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Abstract

This study focuses on the parametric stochastic modeling of characteristic sound features that distinguish languages

from one another. A new stochastic model, the so-called Gaussian mixture bigram model (GMBM), that allows ex-

ploitation of the acoustic feature bigram statistics without requiring transcribed training data is introduced. For greater

efficiency, a minimum classification error (MCE) algorithm is employed to accomplish discriminative training of a

GMBM-based Chinese dialect identification system. Simulation results demonstrate the effectiveness of the GMBM for

dialect-specific acoustic modeling, and use of this model allows the proposed system to distinguish between the three

major Chinese dialects spoken in Taiwan with 94.4% accuracy. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Until recently, research in Chinese language
processing was almost exclusively aimed at voice
dictation of Mandarin Chinese (Lee, 1997). How-
ever, hundreds of Chinese dialects exist and may
be linguistically divided into seven major groups,
namely, Mandarin, Holo, Hakka, Wu, Yue, Xiang
and Gan (Ramsey, 1987). There are minor differ-
ences within each group, but there are major dif-
ferences between groups of such magnitude that
the groups sound mutually unintelligible. The in-
terconnections between the Chinese dialects are in
fact as complicated as those among the family of
Romance languages, such as French, Spanish and

Italian. This motivated our research into trying to
build a system capable of recognizing the identities
of spoken Chinese dialects. During the initial stage
of developing our dialect-ID system, special efforts
were made to discriminate among three major
Chinese dialects spoken in Taiwan, Mandarin,
Holo and Hakka. Although most statements made
about Mandarin syntax are also applicable to
Holo and Hakka, the three dialects differ signifi-
cantly in pronunciation and vocabulary. The dia-
lectal differences arise not only from variations
in phonetic inventory and phonotactics, but also
from the tonal system employed in individual di-
alects. Traditional descriptions of spoken Chinese
divide syllables into two parts: basic syllables,
which are realized by combinations of consonants
and vowels, and tones, which are realized by
contrasting variations in pitch contours. Accord-
ing to a recent estimate (Tsai, 1997), there are 408
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basic syllables and 4 tones in Mandarin, 808 basic
syllables and 7 tones in Holo, and 708 basic syl-
lables and 6 tones in Hakka.
Designing a reliable language and/or dialect

identification scheme requires that stochastic
models be used to summarize some of the most
relevant aspects of language acoustics. Previous
work (Hazen and Zue, 1997) suggested that lan-
guage characteristics are represented in the seg-
mental and prosodic features of speech utterances.
Segmental features can be acoustic–phonetic,
which refers to the acoustic realizations of pho-
nemes, or phonotactic, which refers to the rules
governing combination of various phonemes in a
language. Prosodic information is encoded in the
pitch, amplitude and duration variations that span
across segments. There have been numerous rec-
ognition schemes proposed to accomplish the
language identification (language-ID) task, with
varying degrees of success (Muthusamy et al.,
1994). In the phonotactic components of most
language-ID systems, one or more phonetic rec-
ognizers are used for tokenizing speech utterances
into sequences of phonemes or broad phonetic
classes, followed by a set of n-gram language
models (House and Neuburg, 1977; Zissman,
1996; Hazen and Zue, 1997). However, porting
such phonetic approaches to the problem of Chi-
nese dialect-ID may present its own set of prob-
lems. This is mainly because phonetic recognizers
have to be trained and evaluated on a phonetically
labeled database, which is not available for every
dialect. For Chinese spoken languages, the existing
phonetic transcription system was designed only
with Mandarin in mind and hence proves to be
insufficient to accommodate other dialects such as
Holo and Hakka.
In this study, we present a theoretical frame-

work of Gaussian mixture bigram models
(GMBMs) and use them to characterize the tem-
poral and spectral evolution of the speech signal.
The main attraction of GMBMs arises from the
fact that the observations used in dialect-specific
modeling are extracted directly from the acoustic
features, instead of using the imperfect outputs of
the front-end phonetic recognizer. Thus the model
parameters of GMBMs can be estimated without
any transcription of training utterances; allowing

