.

As shown in Figs. 8, 9, and Table I, the experimental re-
sults for our proposed variable-gain CCC are similar to those
of the original variable-gain CCC by Koren and Lo [10], [11]
except for the opposite sign of cross-coupling gainand ,
as indicated in (14). Compared to the operators for obtaining
the variable gains for arbitrary contours, Table II indicates that
implementing the proposed cross-coupling gains ( ) re-
quires fewer operators than implementing ( ) in the orig-
inal variable-gain CCC with circular approximation.

B. Application to 3-Axis Motion

The robust cross-coupled controller is designed by ap-
plying the quantitative feedback theory (QFT) algorithm [16],
[17] as

The position commands for each axis of the 3-axis motion
control system are shown in Fig. 10. The commands perform an
inclined circular contour with an 18.75 mm radius at a speed of
600 mm/min. The cross-coupling gains shown in Fig. 11 are the
direction components of the estimated contouring error vector.
The experimental results for the 3-axis CCC system are com-
pared to those for the control system without CCC in Fig. 12
and in Table III. Because of the friction effect, results of the
cross-coupling gains ( ) are discontinuous as the
slip-stick phenomenon occurs as speed of any axis approaches

TABLE II
NUMBER OF OPERATORSUSED IN IMPLEMENTATION OF THE

CROSS-COUPLING GAINS

Fig. 10. The circular contour commands of the 3-axis CNC.
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Fig. 11. Cross coupling gains of the 3-axis CNC.

Fig. 12. Experimental results of the 3-axis motion control system.

zero. Fig. 12 and Table III indicate that the proposed 3-axis
CCC effectively improves contouring accuracy. Note that the
proposed algorithm can be directly applied to multiaxis motion
systems.

TABLE III
EXPERIMENTAL RESULTS FOR THE3-AXIS MOTION CONTROL SYSTEM

VI. CONCLUSIONS

Although the CCC is known to effectively improve con-
touring accuracy in motion systems, it is difficult to apply the
original biaxial variable gains to multiaxis CCC. Also, the
original CCC is inefficient to obtain the variable gains for
arbitrary contours. In this paper, we developed a multiaxis
variable-gain CCC design which is based on the contouring
error vector approach. Experimental results for a biaxial motion
system show that the proposed CCC approach and the original
variable-gain CCC obtain similar variable gains. However, the
present approach is more efficient. The proposed multiaxis
CCC system was also applied to a 3-axis CNC machining
center. Experimental results indicate that with the proposed
variable gains, the multiaxis CCC control significantly im-
proves contouring accuracy.
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