us to circumvent the difficult task due to the lack
of an agreed-upon system appropriate for tran-
scribing all of the dialects. Furthermore, we believe
that the language-discriminating power of the
system can be improved by using the GMBM,
which integrates time correlation on acoustic
frames into the model structure. Although using
acoustic frame dependency was previously pro-
posed for speech recognition (Wellekens, 1987;
Deng, 1994), their emphases were placed upon
hidden Markov models with model parameters
estimated according to the maximum likelihood
(ML) criterion. The basic problem with ML esti-
mation is that each model is trained independently
of the others and hence cannot obtain model pa-
rameters which maximize classification accuracy.
A better solution to parameter estimation is based
on the minimum classification error (MCE) crite-
rion (Juang et al., 1997). Discriminative training
by the MCE method has been successfully applied
to various kinds of classifier frameworks including
the hidden Markov model, dynamic time warping,
and neural networks. In this study, we present a
specific implementation of the MCE training pro-
cedure in the context of a GMBM-based dialect-
ID system.
The rest of this paper is organized as follows.

Section 2 presents the stochastic framework re-
quired for solving the problem of Chinese dialect-
ID. Section 3 introduces the basic formulations of
a Gaussian mixture bigram model. In Section 4,
we address the parameter estimation problem
using the expectation-maximization algorithm. De-
tails of the MCE training procedure required for
discriminative estimation of the GMBM parame-
ters are provided in Section 5. Section 6 presents
Chinese dialect-ID results obtained using different
design approaches. Finally, Section 7 provides a
short summary.

2. Problem formulation

Although Chinese dialects differ significantly
from each other with respect to their phonologies
and vocabularies, the task of exploiting these
characteristics involves high-level linguistic knowl-
edge that usually requires skilled linguists fluent in
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all of the dialects. To accomplish this task is not
only impractical, but also limits the system’s ap-
plicability to identify dialects for which the vo-
cabulary and linguistic rules are not well specified.
Motivated by the above concern, we attempted to
examine whether acoustic features can be incor-
porated directly into the dialect-ID process without
requiring human-supplied linguistic knowledge.
Toward this end, it is a prerequisite to establish
stochastic models that summarize some of the most
relevant aspects of language acoustics.
To begin, let D ¼ fDjgJj¼1 represent a set of J

Chinese dialects to be identified. A dialect-ID
system takes test utterances as input and produces
the identities of the dialects being spoken as out-
puts. Choosing an appropriate representation of
acoustic information is the first step in applying
statistical methods to solving the dialect-ID
problem. The specific types of feature measure-
ments considered here are mel-cepstral features
and pitch-based features. The reasons are as fol-
lows. First, the primary difference for the tones is
in the pitch contours and the tones are essentially
independent of the spectral envelope parameters
of the syllables. Second, the fact that Chinese is a
tonal language suggests the combination of seg-
mental and prosodic features is likely to help in
distinguishing between dialects with greater accu-
racy. Speech signals were preprocessed to extract
mel-cepstral features every 20-ms Hamming-
windowed frames with 10-ms frame shifts. Let
X ð1Þ ¼ fxð1Þ

1 ; x
ð1Þ
2 ; . . . ; x

ð1Þ
T ð1Þg denote a sequence of

T ð1Þ feature vectors, each of which consists of 10
mel-frequency cepstral coefficients and their first
derivatives. Pitch measurements were extracted
from voiced speech segments using the simple in-
verse filter tracking (SIFT) algorithm (Markel,
1972). Let X ð2Þ ¼ fxð2Þ

1 ; x
ð2Þ
2 ; . . . ; x

ð2Þ
T ð2Þg denote a se-

quence of T ð2Þ feature vectors representing the
pitch and differential pitch.
The dialect-ID system operates in two phases:

training and recognition. In the training phase,
pitch and mel-cepstral features were extracted
from speech signals and then used to train sto-
chastic models for every dialect to be recognized.
During recognition, dialects were identified by
matching test utterances with the stochastic model
of each dialect and by calculating the probabil-

ity pðX ð1Þ;X ð2Þ jDjÞ for each dialect Dj. Accord-
ing to the maximum likelihood decision rule, the
identifier should decide in favor of a dialect D̂D
satisfying

D̂D ¼ arg max
j
log pðX ð1Þ;X ð2Þ jDjÞ: ð1Þ

In practical realization, the search process can be
aided by taking advantage of the statistical inde-
pendence between X ð1Þ and X ð2Þ. This appears due
to the fact that mel-cepstrum and pitch are sepa-
rately characterized by the speakers’ vocal tract
shapes and excitation signals. The dialect-ID
process can thus be simplified as follows:

D̂D ¼ arg max
j

X2
i¼1

bðiÞ
j log pðX

ðiÞ jkðiÞ
j Þ; ð2Þ

where bðiÞ
j and kðiÞ

j denote the weighting coefficient
and the stochastic model associated with the fea-
ture sequence X ðiÞ, respectively. A block diagram
of the proposed dialect-ID system is shown in
Fig. 1.

3. Gaussian mixture bigram model

The effectiveness of the dialect-ID system cru-
cially depends on how well the feature represen-
tation X ðiÞ and the stochastic model kðiÞ

j capture the
relevant information for discriminating between
different dialects. In this section, we will develop
the theoretical framework of so-called GMBM.
The use of the bigram model is motivated by
previous experiments showing that the sequential
statistics of acoustic features could be exploited as
an efficient approach to language-ID. For nota-
tional convenience, the feature measurement X ðiÞ

and its associated model kðiÞ
j will be denoted as X

and k here, respectively. Given the model k, the
probability of the observation sequence X is de-
termined according to the following expression:

pðX jkÞ ¼
YT
t¼1

pðxt jx1; . . . ;xt�1; kÞ ¼
YT
t¼1

pðxt jxt�1; kÞ;

ð3Þ
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where we have assumed that the probability of
observing xt depends only on the immediately
preceding vector xt�1.
Depending upon the choice of density function

pðxt jxt�1; kÞ, a number of different bigram model
structures can be realized. One method is to per-
form discrete observation bigram modeling after
feature representations have been converted into
sequences of discrete symbols via vector quanti-
zation (VQ) (Hazen and Zue, 1993; Harbeck and
Ohler, 1999). The basic advantage of this approach
is that the bigram models are trained and evalu-
ated on codebook sequences, which can be trained
without any transcription of training data. How-
ever, its applicability may be restricted due to the
fact that observations used in bigram modeling are
not extracted directly from acoustic feature mea-
surements, but from a discrete set of representative
templates. To compensate for this shortcoming, we
propose to represent the feature distribution using
a probabilistic mixture model based on a weighted
sum of component Gaussian densities. In using
this approach, it is assumed that the feature space
is characterized by a set of broad acoustic classes
and, moreover, within each class the acoustic
frame dependency is modeled by a component
Gaussian density. The bigram density function
pðxt jxt�1; kÞ assumes the following form in our
current model implementation:

pðxt jxt�1; kÞ ¼
XN
n¼1

wnfxt j xt�1;n;kðxt jxt�1; n; kÞ; ð4Þ

where wn denotes the mixture weight subject to the
constraint

PN
n¼1 wn ¼ 1. The well-known Bayes’

formula of probability theory allows us to rewrite
the nth mixture component density as

fxt j xt�1;n;kðxt jxt�1;n;kÞ ¼
fxt ;xt�1 j n;kðxt; xt�1 jn; kÞ
fxt�1 j n;kðxt�1 jn; kÞ

: ð5Þ

To permit theoretical analysis, we further assume
that xt�1 and xt are two vectors of jointly Gaussian
random variables; the joint density is then

fxt ;xt�1 j n;kðxt; xt�1 jn; kÞ

¼ Cnj j�1=2

ð2pÞM
exp � 1

2
ðzt �mnÞ0C�1

n ðzt �mnÞ
� �

;

ð6Þ

where prime denotes vector transpose and zt ¼
½xt�1 xt
0 is an augmented feature vector associated
with mean vector mn and covariance matrix Cn.
From this it can be shown that the conditional
density of xt given xt�1 is also Gaussian in the form
of

Fig. 1. Illustration of the proposed dialect-ID system.
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fxt j xt�1;n;kðxt jxt�1; n; kÞ ¼ Nðxt;ln;RnÞ

¼ Rnj j�1=2

ð2pÞM=2
exp � 1

2
ðxt � lnÞ

0
R�1

n ðxt � lnÞ
� �

;

ð7Þ

where Nð�Þ represents an M-variate Gaussian
density with mean vector ln and covariance matrix
Rn given by

ln ¼ hn þ Bnxt�1; ð8Þ

Rn ¼ C ð4Þ
n � C ð3Þ

n C ð1Þ�1
n C ð2Þ

n : ð9Þ

In Eq. (8), we have

hn ¼ mð2Þ
n � C ð3Þ

n C ð1Þ�1
n mð1Þ

n ; ð10Þ

Bn ¼ C ð3Þ
n C ð1Þ�1

n ; ð11Þ

where the M 
 1 matrix mðkÞ
n and the M 
M ma-

trix C ðkÞ
n are derived, respectively, from mn and Cn

as follows:

mn ¼
mð1Þ

n
mð2Þ

n

� �
2M
1

; ð12Þ

Cn ¼
C ð1Þ

n C ð2Þ
n

C ð3Þ
n C ð4Þ

n

� �
2M
2M

: ð13Þ

4. Maximum likelihood parameter estimation

In this section, we address the estimation
problem which involves optimizing the GMBM
parameters to match the distribution of training
feature vectors. Within the GMBM framework,
the parameter set k consists of all the mixture
weights wn, mixture Gaussian mean vectors ln, and
mixture Gaussian covariance matrices Rn. The
traditional approach to parameter estimation is
based on the ML principle. Given a set of training
feature vectors X ¼ fx1; x2; . . . ; xTg, the aim of
ML estimation is to find the model parameters
which maximize the GMBM likelihood, i.e.,

kML ¼ argmax
k
log

YT
t¼1

pðxt jxt�1; kÞ

¼ argmax
k
log

YT
t¼1

XN
n¼1

wnNðxt; ln;RnÞ: ð14Þ

Toward this end, the expectation-maximization
(EM) algorithm (Dempster et al., 1977) is applied
here to estimate the model parameters which
guarantees a monotonic increase in the likelihood.
Starting with an initial model k, the new model

�kk is estimated by maximizing the auxiliary function

Qðk; �kkÞ ¼
XT
t¼1

XN
n¼1

pðn jxt; xt�1; kÞ


 log pðn; xt jxt�1; �kkÞ; ð15Þ

where

pðn; xt jxt�1; �kkÞ ¼ �wwnNðxt; �lln;
�RRnÞ ð16Þ

and

pðn jxt; xt�1; kÞ ¼
wnNðxt; ln;RnÞPN
q¼1 wqNðxt; lq;RqÞ

: ð17Þ

On each EM iteration, the reestimation formulas
derived for individual parameters of the nth mix-
ture density are of the form

�wwn ¼
1

T

XT
t¼1

pðn jxt; xt�1; kÞ; ð18Þ

�hhn ¼
PT

t¼1 pðn jxt; xt�1; kÞðxt � Bnxt�1ÞPT
t¼1 pðn jxt; xt�1; kÞ

; ð19Þ

�BBn ¼
XT
t¼1

pðn jxt; xt�1; kÞðxt

"
� hnÞx0

t�1

#



XT
t¼1

pðn jxt; xt�1; kÞxt�1x
0
t�1

" #�1

; ð20Þ

�RRn ¼
PT

t¼1 pðn jxt; xt�1; kÞðxt � lnÞðxt � lnÞ
0PT

t¼1 pðn jxt; xt�1; kÞ
:

ð21Þ

The new model �kk then becomes k for the next it-
eration and the reestimation process is repeated
until the likelihood reaches a fixed value.
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5. Discriminative training of a GMBM-based dia-

lect-ID system

This section addresses the implementation is-
sues for discriminative estimation of the entire
parameter set in the context of a GMBM-based
dialect-ID system. Each dialect Dj is characterized
by a parameter set Uj ¼ fðbðiÞ

j ; kðiÞ
j Þ; i ¼ 1; 2g which

consists of weighting coefficients bðiÞ
j and the

GMBM parameters kðiÞ
j ¼ fwðiÞ

j;n; h
ðiÞ
j;n;B

ðiÞ
j;n;R

ðiÞ
j;n jn ¼

1; 2; . . . ;Ng for the two measurements, one repre-
senting the mel-cepstral features (i ¼ 1) and the
other representing the pitch-based features (i ¼ 2).
The approach employed in the previous section
was to estimate the model parameters using the
EM algorithm according to the ML criterion.
However, the ML approach often does not lead to
an optimum performance in classification tasks.
An alternative approach to parameter estimation
is based on MCE criterion (Juang et al., 1997). The
major advantage of the MCE approach is that
discrimination between different models can be
improved by incorporating out-of-class infor-
mation during training. In this study, the MCE
algorithm was extended to accomplish discrimi-
native estimation of the model parameters of
GMBMs.
Consider a set of training tokens with known

dialect identities O ¼ fOðlÞgLl¼1, where each token
OðlÞ is composed of mel-cepstral features X ðl;1Þ with
length T ðl;1Þ and pitch-based features X ðl;2Þ with
length T ðl;2Þ. Based on O, the goal of the MCE
estimation is to find the identifier parameter set
K ¼ fU1;U2; . . . ;UJg such that the probability of
misclassifying all training tokens is minimized. A
typical approach in this direction is the generalized
probabilistic descent (GPD) algorithm (Katagiri
et al., 1991), in which model parameters are ad-
justed iteratively to better represent the statistics of
a training database. Below we present a specific
implementation of the GPD algorithm for a
GMBM-based dialect-ID system.
1. Calculate a set of discriminant functions,

GkðOðlÞ;KÞ ¼
X2
i¼1

bðiÞ
k log pðX ðl;iÞ jkðiÞ

k Þ;

k ¼ 1; 2; . . . ; J : ð22Þ

2. Calculate the misclassification measure for a
training token OðlÞ from dialect Dk,

MkðOðlÞ;KÞ ¼ �GkðOðlÞ;KÞ

þ log 1

J � 1
X
s;s 6¼k

exp GsðOðlÞ;KÞg
� 	( )1=g

;

ð23Þ

where g is a positive real number.
3. Calculate the smoothed loss function

LkðOðlÞ;KÞ ¼ 1

1þ e�cMkðOðlÞ;KÞ
; ð24Þ

where the parameter c controls the function
smoothness.
4. To reduce the loss function, the GPD algo-

rithm is used to adjust the weighting coefficients
bðiÞ
j and the GMBM parameters kðiÞ

j . Denoting ei-
ther by /ðiÞ

j , the new parameter becomes

�//ðiÞ
j ¼ /ðiÞ

j � �
XL

l¼1

oLkðOðlÞ;KÞ
o/ðiÞ

j

; ð25Þ

where � is the step size and where

oLkðOðlÞ;KÞ
o/ðiÞ

j

¼ oLkðOðlÞ;KÞ
oMkðOðlÞ;KÞ

oMkðOðlÞ;KÞ
oGjðOðlÞ;KÞ

oGjðOðlÞ;KÞ
o/ðiÞ

j

:

ð26Þ

According to Eqs. (23) and (24), we have

oLkðOðlÞ;KÞ
oMkðOðlÞ;KÞ

¼ cLkðOðlÞ;KÞ½1�LkðOðlÞ;KÞ
:

ð27Þ

oMkðOðlÞ;KÞ
oGjðOðlÞ;KÞ

¼
�1 if j ¼ k

exp½GkðOðlÞ;KÞg
P
s;s 6¼j exp½GsðOðlÞ;KÞg


if j 6¼ k:

8><
>: ð28Þ

5. We next want to derive the expressions for
the partial derivatives of the discriminative func-
tion with respect to individual parameters. Further
restriction, however, must be imposed on the
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parameter adjustment to accommodate various
constraints such as the positive definiteness of the
covariance matrix R

ðiÞ
j;n as well as the stochastic

constraints
P

n w
ðiÞ
j;n ¼ 1 and

P
i b

ðiÞ
j ¼ 1. This can

be done by transforming these constrained pa-
rameters to an unconstrained domain and then by
computing the gradient with respect to the trans-
formed parameters ~wwðiÞ

j;n,
~bbðiÞ
j and ~RR

ðiÞ
j;n (Juang et al.,

1997; Chengalvarayan and Deng, 1997). It can be
shown that the gradient computation of individual
parameters are of the form

oGjðOðlÞ;KÞ
o~wwðiÞ

j;n

¼ bðiÞ
j

XT ðl;iÞ

t¼1
pðn jxðl;iÞ

t ; x
ðl;iÞ
t�1 ; k

ðiÞ
j Þ

h
� wðiÞ

j;n

i
; ð29Þ

oGjðOðlÞ;KÞ
oh

ðiÞ
j;n

¼ bðiÞ
j

XT ðl;iÞ

t¼1
pðn jxðl;iÞ

t ; x
ðl;iÞ
t�1 ; k

ðiÞ
j ÞRðiÞ�1

j;n xðl;iÞ
t

h
� lðiÞ

j;n

i
;

ð30Þ

oGjðOðlÞ;KÞ
oB

ðiÞ
j;n

¼ bðjÞ
i

XT ðl;iÞ

t¼1
pðn jxðl;iÞ

t ; x
ðl;iÞ
t�1 ; k

ðiÞ
j ÞRðiÞ�1

j;n xðl;iÞ
t

h
� l

ðiÞ
j;n

i
x
ðl;iÞ0
t�1 ;

ð31Þ

oGjðOðlÞ;KÞ
o~RR

ðiÞ
j;n

¼ 1
2

bðiÞ
j

XT ðl;iÞ

t¼1
pðn jxðl;iÞ

t ; x
ðl;iÞ
t�1 ; k

ðiÞ
j Þ

� R
ðiÞ�1
j;n xðl;iÞ

t

h�
� l

ðiÞ
j;n

i
xðl;iÞ
t

h
� l

ðiÞ
j;n

i0
� I

�
;

ð32Þ

oGjðOðlÞ;KÞ
o~bbðiÞ

j

¼ bðiÞ
j log pðX ðl;iÞ jkðiÞ

j Þ
"

�
X2
s¼1

bðsÞ
j log pðX ðl;sÞ jkðsÞ

d Þ
#
;

ð33Þ

where I denotes an M 
M identity matrix and
pðn jxðl;iÞ

t ; x
ðl;iÞ
t�1 ; k

ðiÞ
j Þ above is defined as Eq. (17).

6. Experimental results

Extensive computer simulations have been
conducted to test the validity of the proposed di-
alect-ID system. Our effort began with the collec-
tion of a speech corpus that consisted of speech
utterances in Mandarin, Holo and Hakka. The
corpus was produced by eight speakers, 5 males
and 3 females, with the length of each utterance
being about 15 s. For this study we attempted to
avoid speaker bias by using speakers who are
fluent in all of the three dialects studied. Our text
materials consisted of 30 folk-tale passages in
colloquial style. Each passage consisted of 26–32
Chinese characters, and the texts were grouped
by passages into sets of 20 and 10. The set with
20 passages was used for training, and the set with
10 passages was used for testing. All the speakers
were asked to read the text three times, once in
each of the three dialects. Thus the number of
training utterances was 480 (20 passages
 8
speakers
 3 dialects), and the number of test ut-
terances was 240 (10 passages
 8 speakers
 3 di-
alects). All of the utterances in the speech corpus
were recorded in a relatively quiet environment,
and then sampled at 16 kHz with 16-bit precision.
Although we expected that the combined use of

pitch and mel-cepstral features would increase di-
alect-discriminating power, it was worth evaluat-
ing the relative contribution towards dialect-ID
that each feature measurement provided. For ex-
ample, this can be done by setting ðbð1Þ

j ; bð2Þ
j Þ ¼

ð1; 0Þ in Eq. (2) for the case where only access to
mel-cepstral feature X ð1Þ was available. A prelim-
inary experiment was first performed to examine
the dependency of dialect-ID results on the num-
ber of Gaussian mixtures used in the GMBM.
A series of dialect-ID results using ML-trained
GMBM are summarized in Fig. 2, with the pa-
rameters being the number N of mixture compo-
nents and the feature measurement used. Our
general conclusion is that the GMBM-based sys-
tem yields better performance with an increase in
the number N of Gaussian mixtures, but the per-
formance has a tendency to become flattened for
high N. In the sequel, we empirically chose the
GMBM with N ¼ 16 and N ¼ 8 to model the mel-
cepstral and pitch-based features, respectively.
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Tables 1 and 2 give dialect-ID results that compare
the case where the GMBM was trained using the
ML algorithm against the case that was trained
using the MCE algorithm. The performance was
evaluated in terms of the confusion matrix, the
rows of which correspond to the dialects actually
being spoken and the columns indicate the dialects
identified. During the MCE training phase, the
parameter values used for c, g, and the maximum
number of iterations Nm were empirically de-
termined to be 1.0, 2.0 and 30, respectively. Ad-
ditionally, the step size at kth iteration was
determined by � ¼ 0:01=ð1� k=NmÞ. Compared
with the ML method, the effectiveness of using the

MCE method for discriminative estimation of
GMBM parameters is clearly demonstrated. The
results of these experiments also indicated that
while the mel-cepstral features are useful in Chi-
nese dialect-ID, other sources of information
are likely to help in distinguishing between dialects
with greater accuracy. The importance of incor-
porating prosodic information was reflected in the
observation that using only pitch information
allows the system to identify three dialects with
56.9% accuracy.
For purposes of comparison, we also investi-

gated two other modeling techniques which ne-
cessitate no phonetically labeled database. The
first approach included two subsystems, the first
of which used a vector quantizer to tokenize
the incoming utterance into sequences of dis-
crete codebook symbols, and the second used
phonotactically motivated language models to
identify target dialects. The language model used
for this experiment was an interpolated bigram
model with parameters estimated according to the
relative frequency method (Hazen and Zue, 1997).
Hereafter we will refer to this system as VQBM.
Fig. 3 shows the dialect-ID results of the VQBM
system for a VQ codebook size ranging from 8 to
128. In it we see that compared with the GMBM,
the VQBM is less successful when applied to dis-
tinguish among Chinese dialects. The better per-
formance associated with the GMBM can be
attributed to the fact that it not only provides a
smooth approximation to the feature distribution,

Table 1

Dialect-ID results based on ML-trained GMBMs

Recognition

Actual Mandarin Holo Hakka

(a) Using mel-cepstral

features

Mandarin 0.83 0.02 0.15

Holo 0.01 0.88 0.11

Hakka 0.10 0.09 0.81

(b) Using pitch-based

features

Mandarin 0.54 0.38 0.08

Holo 0.30 0.58 0.12

Hakka 0.11 0.29 0.59

Table 2

Dialect-ID results based on MCE-trained GMBMs

Recognition

Actual Mandarin Holo Hakka

(a) Using mel-cepstral

features

Mandarin 0.91 0.02 0.07

Holo 0.01 0.90 0.09

Hakka 0.07 0.06 0.87

(b) Using pitch-based

features

Mandarin 0.56 0.36 0.08

Holo 0.27 0.62 0.11

Hakka 0.10 0.28 0.62

Fig. 2. Dialect-ID performance of the ML-trained GMBMs.
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its components also clearly detail the multi-modal
nature of the density. The second approach we
tested was motivated by previous experiments
(Zissman, 1996) showing that languages can be
distinguished by means of Gaussian mixture
models (GMMs). For each dialect, the ML algo-
rithm was used to create two GMMs: one for the
mel-cepstral features and the other for the pitch-
based features. Fig. 4 shows the dialect-ID results
of the GMM-based system for various number of

Gaussian mixtures. A comparison between Figs. 2
and 4 revealed that the GMBM is preferred to the
GMM for use in modeling of language acoustics.
The main reason is that the GMBM takes into
account the time correlation on acoustic frames, as
opposed to the independence assumption made
in the GMM. The investigation further showed
that the improvement is especially prominent for
GMBM modeling of pitch-based features, indi-
cating that pitch contour dynamics are highly
useful in automatic identification of tonal lan-
guages such as Chinese.
Until now, we only considered the situation

where dialects were identified solely by means
of either mel-cepstral or pitch-based features. The
next step in this investigation concerned the
performance improvement that may result from
combining mel-cepstral and pitch information
within a unified framework. Toward this end, we
attempted to determine the most likely dialect
hypothesis using Eq. (2). The classifier parameters
were jointly estimated using the GPD algorithm
based on the MCE criterion, so that the misclas-
sification error rate could be minimized. Table 3
lists a confusion matrix showing the dialect-ID
results for the system that examined differences
between dialects at mel-cepstral and pitch levels. In
it we see that pitch information provides addi-
tional performance gain by acting as a secondary
source of dialect-discriminating information. The
top-choice accuracy was measured to obtain a
recognition score of 94.4%.

7. Conclusions

This study discussed methods of incorporat-
ing acoustic information directly into the Chinese

Fig. 3. Dialect-ID performance of the VQBM approach.

Fig. 4. Dialect-ID performance of the ML-trained GMMs.

Table 3

Dialect-ID results of the overall system trained using MCE

algorithm

Recognition

Actual Mandarin Holo Hakka

Mandarin 0.95 0.02 0.03

Holo 0.01 0.96 0.03

Hakka 0.03 0.04 0.93
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dialect-ID system without requiring transcribed
training data. This task was accomplished by using
a weighted sum of Gaussian mixture densities to
characterize the bigram statistics of mel-cepstral as
well as pitch-based features. Simulation results
indicate that this new method is superior to the
vector codebook approach, which performs pho-
notactic analysis on discrete codebook symbols.
One enhancement that further increases discrimi-
nation across dialects is the use of the MCE al-
gorithm in estimating the classifier parameters.
While this study only presented experimental re-
sults for the Chinese dialect-ID task, the design
techniques used to refine the acoustic character-
ization can be applied to more general problems in
language identification and other speaker identifi-
cation problems.
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